summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/airy.hpp
blob: e84a705fe8fd24622dd564daa807061ce040785d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
// Copyright John Maddock 2012.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MATH_AIRY_HPP
#define BOOST_MATH_AIRY_HPP

#include <limits>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/bessel.hpp>
#include <boost/math/special_functions/cbrt.hpp>
#include <boost/math/special_functions/detail/airy_ai_bi_zero.hpp>
#include <boost/math/tools/roots.hpp>

namespace boost{ namespace math{

namespace detail{

template <class T, class Policy>
T airy_ai_imp(T x, const Policy& pol)
{
   BOOST_MATH_STD_USING

   if(x < 0)
   {
      T p = (-x * sqrt(-x) * 2) / 3;
      T v = T(1) / 3;
      T j1 = boost::math::cyl_bessel_j(v, p, pol);
      T j2 = boost::math::cyl_bessel_j(-v, p, pol);
      T ai = sqrt(-x) * (j1 + j2) / 3;
      //T bi = sqrt(-x / 3) * (j2 - j1);
      return ai;
   }
   else if(fabs(x * x * x) / 6 < tools::epsilon<T>())
   {
      T tg = boost::math::tgamma(constants::twothirds<T>(), pol);
      T ai = 1 / (pow(T(3), constants::twothirds<T>()) * tg);
      //T bi = 1 / (sqrt(boost::math::cbrt(T(3))) * tg);
      return ai;
   }
   else
   {
      T p = 2 * x * sqrt(x) / 3;
      T v = T(1) / 3;
      //T j1 = boost::math::cyl_bessel_i(-v, p, pol);
      //T j2 = boost::math::cyl_bessel_i(v, p, pol);
      //
      // Note that although we can calculate ai from j1 and j2, the accuracy is horrible
      // as we're subtracting two very large values, so use the Bessel K relation instead:
      //
      T ai = cyl_bessel_k(v, p, pol) * sqrt(x / 3) / boost::math::constants::pi<T>();  //sqrt(x) * (j1 - j2) / 3;
      //T bi = sqrt(x / 3) * (j1 + j2);
      return ai;
   }
}

template <class T, class Policy>
T airy_bi_imp(T x, const Policy& pol)
{
   BOOST_MATH_STD_USING

   if(x < 0)
   {
      T p = (-x * sqrt(-x) * 2) / 3;
      T v = T(1) / 3;
      T j1 = boost::math::cyl_bessel_j(v, p, pol);
      T j2 = boost::math::cyl_bessel_j(-v, p, pol);
      //T ai = sqrt(-x) * (j1 + j2) / 3;
      T bi = sqrt(-x / 3) * (j2 - j1);
      return bi;
   }
   else if(fabs(x * x * x) / 6 < tools::epsilon<T>())
   {
      T tg = boost::math::tgamma(constants::twothirds<T>(), pol);
      //T ai = 1 / (pow(T(3), constants::twothirds<T>()) * tg);
      T bi = 1 / (sqrt(boost::math::cbrt(T(3))) * tg);
      return bi;
   }
   else
   {
      T p = 2 * x * sqrt(x) / 3;
      T v = T(1) / 3;
      T j1 = boost::math::cyl_bessel_i(-v, p, pol);
      T j2 = boost::math::cyl_bessel_i(v, p, pol);
      T bi = sqrt(x / 3) * (j1 + j2);
      return bi;
   }
}

template <class T, class Policy>
T airy_ai_prime_imp(T x, const Policy& pol)
{
   BOOST_MATH_STD_USING

   if(x < 0)
   {
      T p = (-x * sqrt(-x) * 2) / 3;
      T v = T(2) / 3;
      T j1 = boost::math::cyl_bessel_j(v, p, pol);
      T j2 = boost::math::cyl_bessel_j(-v, p, pol);
      T aip = -x * (j1 - j2) / 3;
      return aip;
   }
   else if(fabs(x * x) / 2 < tools::epsilon<T>())
   {
      T tg = boost::math::tgamma(constants::third<T>(), pol);
      T aip = 1 / (boost::math::cbrt(T(3)) * tg);
      return -aip;
   }
   else
   {
      T p = 2 * x * sqrt(x) / 3;
      T v = T(2) / 3;
      //T j1 = boost::math::cyl_bessel_i(-v, p, pol);
      //T j2 = boost::math::cyl_bessel_i(v, p, pol);
      //
      // Note that although we can calculate ai from j1 and j2, the accuracy is horrible
      // as we're subtracting two very large values, so use the Bessel K relation instead:
      //
      T aip = -cyl_bessel_k(v, p, pol) * x / (boost::math::constants::root_three<T>() * boost::math::constants::pi<T>());
      return aip;
   }
}

template <class T, class Policy>
T airy_bi_prime_imp(T x, const Policy& pol)
{
   BOOST_MATH_STD_USING

   if(x < 0)
   {
      T p = (-x * sqrt(-x) * 2) / 3;
      T v = T(2) / 3;
      T j1 = boost::math::cyl_bessel_j(v, p, pol);
      T j2 = boost::math::cyl_bessel_j(-v, p, pol);
      T aip = -x * (j1 + j2) / constants::root_three<T>();
      return aip;
   }
   else if(fabs(x * x) / 2 < tools::epsilon<T>())
   {
      T tg = boost::math::tgamma(constants::third<T>(), pol);
      T bip = sqrt(boost::math::cbrt(T(3))) / tg;
      return bip;
   }
   else
   {
      T p = 2 * x * sqrt(x) / 3;
      T v = T(2) / 3;
      T j1 = boost::math::cyl_bessel_i(-v, p, pol);
      T j2 = boost::math::cyl_bessel_i(v, p, pol);
      T aip = x * (j1 + j2) / boost::math::constants::root_three<T>();
      return aip;
   }
}

template <class T, class Policy>
T airy_ai_zero_imp(int m, const Policy& pol)
{
   BOOST_MATH_STD_USING // ADL of std names, needed for log, sqrt.

   // Handle cases when a negative zero (negative rank) is requested.
   if(m < 0)
   {
      return policies::raise_domain_error<T>("boost::math::airy_ai_zero<%1%>(%1%, int)",
         "Requested the %1%'th zero, but the rank must be 1 or more !", static_cast<T>(m), pol);
   }

   // Handle case when the zero'th zero is requested.
   if(m == 0U)
   {
      return policies::raise_domain_error<T>("boost::math::airy_ai_zero<%1%>(%1%,%1%)",
        "The requested rank of the zero is %1%, but must be 1 or more !", static_cast<T>(m), pol);
   }

   // Set up the initial guess for the upcoming root-finding.
   const T guess_root = boost::math::detail::airy_zero::airy_ai_zero_detail::initial_guess<T>(m);

   // Select the maximum allowed iterations based on the number
   // of decimal digits in the numeric type T, being at least 12.
   const int my_digits10 = static_cast<int>(static_cast<float>(policies::digits<T, Policy>() * 0.301F));

   const boost::uintmax_t iterations_allowed = static_cast<boost::uintmax_t>((std::max)(12, my_digits10 * 2));

   boost::uintmax_t iterations_used = iterations_allowed;

   // Use a dynamic tolerance because the roots get closer the higher m gets.
   T tolerance;

   if     (m <=   10) { tolerance = T(0.3F); }
   else if(m <=  100) { tolerance = T(0.1F); }
   else if(m <= 1000) { tolerance = T(0.05F); }
   else               { tolerance = T(1) / sqrt(T(m)); }

   // Perform the root-finding using Newton-Raphson iteration from Boost.Math.
   const T am =
      boost::math::tools::newton_raphson_iterate(
         boost::math::detail::airy_zero::airy_ai_zero_detail::function_object_ai_and_ai_prime<T, Policy>(pol),
         guess_root,
         T(guess_root - tolerance),
         T(guess_root + tolerance),
         policies::digits<T, Policy>(),
         iterations_used);

   static_cast<void>(iterations_used);

   return am;
}

template <class T, class Policy>
T airy_bi_zero_imp(int m, const Policy& pol)
{
   BOOST_MATH_STD_USING // ADL of std names, needed for log, sqrt.

   // Handle cases when a negative zero (negative rank) is requested.
   if(m < 0)
   {
      return policies::raise_domain_error<T>("boost::math::airy_bi_zero<%1%>(%1%, int)",
         "Requested the %1%'th zero, but the rank must 1 or more !", static_cast<T>(m), pol);
   }

   // Handle case when the zero'th zero is requested.
   if(m == 0U)
   {
      return policies::raise_domain_error<T>("boost::math::airy_bi_zero<%1%>(%1%,%1%)",
        "The requested rank of the zero is %1%, but must be 1 or more !", static_cast<T>(m), pol);
   }
   // Set up the initial guess for the upcoming root-finding.
   const T guess_root = boost::math::detail::airy_zero::airy_bi_zero_detail::initial_guess<T>(m);

   // Select the maximum allowed iterations based on the number
   // of decimal digits in the numeric type T, being at least 12.
   const int my_digits10 = static_cast<int>(static_cast<float>(policies::digits<T, Policy>() * 0.301F));

   const boost::uintmax_t iterations_allowed = static_cast<boost::uintmax_t>((std::max)(12, my_digits10 * 2));

   boost::uintmax_t iterations_used = iterations_allowed;

   // Use a dynamic tolerance because the roots get closer the higher m gets.
   T tolerance;

   if     (m <=   10) { tolerance = T(0.3F); }
   else if(m <=  100) { tolerance = T(0.1F); }
   else if(m <= 1000) { tolerance = T(0.05F); }
   else               { tolerance = T(1) / sqrt(T(m)); }

   // Perform the root-finding using Newton-Raphson iteration from Boost.Math.
   const T bm =
      boost::math::tools::newton_raphson_iterate(
         boost::math::detail::airy_zero::airy_bi_zero_detail::function_object_bi_and_bi_prime<T, Policy>(pol),
         guess_root,
         T(guess_root - tolerance),
         T(guess_root + tolerance),
         policies::digits<T, Policy>(),
         iterations_used);

   static_cast<void>(iterations_used);

   return bm;
}

} // namespace detail

template <class T, class Policy>
inline typename tools::promote_args<T>::type airy_ai(T x, const Policy&)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename tools::promote_args<T>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   return policies::checked_narrowing_cast<result_type, Policy>(detail::airy_ai_imp<value_type>(static_cast<value_type>(x), forwarding_policy()), "boost::math::airy<%1%>(%1%)");
}

template <class T>
inline typename tools::promote_args<T>::type airy_ai(T x)
{
   return airy_ai(x, policies::policy<>());
}

template <class T, class Policy>
inline typename tools::promote_args<T>::type airy_bi(T x, const Policy&)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename tools::promote_args<T>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   return policies::checked_narrowing_cast<result_type, Policy>(detail::airy_bi_imp<value_type>(static_cast<value_type>(x), forwarding_policy()), "boost::math::airy<%1%>(%1%)");
}

template <class T>
inline typename tools::promote_args<T>::type airy_bi(T x)
{
   return airy_bi(x, policies::policy<>());
}

template <class T, class Policy>
inline typename tools::promote_args<T>::type airy_ai_prime(T x, const Policy&)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename tools::promote_args<T>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   return policies::checked_narrowing_cast<result_type, Policy>(detail::airy_ai_prime_imp<value_type>(static_cast<value_type>(x), forwarding_policy()), "boost::math::airy<%1%>(%1%)");
}

template <class T>
inline typename tools::promote_args<T>::type airy_ai_prime(T x)
{
   return airy_ai_prime(x, policies::policy<>());
}

template <class T, class Policy>
inline typename tools::promote_args<T>::type airy_bi_prime(T x, const Policy&)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename tools::promote_args<T>::type result_type;
   typedef typename policies::evaluation<result_type, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   return policies::checked_narrowing_cast<result_type, Policy>(detail::airy_bi_prime_imp<value_type>(static_cast<value_type>(x), forwarding_policy()), "boost::math::airy<%1%>(%1%)");
}

template <class T>
inline typename tools::promote_args<T>::type airy_bi_prime(T x)
{
   return airy_bi_prime(x, policies::policy<>());
}

template <class T, class Policy>
inline T airy_ai_zero(int m, const Policy& /*pol*/)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename policies::evaluation<T, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   BOOST_STATIC_ASSERT_MSG(    false == std::numeric_limits<T>::is_specialized
                           || (   true  == std::numeric_limits<T>::is_specialized
                               && false == std::numeric_limits<T>::is_integer),
                           "Airy value type must be a floating-point type.");

   return policies::checked_narrowing_cast<T, Policy>(detail::airy_ai_zero_imp<value_type>(m, forwarding_policy()), "boost::math::airy_ai_zero<%1%>(unsigned)");
}

template <class T>
inline T airy_ai_zero(int m)
{
   return airy_ai_zero<T>(m, policies::policy<>());
}

template <class T, class OutputIterator, class Policy>
inline OutputIterator airy_ai_zero(
                         int start_index,
                         unsigned number_of_zeros,
                         OutputIterator out_it,
                         const Policy& pol)
{
   typedef T result_type;

   BOOST_STATIC_ASSERT_MSG(    false == std::numeric_limits<T>::is_specialized
                           || (   true  == std::numeric_limits<T>::is_specialized
                               && false == std::numeric_limits<T>::is_integer),
                           "Airy value type must be a floating-point type.");

   for(unsigned i = 0; i < number_of_zeros; ++i)
   {
      *out_it = boost::math::airy_ai_zero<result_type>(start_index + i, pol);
      ++out_it;
   }
   return out_it;
}

template <class T, class OutputIterator>
inline OutputIterator airy_ai_zero(
                         int start_index,
                         unsigned number_of_zeros,
                         OutputIterator out_it)
{
   return airy_ai_zero<T>(start_index, number_of_zeros, out_it, policies::policy<>());
}

template <class T, class Policy>
inline T airy_bi_zero(int m, const Policy& /*pol*/)
{
   BOOST_FPU_EXCEPTION_GUARD
   typedef typename policies::evaluation<T, Policy>::type value_type;
   typedef typename policies::normalise<
      Policy, 
      policies::promote_float<false>, 
      policies::promote_double<false>, 
      policies::discrete_quantile<>,
      policies::assert_undefined<> >::type forwarding_policy;

   BOOST_STATIC_ASSERT_MSG(    false == std::numeric_limits<T>::is_specialized
                           || (   true  == std::numeric_limits<T>::is_specialized
                               && false == std::numeric_limits<T>::is_integer),
                           "Airy value type must be a floating-point type.");

   return policies::checked_narrowing_cast<T, Policy>(detail::airy_bi_zero_imp<value_type>(m, forwarding_policy()), "boost::math::airy_bi_zero<%1%>(unsigned)");
}

template <typename T>
inline T airy_bi_zero(int m)
{
   return airy_bi_zero<T>(m, policies::policy<>());
}

template <class T, class OutputIterator, class Policy>
inline OutputIterator airy_bi_zero(
                         int start_index,
                         unsigned number_of_zeros,
                         OutputIterator out_it,
                         const Policy& pol)
{
   typedef T result_type;

   BOOST_STATIC_ASSERT_MSG(    false == std::numeric_limits<T>::is_specialized
                           || (   true  == std::numeric_limits<T>::is_specialized
                               && false == std::numeric_limits<T>::is_integer),
                           "Airy value type must be a floating-point type.");

   for(unsigned i = 0; i < number_of_zeros; ++i)
   {
      *out_it = boost::math::airy_bi_zero<result_type>(start_index + i, pol);
      ++out_it;
   }
   return out_it;
}

template <class T, class OutputIterator>
inline OutputIterator airy_bi_zero(
                         int start_index,
                         unsigned number_of_zeros,
                         OutputIterator out_it)
{
   return airy_bi_zero<T>(start_index, number_of_zeros, out_it, policies::policy<>());
}

}} // namespaces

#endif // BOOST_MATH_AIRY_HPP