summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/bessel.hpp
blob: 438b763ab703a61241004b32ac35f1ca7450f24c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
//  Copyright (c) 2007, 2013 John Maddock
//  Copyright Christopher Kormanyos 2013.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This header just defines the function entry points, and adds dispatch
// to the right implementation method.  Most of the implementation details
// are in separate headers and copyright Xiaogang Zhang.
//
#ifndef BOOST_MATH_BESSEL_HPP
#define BOOST_MATH_BESSEL_HPP

#ifdef _MSC_VER
#  pragma once
#endif

#include <limits>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/detail/bessel_jy.hpp>
#include <boost/math/special_functions/detail/bessel_jn.hpp>
#include <boost/math/special_functions/detail/bessel_yn.hpp>
#include <boost/math/special_functions/detail/bessel_jy_zero.hpp>
#include <boost/math/special_functions/detail/bessel_ik.hpp>
#include <boost/math/special_functions/detail/bessel_i0.hpp>
#include <boost/math/special_functions/detail/bessel_i1.hpp>
#include <boost/math/special_functions/detail/bessel_kn.hpp>
#include <boost/math/special_functions/detail/iconv.hpp>
#include <boost/math/special_functions/sin_pi.hpp>
#include <boost/math/special_functions/cos_pi.hpp>
#include <boost/math/special_functions/sinc.hpp>
#include <boost/math/special_functions/trunc.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/math/tools/rational.hpp>
#include <boost/math/tools/promotion.hpp>
#include <boost/math/tools/series.hpp>
#include <boost/math/tools/roots.hpp>

namespace boost{ namespace math{

namespace detail{

template <class T, class Policy>
struct sph_bessel_j_small_z_series_term
{
   typedef T result_type;

   sph_bessel_j_small_z_series_term(unsigned v_, T x)
      : N(0), v(v_)
   {
      BOOST_MATH_STD_USING
      mult = x / 2;
      if(v + 3 > max_factorial<T>::value)
      {
         term = v * log(mult) - boost::math::lgamma(v+1+T(0.5f), Policy());
         term = exp(term);
      }
      else
         term = pow(mult, T(v)) / boost::math::tgamma(v+1+T(0.5f), Policy());
      mult *= -mult;
   }
   T operator()()
   {
      T r = term;
      ++N;
      term *= mult / (N * T(N + v + 0.5f));
      return r;
   }
private:
   unsigned N;
   unsigned v;
   T mult;
   T term;
};

template <class T, class Policy>
inline T sph_bessel_j_small_z_series(unsigned v, T x, const Policy& pol)
{
   BOOST_MATH_STD_USING // ADL of std names
   sph_bessel_j_small_z_series_term<T, Policy> s(v, x);
   boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
   T zero = 0;
   T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, zero);
#else
   T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
#endif
   policies::check_series_iterations<T>("boost::math::sph_bessel_j_small_z_series<%1%>(%1%,%1%)", max_iter, pol);
   return result * sqrt(constants::pi<T>() / 4);
}

template <class T, class Policy>
T cyl_bessel_j_imp(T v, T x, const bessel_no_int_tag& t, const Policy& pol)
{
   BOOST_MATH_STD_USING
   static const char* function = "boost::math::bessel_j<%1%>(%1%,%1%)";
   if(x < 0)
   {
      // better have integer v:
      if(floor(v) == v)
      {
         T r = cyl_bessel_j_imp(v, T(-x), t, pol);
         if(iround(v, pol) & 1)
            r = -r;
         return r;
      }
      else
         return policies::raise_domain_error<T>(
            function,
            "Got x = %1%, but we need x >= 0", x, pol);
   }
   
   T j, y;
   bessel_jy(v, x, &j, &y, need_j, pol);
   return j;
}

template <class T, class Policy>
inline T cyl_bessel_j_imp(T v, T x, const bessel_maybe_int_tag&, const Policy& pol)
{
   BOOST_MATH_STD_USING  // ADL of std names.
   int ival = detail::iconv(v, pol);
   // If v is an integer, use the integer recursion
   // method, both that and Steeds method are O(v):
   if((0 == v - ival))
   {
      return bessel_jn(ival, x, pol);
   }
   return cyl_bessel_j_imp(v, x, bessel_no_int_tag(), pol);
}

template <class T, class Policy>
inline T cyl_bessel_j_imp(int v, T x, const bessel_int_tag&, const Policy& pol)
{
   BOOST_MATH_STD_USING
   return bessel_jn(v, x, pol);
}

template <class T, class Policy>
inline T sph_bessel_j_imp(unsigned n, T x, const Policy& pol)
{
   BOOST_MATH_STD_USING // ADL of std names
   if(x < 0)
      return policies::raise_domain_error<T>(
         "boost::math::sph_bessel_j<%1%>(%1%,%1%)",
         "Got x = %1%, but function requires x > 0.", x, pol);
   //
   // Special case, n == 0 resolves down to the sinus cardinal of x:
   //
   if(n == 0)
      return boost::math::sinc_pi(x, pol);
   //
   // Special case for x == 0:
   //
   if(x == 0)
      return 0;
   //
   // When x is small we may end up with 0/0, use series evaluation
   // instead, especially as it converges rapidly:
   //
   if(x < 1)
      return sph_bessel_j_small_z_series(n, x, pol);
   //
   // Default case is just a naive evaluation of the definition:
   //
   return sqrt(constants::pi<T>() / (2 * x)) 
      * cyl_bessel_j_imp(T(T(n)+T(0.5f)), x, bessel_no_int_tag(), pol);
}

template <class T, class Policy>
T cyl_bessel_i_imp(T v, T x, const Policy& pol)
{
   //
   // This handles all the bessel I functions, note that we don't optimise
   // for integer v, other than the v = 0 or 1 special cases, as Millers
   // algorithm is at least as inefficient as the general case (the general
   // case has better error handling too).
   //
   BOOST_MATH_STD_USING
   if(x < 0)
   {
      // better have integer v:
      if(floor(v) == v)
      {
         T r = cyl_bessel_i_imp(v, T(-x), pol);
         if(iround(v, pol) & 1)
            r = -r;
         return r;
      }
      else
         return policies::raise_domain_error<T>(
         "boost::math::cyl_bessel_i<%1%>(%1%,%1%)",
            "Got x = %1%, but we need x >= 0", x, pol);
   }
   if(x == 0)
   {
      return (v == 0) ? 1 : 0;
   }
   if(v == 0.5f)
   {
      // common special case, note try and avoid overflow in exp(x):
      if(x >= tools::log_max_value<T>())
      {
         T e = exp(x / 2);
         return e * (e / sqrt(2 * x * constants::pi<T>()));
      }
      return sqrt(2 / (x * constants::pi<T>())) * sinh(x);
   }
   if(policies::digits<T, Policy>() <= 64)
   {
      if(v == 0)
      {
         return bessel_i0(x);
      }
      if(v == 1)
      {
         return bessel_i1(x);
      }
   }
   if((v > 0) && (x / v < 0.25))
      return bessel_i_small_z_series(v, x, pol);
   T I, K;
   bessel_ik(v, x, &I, &K, need_i, pol);
   return I;
}

template <class T, class Policy>
inline T cyl_bessel_k_imp(T v, T x, const bessel_no_int_tag& /* t */, const Policy& pol)
{
   static const char* function = "boost::math::cyl_bessel_k<%1%>(%1%,%1%)";
   BOOST_MATH_STD_USING
   if(x < 0)
   {
      return policies::raise_domain_error<T>(
         function,
         "Got x = %1%, but we need x > 0", x, pol);
   }
   if(x == 0)
   {
      return (v == 0) ? policies::raise_overflow_error<T>(function, 0, pol)
         : policies::raise_domain_error<T>(
         function,
         "Got x = %1%, but we need x > 0", x, pol);
   }
   T I, K;
   bessel_ik(v, x, &I, &K, need_k, pol);
   return K;
}

template <class T, class Policy>
inline T cyl_bessel_k_imp(T v, T x, const bessel_maybe_int_tag&, const Policy& pol)
{
   BOOST_MATH_STD_USING
   if((floor(v) == v))
   {
      return bessel_kn(itrunc(v), x, pol);
   }
   return cyl_bessel_k_imp(v, x, bessel_no_int_tag(), pol);
}

template <class T, class Policy>
inline T cyl_bessel_k_imp(int v, T x, const bessel_int_tag&, const Policy& pol)
{
   return bessel_kn(v, x, pol);
}

template <class T, class Policy>
inline T cyl_neumann_imp(T v, T x, const bessel_no_int_tag&, const Policy& pol)
{
   static const char* function = "boost::math::cyl_neumann<%1%>(%1%,%1%)";

   BOOST_MATH_INSTRUMENT_VARIABLE(v);
   BOOST_MATH_INSTRUMENT_VARIABLE(x);

   if(x <= 0)
   {
      return (v == 0) && (x == 0) ?
         policies::raise_overflow_error<T>(function, 0, pol)
         : policies::raise_domain_error<T>(
               function,
               "Got x = %1%, but result is complex for x <= 0", x, pol);
   }
   T j, y;
   bessel_jy(v, x, &j, &y, need_y, pol);
   // 
   // Post evaluation check for internal overflow during evaluation,
   // can occur when x is small and v is large, in which case the result
   // is -INF:
   //
   if(!(boost::math::isfinite)(y))
      return -policies::raise_overflow_error<T>(function, 0, pol);
   return y;
}

template <class T, class Policy>
inline T cyl_neumann_imp(T v, T x, const bessel_maybe_int_tag&, const Policy& pol)
{
   BOOST_MATH_STD_USING

   BOOST_MATH_INSTRUMENT_VARIABLE(v);
   BOOST_MATH_INSTRUMENT_VARIABLE(x);

   if(floor(v) == v)
   {
      if(asymptotic_bessel_large_x_limit(v, x))
      {
         T r = asymptotic_bessel_y_large_x_2(static_cast<T>(abs(v)), x);
         if((v < 0) && (itrunc(v, pol) & 1))
            r = -r;
         BOOST_MATH_INSTRUMENT_VARIABLE(r);
         return r;
      }
      else
      {
         T r = bessel_yn(itrunc(v, pol), x, pol);
         BOOST_MATH_INSTRUMENT_VARIABLE(r);
         return r;
      }
   }
   T r = cyl_neumann_imp<T>(v, x, bessel_no_int_tag(), pol);
   BOOST_MATH_INSTRUMENT_VARIABLE(r);
   return r;
}

template <class T, class Policy>
inline T cyl_neumann_imp(int v, T x, const bessel_int_tag&, const Policy& pol)
{
   BOOST_MATH_STD_USING

   BOOST_MATH_INSTRUMENT_VARIABLE(v);
   BOOST_MATH_INSTRUMENT_VARIABLE(x);

   if(asymptotic_bessel_large_x_limit(T(v), x))
   {
      T r = asymptotic_bessel_y_large_x_2(static_cast<T>(abs(v)), x);
      if((v < 0) && (v & 1))
         r = -r;
      return r;
   }
   else
      return bessel_yn(v, x, pol);
}

template <class T, class Policy>
inline T sph_neumann_imp(unsigned v, T x, const Policy& pol)
{
   BOOST_MATH_STD_USING // ADL of std names
   static const char* function = "boost::math::sph_neumann<%1%>(%1%,%1%)";
   //
   // Nothing much to do here but check for errors, and
   // evaluate the function's definition directly:
   //
   if(x < 0)
      return policies::raise_domain_error<T>(
         function,
         "Got x = %1%, but function requires x > 0.", x, pol);

   if(x < 2 * tools::min_value<T>())
      return -policies::raise_overflow_error<T>(function, 0, pol);

   T result = cyl_neumann_imp(T(T(v)+0.5f), x, bessel_no_int_tag(), pol);
   T tx = sqrt(constants::pi<T>() / (2 * x));

   if((tx > 1) && (tools::max_value<T>() / tx < result))
      return -policies::raise_overflow_error<T>(function, 0, pol);

   return result * tx;
}

template <class T, class Policy>
inline T cyl_bessel_j_zero_imp(T v, int m, const Policy& pol)
{
   BOOST_MATH_STD_USING // ADL of std names, needed for floor.

   static const char* function = "boost::math::cyl_bessel_j_zero<%1%>(%1%, int)";

   const T half_epsilon(boost::math::tools::epsilon<T>() / 2U);

   // Handle non-finite order.
   if (!(boost::math::isfinite)(v) )
   {
     return policies::raise_domain_error<T>(function, "Order argument is %1%, but must be finite >= 0 !", v, pol);
   }

   // Handle negative rank.
   if(m < 0)
   {
      // Zeros of Jv(x) with negative rank are not defined and requesting one raises a domain error.
      return policies::raise_domain_error<T>(function, "Requested the %1%'th zero, but the rank must be positive !", m, pol);
   }

   // Get the absolute value of the order.
   const bool order_is_negative = (v < 0);
   const T vv((!order_is_negative) ? v : T(-v));

   // Check if the order is very close to zero or very close to an integer.
   const bool order_is_zero    = (vv < half_epsilon);
   const bool order_is_integer = ((vv - floor(vv)) < half_epsilon);

   if(m == 0)
   {
      if(order_is_zero)
      {
         // The zero'th zero of J0(x) is not defined and requesting it raises a domain error.
         return policies::raise_domain_error<T>(function, "Requested the %1%'th zero of J0, but the rank must be > 0 !", m, pol);
      }

      // The zero'th zero of Jv(x) for v < 0 is not defined
      // unless the order is a negative integer.
      if(order_is_negative && (!order_is_integer))
      {
         // For non-integer, negative order, requesting the zero'th zero raises a domain error.
         return policies::raise_domain_error<T>(function, "Requested the %1%'th zero of Jv for negative, non-integer order, but the rank must be > 0 !", m, pol);
      }

      // The zero'th zero does exist and its value is zero.
      return T(0);
   }

   // Set up the initial guess for the upcoming root-finding.
   // If the order is a negative integer, then use the corresponding
   // positive integer for the order.
   const T guess_root = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess<T, Policy>((order_is_integer ? vv : v), m, pol);

   // Select the maximum allowed iterations from the policy.
   boost::uintmax_t number_of_iterations = policies::get_max_root_iterations<Policy>();

   const T delta_lo = ((guess_root > 0.2F) ? T(0.2) : T(guess_root / 2U));

   // Perform the root-finding using Newton-Raphson iteration from Boost.Math.
   const T jvm =
      boost::math::tools::newton_raphson_iterate(
         boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::function_object_jv_and_jv_prime<T, Policy>((order_is_integer ? vv : v), order_is_zero, pol),
         guess_root,
         T(guess_root - delta_lo),
         T(guess_root + 0.2F),
         policies::digits<T, Policy>(),
         number_of_iterations);

   if(number_of_iterations >= policies::get_max_root_iterations<Policy>())
   {
      return policies::raise_evaluation_error<T>(function, "Unable to locate root in a reasonable time:"
         "  Current best guess is %1%", jvm, Policy());
   }

   return jvm;
}

template <class T, class Policy>
inline T cyl_neumann_zero_imp(T v, int m, const Policy& pol)
{
   BOOST_MATH_STD_USING // ADL of std names, needed for floor.

   static const char* function = "boost::math::cyl_neumann_zero<%1%>(%1%, int)";

   // Handle non-finite order.
   if (!(boost::math::isfinite)(v) )
   {
     return policies::raise_domain_error<T>(function, "Order argument is %1%, but must be finite >= 0 !", v, pol);
   }

   // Handle negative rank.
   if(m < 0)
   {
      return policies::raise_domain_error<T>(function, "Requested the %1%'th zero, but the rank must be positive !", m, pol);
   }

   const T half_epsilon(boost::math::tools::epsilon<T>() / 2U);

   // Get the absolute value of the order.
   const bool order_is_negative = (v < 0);
   const T vv((!order_is_negative) ? v : T(-v));

   const bool order_is_integer = ((vv - floor(vv)) < half_epsilon);

   // For negative integers, use reflection to positive integer order.
   if(order_is_negative && order_is_integer)
      return boost::math::detail::cyl_neumann_zero_imp(vv, m, pol);

   // Check if the order is very close to a negative half-integer.
   const T delta_half_integer(vv - (floor(vv) + 0.5F));

   const bool order_is_negative_half_integer =
      (order_is_negative && ((delta_half_integer > -half_epsilon) && (delta_half_integer < +half_epsilon)));

   // The zero'th zero of Yv(x) for v < 0 is not defined
   // unless the order is a negative integer.
   if((m == 0) && (!order_is_negative_half_integer))
   {
      // For non-integer, negative order, requesting the zero'th zero raises a domain error.
      return policies::raise_domain_error<T>(function, "Requested the %1%'th zero of Yv for negative, non-half-integer order, but the rank must be > 0 !", m, pol);
   }

   // For negative half-integers, use the corresponding
   // spherical Bessel function of positive half-integer order.
   if(order_is_negative_half_integer)
      return boost::math::detail::cyl_bessel_j_zero_imp(vv, m, pol);

   // Set up the initial guess for the upcoming root-finding.
   // If the order is a negative integer, then use the corresponding
   // positive integer for the order.
   const T guess_root = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess<T, Policy>(v, m, pol);

   // Select the maximum allowed iterations from the policy.
   boost::uintmax_t number_of_iterations = policies::get_max_root_iterations<Policy>();

   const T delta_lo = ((guess_root > 0.2F) ? T(0.2) : T(guess_root / 2U));

   // Perform the root-finding using Newton-Raphson iteration from Boost.Math.
   const T yvm =
      boost::math::tools::newton_raphson_iterate(
         boost::math::detail::bessel_zero::cyl_neumann_zero_detail::function_object_yv_and_yv_prime<T, Policy>(v, pol),
         guess_root,
         T(guess_root - delta_lo),
         T(guess_root + 0.2F),
         policies::digits<T, Policy>(),
         number_of_iterations);

   if(number_of_iterations >= policies::get_max_root_iterations<Policy>())
   {
      return policies::raise_evaluation_error<T>(function, "Unable to locate root in a reasonable time:"
         "  Current best guess is %1%", yvm, Policy());
   }

   return yvm;
}

} // namespace detail

template <class T1, class T2, class Policy>
inline typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_bessel_j(T1 v, T2 x, const Policy& /* pol */)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename detail::bessel_traits<T1, T2, Policy>::result_type result_type;
   typedef typename detail::bessel_traits<T1, T2, Policy>::optimisation_tag tag_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;
   return policies::checked_narrowing_cast<result_type, Policy>(detail::cyl_bessel_j_imp<value_type>(v, static_cast<value_type>(x), tag_type(), forwarding_policy()), "boost::math::cyl_bessel_j<%1%>(%1%,%1%)");
}

template <class T1, class T2>
inline typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_bessel_j(T1 v, T2 x)
{
   return cyl_bessel_j(v, x, policies::policy<>());
}

template <class T, class Policy>
inline typename detail::bessel_traits<T, T, Policy>::result_type sph_bessel(unsigned v, T x, const Policy& /* pol */)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename detail::bessel_traits<T, T, Policy>::result_type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;
   return policies::checked_narrowing_cast<result_type, Policy>(detail::sph_bessel_j_imp<value_type>(v, static_cast<value_type>(x), forwarding_policy()), "boost::math::sph_bessel<%1%>(%1%,%1%)");
}

template <class T>
inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type sph_bessel(unsigned v, T x)
{
   return sph_bessel(v, x, policies::policy<>());
}

template <class T1, class T2, class Policy>
inline typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_bessel_i(T1 v, T2 x, const Policy& /* pol */)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename detail::bessel_traits<T1, T2, Policy>::result_type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;
   return policies::checked_narrowing_cast<result_type, Policy>(detail::cyl_bessel_i_imp<value_type>(v, static_cast<value_type>(x), forwarding_policy()), "boost::math::cyl_bessel_i<%1%>(%1%,%1%)");
}

template <class T1, class T2>
inline typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_bessel_i(T1 v, T2 x)
{
   return cyl_bessel_i(v, x, policies::policy<>());
}

template <class T1, class T2, class Policy>
inline typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_bessel_k(T1 v, T2 x, const Policy& /* pol */)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename detail::bessel_traits<T1, T2, Policy>::result_type result_type;
   typedef typename detail::bessel_traits<T1, T2, Policy>::optimisation_tag tag_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;
   return policies::checked_narrowing_cast<result_type, Policy>(detail::cyl_bessel_k_imp<value_type>(v, static_cast<value_type>(x), tag_type(), forwarding_policy()), "boost::math::cyl_bessel_k<%1%>(%1%,%1%)");
}

template <class T1, class T2>
inline typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_bessel_k(T1 v, T2 x)
{
   return cyl_bessel_k(v, x, policies::policy<>());
}

template <class T1, class T2, class Policy>
inline typename detail::bessel_traits<T1, T2, Policy>::result_type cyl_neumann(T1 v, T2 x, const Policy& /* pol */)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename detail::bessel_traits<T1, T2, Policy>::result_type result_type;
   typedef typename detail::bessel_traits<T1, T2, Policy>::optimisation_tag tag_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;
   return policies::checked_narrowing_cast<result_type, Policy>(detail::cyl_neumann_imp<value_type>(v, static_cast<value_type>(x), tag_type(), forwarding_policy()), "boost::math::cyl_neumann<%1%>(%1%,%1%)");
}

template <class T1, class T2>
inline typename detail::bessel_traits<T1, T2, policies::policy<> >::result_type cyl_neumann(T1 v, T2 x)
{
   return cyl_neumann(v, x, policies::policy<>());
}

template <class T, class Policy>
inline typename detail::bessel_traits<T, T, Policy>::result_type sph_neumann(unsigned v, T x, const Policy& /* pol */)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename detail::bessel_traits<T, T, Policy>::result_type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;
   return policies::checked_narrowing_cast<result_type, Policy>(detail::sph_neumann_imp<value_type>(v, static_cast<value_type>(x), forwarding_policy()), "boost::math::sph_neumann<%1%>(%1%,%1%)");
}

template <class T>
inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type sph_neumann(unsigned v, T x)
{
   return sph_neumann(v, x, policies::policy<>());
}

template <class T, class Policy>
inline typename detail::bessel_traits<T, T, Policy>::result_type cyl_bessel_j_zero(T v, int m, const Policy& /* pol */)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename detail::bessel_traits<T, T, Policy>::result_type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   BOOST_STATIC_ASSERT_MSG(    false == std::numeric_limits<T>::is_specialized
                           || (   true  == std::numeric_limits<T>::is_specialized
                               && false == std::numeric_limits<T>::is_integer),
                           "Order must be a floating-point type.");

   return policies::checked_narrowing_cast<result_type, Policy>(detail::cyl_bessel_j_zero_imp<value_type>(v, m, forwarding_policy()), "boost::math::cyl_bessel_j_zero<%1%>(%1%,%1%)");
}

template <class T>
inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type cyl_bessel_j_zero(T v, int m)
{
   BOOST_STATIC_ASSERT_MSG(    false == std::numeric_limits<T>::is_specialized
                           || (   true  == std::numeric_limits<T>::is_specialized
                               && false == std::numeric_limits<T>::is_integer),
                           "Order must be a floating-point type.");

   return cyl_bessel_j_zero<T, policies::policy<> >(v, m, policies::policy<>());
}

template <class T, class OutputIterator, class Policy>
inline OutputIterator cyl_bessel_j_zero(T v,
                              int start_index,
                              unsigned number_of_zeros,
                              OutputIterator out_it,
                              const Policy& pol)
{
   BOOST_STATIC_ASSERT_MSG(    false == std::numeric_limits<T>::is_specialized
                           || (   true  == std::numeric_limits<T>::is_specialized
                               && false == std::numeric_limits<T>::is_integer),
                           "Order must be a floating-point type.");

   for(int i = 0; i < static_cast<int>(number_of_zeros); ++i)
   {
      *out_it = boost::math::cyl_bessel_j_zero(v, start_index + i, pol);
      ++out_it;
   }
   return out_it;
}

template <class T, class OutputIterator>
inline OutputIterator cyl_bessel_j_zero(T v,
                              int start_index,
                              unsigned number_of_zeros,
                              OutputIterator out_it)
{
   return cyl_bessel_j_zero(v, start_index, number_of_zeros, out_it, policies::policy<>());
}

template <class T, class Policy>
inline typename detail::bessel_traits<T, T, Policy>::result_type cyl_neumann_zero(T v, int m, const Policy& /* pol */)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename detail::bessel_traits<T, T, Policy>::result_type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   BOOST_STATIC_ASSERT_MSG(    false == std::numeric_limits<T>::is_specialized
                           || (   true  == std::numeric_limits<T>::is_specialized
                               && false == std::numeric_limits<T>::is_integer),
                           "Order must be a floating-point type.");

   return policies::checked_narrowing_cast<result_type, Policy>(detail::cyl_neumann_zero_imp<value_type>(v, m, forwarding_policy()), "boost::math::cyl_neumann_zero<%1%>(%1%,%1%)");
}

template <class T>
inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type cyl_neumann_zero(T v, int m)
{
   BOOST_STATIC_ASSERT_MSG(    false == std::numeric_limits<T>::is_specialized
                           || (   true  == std::numeric_limits<T>::is_specialized
                               && false == std::numeric_limits<T>::is_integer),
                           "Order must be a floating-point type.");

   return cyl_neumann_zero<T, policies::policy<> >(v, m, policies::policy<>());
}

template <class T, class OutputIterator, class Policy>
inline OutputIterator cyl_neumann_zero(T v,
                             int start_index,
                             unsigned number_of_zeros,
                             OutputIterator out_it,
                             const Policy& pol)
{
   BOOST_STATIC_ASSERT_MSG(    false == std::numeric_limits<T>::is_specialized
                           || (   true  == std::numeric_limits<T>::is_specialized
                               && false == std::numeric_limits<T>::is_integer),
                           "Order must be a floating-point type.");

   for(int i = 0; i < static_cast<int>(number_of_zeros); ++i)
   {
      *out_it = boost::math::cyl_neumann_zero(v, start_index + i, pol);
      ++out_it;
   }
   return out_it;
}

template <class T, class OutputIterator>
inline OutputIterator cyl_neumann_zero(T v,
                             int start_index,
                             unsigned number_of_zeros,
                             OutputIterator out_it)
{
   return cyl_neumann_zero(v, start_index, number_of_zeros, out_it, policies::policy<>());
}

} // namespace math
} // namespace boost

#endif // BOOST_MATH_BESSEL_HPP