summaryrefslogtreecommitdiff
path: root/boost/math/distributions/inverse_gaussian.hpp
blob: eeca12ad4822d8ce14818630404083fb550ec229 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
//  Copyright John Maddock 2010.
//  Copyright Paul A. Bristow 2010.

//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP
#define BOOST_STATS_INVERSE_GAUSSIAN_HPP

#ifdef _MSC_VER
#pragma warning(disable: 4512) // assignment operator could not be generated
#endif

// http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution
// http://mathworld.wolfram.com/InverseGaussianDistribution.html

// The normal-inverse Gaussian distribution
// also called the Wald distribution (some sources limit this to when mean = 1).

// It is the continuous probability distribution
// that is defined as the normal variance-mean mixture where the mixing density is the 
// inverse Gaussian distribution. The tails of the distribution decrease more slowly
// than the normal distribution. It is therefore suitable to model phenomena
// where numerically large values are more probable than is the case for the normal distribution.

// The Inverse Gaussian distribution was first studied in relationship to Brownian motion.
// In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse 
// relationship between the time to cover a unit distance and distance covered in unit time.

// Examples are returns from financial assets and turbulent wind speeds. 
// The normal-inverse Gaussian distributions form
// a subclass of the generalised hyperbolic distributions.

// See also

// http://en.wikipedia.org/wiki/Normal_distribution
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
// Also:
// Weisstein, Eric W. "Normal Distribution."
// From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/NormalDistribution.html

// http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions.
// ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/

// http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html
// R package for dinverse_gaussian, ...

// http://www.statsci.org/s/inverse_gaussian.s  and http://www.statsci.org/s/inverse_gaussian.html

//#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/erf.hpp> // for erf/erfc.
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/distributions/normal.hpp>
#include <boost/math/distributions/gamma.hpp> // for gamma function
// using boost::math::gamma_p;

#include <boost/math/tools/tuple.hpp>
//using std::tr1::tuple;
//using std::tr1::make_tuple;
#include <boost/math/tools/roots.hpp>
//using boost::math::tools::newton_raphson_iterate;

#include <utility>

namespace boost{ namespace math{

template <class RealType = double, class Policy = policies::policy<> >
class inverse_gaussian_distribution
{
public:
   typedef RealType value_type;
   typedef Policy policy_type;

   inverse_gaussian_distribution(RealType l_mean = 1, RealType l_scale = 1)
      : m_mean(l_mean), m_scale(l_scale)
   { // Default is a 1,1 inverse_gaussian distribution.
     static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution";

     RealType result;
     detail::check_scale(function, l_scale, &result, Policy());
     detail::check_location(function, l_mean, &result, Policy());
   }

   RealType mean()const
   { // alias for location.
      return m_mean; // aka mu
   }

   // Synonyms, provided to allow generic use of find_location and find_scale.
   RealType location()const
   { // location, aka mu.
      return m_mean;
   }
   RealType scale()const
   { // scale, aka lambda.
      return m_scale;
   }

   RealType shape()const
   { // shape, aka phi = lambda/mu.
      return m_scale / m_mean;
   }

private:
   //
   // Data members:
   //
   RealType m_mean;  // distribution mean or location, aka mu.
   RealType m_scale;    // distribution standard deviation or scale, aka lambda.
}; // class normal_distribution

typedef inverse_gaussian_distribution<double> inverse_gaussian;

template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x, zero to max.
   using boost::math::tools::max_value;
   return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value.
}

template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x, zero to max.
  // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
   using boost::math::tools::max_value;
   return std::pair<RealType, RealType>(static_cast<RealType>(0.),  max_value<RealType>()); // - to + max value.
}

template <class RealType, class Policy>
inline RealType pdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
{ // Probability Density Function
   BOOST_MATH_STD_USING  // for ADL of std functions

   RealType scale = dist.scale();
   RealType mean = dist.mean();
   RealType result = 0;
   static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)";
   if(false == detail::check_scale(function, scale, &result, Policy()))
   {
      return result;
   }
   if(false == detail::check_location(function, mean, &result, Policy()))
   {
      return result;
   }
   if(false == detail::check_positive_x(function, x, &result, Policy()))
   {
      return result;
   }

   if (x == 0)
   {
     return 0; // Convenient, even if not defined mathematically.
   }

   result =
     sqrt(scale / (constants::two_pi<RealType>() * x * x * x))
    * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean));
   return result;
} // pdf

template <class RealType, class Policy>
inline RealType cdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
{ // Cumulative Density Function.
   BOOST_MATH_STD_USING  // for ADL of std functions.

   RealType scale = dist.scale();
   RealType mean = dist.mean();
   static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)";
   RealType result = 0;
   if(false == detail::check_scale(function, scale, &result, Policy()))
   {
      return result;
   }
   if(false == detail::check_location(function, mean, &result, Policy()))
   {
      return result;
   }
   if(false == detail::check_positive_x(function, x, &result, Policy()))
   {
     return result;
   }
   if (x == 0)
   {
     return 0; // Convenient, even if not defined mathematically.
   }
   // Problem with this formula for large scale > 1000 or small x, 
   //result = 0.5 * (erf(sqrt(scale / x) * ((x / mean) - 1) / constants::root_two<RealType>(), Policy()) + 1)
   //  + exp(2 * scale / mean) / 2 
   //  * (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy()));
   // so use normal distribution version:
   // Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution.

   normal_distribution<RealType> n01;

   RealType n0 = sqrt(scale / x);
   n0 *= ((x / mean) -1);
   RealType n1 = cdf(n01, n0);
   RealType expfactor = exp(2 * scale / mean);
   RealType n3 = - sqrt(scale / x);
   n3 *= (x / mean) + 1;
   RealType n4 = cdf(n01, n3);
   result = n1 + expfactor * n4;
   return result;
} // cdf

template <class RealType, class Policy>
struct inverse_gaussian_quantile_functor
{ 

  inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
    : distribution(dist), prob(p)
  {
  }
  boost::math::tuple<RealType, RealType> operator()(RealType const& x)
  {
    RealType c = cdf(distribution, x);
    RealType fx = c - prob;  // Difference cdf - value - to minimize.
    RealType dx = pdf(distribution, x); // pdf is 1st derivative.
    // return both function evaluation difference f(x) and 1st derivative f'(x).
    return boost::math::make_tuple(fx, dx);
  }
  private:
  const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
  RealType prob; 
};

template <class RealType, class Policy>
struct inverse_gaussian_quantile_complement_functor
{ 
    inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
    : distribution(dist), prob(p)
  {
  }
  boost::math::tuple<RealType, RealType> operator()(RealType const& x)
  {
    RealType c = cdf(complement(distribution, x));
    RealType fx = c - prob;  // Difference cdf - value - to minimize.
    RealType dx = -pdf(distribution, x); // pdf is 1st derivative.
    // return both function evaluation difference f(x) and 1st derivative f'(x).
    //return std::tr1::make_tuple(fx, dx); if available.
    return boost::math::make_tuple(fx, dx);
  }
  private:
  const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
  RealType prob; 
};

namespace detail
{
  template <class RealType>
  inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1)
  { // guess at random variate value x for inverse gaussian quantile.
      BOOST_MATH_STD_USING
      using boost::math::policies::policy;
      // Error type.
      using boost::math::policies::overflow_error;
      // Action.
      using boost::math::policies::ignore_error;

      typedef policy<
        overflow_error<ignore_error> // Ignore overflow (return infinity)
      > no_overthrow_policy;

    RealType x; // result is guess at random variate value x.
    RealType phi = lambda / mu;
    if (phi > 2.)
    { // Big phi, so starting to look like normal Gaussian distribution.
      //    x=(qnorm(p,0,1,true,false) - 0.5 * sqrt(mu/lambda)) / sqrt(lambda/mu);
      // Whitmore, G.A. and Yalovsky, M.
      // A normalising logarithmic transformation for inverse Gaussian random variables,
      // Technometrics 20-2, 207-208 (1978), but using expression from
      // V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6.
 
      normal_distribution<RealType, no_overthrow_policy> n01;
      x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi));
     }
    else
    { // phi < 2 so much less symmetrical with long tail,
      // so use gamma distribution as an approximation.
      using boost::math::gamma_distribution;

      // Define the distribution, using gamma_nooverflow:
      typedef gamma_distribution<RealType, no_overthrow_policy> gamma_nooverflow;

      gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));

      // gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
      // R qgamma(0.2, 0.5, 1)  0.0320923
      RealType qg = quantile(complement(g, p));
      //RealType qg1 = qgamma(1.- p, 0.5, 1.0, true, false);
      x = lambda / (qg * 2);
      // 
      if (x > mu/2) // x > mu /2?
      { // x too large for the gamma approximation to work well.
        //x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807
        RealType q = quantile(g, p);
       // x = mu * exp(q * static_cast<RealType>(0.1));  // Said to improve at high p
       // x = mu * x;  // Improves at high p?
        x = mu * exp(q / sqrt(phi) - 1/(2 * phi));
      }
    }
    return x;
  }  // guess_ig
} // namespace detail

template <class RealType, class Policy>
inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& p)
{
   BOOST_MATH_STD_USING  // for ADL of std functions.
   // No closed form exists so guess and use Newton Raphson iteration.

   RealType mean = dist.mean();
   RealType scale = dist.scale();
   static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)";

   RealType result = 0;
   if(false == detail::check_scale(function, scale, &result, Policy()))
      return result;
   if(false == detail::check_location(function, mean, &result, Policy()))
      return result;
   if(false == detail::check_probability(function, p, &result, Policy()))
      return result;
   if (p == 0)
   {
     return 0; // Convenient, even if not defined mathematically?
   }
   if (p == 1)
   { // overflow 
      result = policies::raise_overflow_error<RealType>(function,
        "probability parameter is 1, but must be < 1!", Policy());
      return result; // std::numeric_limits<RealType>::infinity();
   }

  RealType guess = detail::guess_ig(p, dist.mean(), dist.scale());
  using boost::math::tools::max_value;

  RealType min = 0.; // Minimum possible value is bottom of range of distribution.
  RealType max = max_value<RealType>();// Maximum possible value is top of range. 
  // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
  // digits used to control how accurate to try to make the result.
  // To allow user to control accuracy versus speed,
  int get_digits = policies::digits<RealType, Policy>();// get digits from policy, 
  boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
  using boost::math::tools::newton_raphson_iterate;
  result =
    newton_raphson_iterate(inverse_gaussian_quantile_functor<RealType, Policy>(dist, p), guess, min, max, get_digits, m);
   return result;
} // quantile

template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
{
   BOOST_MATH_STD_USING  // for ADL of std functions.

   RealType scale = c.dist.scale();
   RealType mean = c.dist.mean();
   RealType x = c.param;
   static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
   // infinite arguments not supported.
   //if((boost::math::isinf)(x))
   //{
   //  if(x < 0) return 1; // cdf complement -infinity is unity.
   //  return 0; // cdf complement +infinity is zero
   //}
   // These produce MSVC 4127 warnings, so the above used instead.
   //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
   //{ // cdf complement +infinity is zero.
   //  return 0;
   //}
   //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
   //{ // cdf complement -infinity is unity.
   //  return 1;
   //}
   RealType result = 0;
   if(false == detail::check_scale(function, scale, &result, Policy()))
      return result;
   if(false == detail::check_location(function, mean, &result, Policy()))
      return result;
   if(false == detail::check_positive_x(function, x, &result, Policy()))
      return result;

   normal_distribution<RealType> n01;
   RealType n0 = sqrt(scale / x);
   n0 *= ((x / mean) -1);
   RealType cdf_1 = cdf(complement(n01, n0));

   RealType expfactor = exp(2 * scale / mean);
   RealType n3 = - sqrt(scale / x);
   n3 *= (x / mean) + 1;

   //RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign.
   RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1)));
   // RealType n4 = cdf(n01, n3); // = 
   result = cdf_1 - expfactor * n6; 
   return result;
} // cdf complement

template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
{
   BOOST_MATH_STD_USING  // for ADL of std functions

   RealType scale = c.dist.scale();
   RealType mean = c.dist.mean();
   static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
   RealType result = 0;
   if(false == detail::check_scale(function, scale, &result, Policy()))
      return result;
   if(false == detail::check_location(function, mean, &result, Policy()))
      return result;
   RealType q = c.param;
   if(false == detail::check_probability(function, q, &result, Policy()))
      return result;

   RealType guess = detail::guess_ig(q, mean, scale);
   // Complement.
   using boost::math::tools::max_value;

  RealType min = 0.; // Minimum possible value is bottom of range of distribution.
  RealType max = max_value<RealType>();// Maximum possible value is top of range. 
  // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
  // digits used to control how accurate to try to make the result.
  int get_digits = policies::digits<RealType, Policy>();
  boost::uintmax_t m = policies::get_max_root_iterations<Policy>();
  using boost::math::tools::newton_raphson_iterate;
  result =
    newton_raphson_iterate(inverse_gaussian_quantile_complement_functor<RealType, Policy>(c.dist, q), guess, min, max, get_digits, m);
   return result;
} // quantile

template <class RealType, class Policy>
inline RealType mean(const inverse_gaussian_distribution<RealType, Policy>& dist)
{ // aka mu
   return dist.mean();
}

template <class RealType, class Policy>
inline RealType scale(const inverse_gaussian_distribution<RealType, Policy>& dist)
{ // aka lambda
   return dist.scale();
}

template <class RealType, class Policy>
inline RealType shape(const inverse_gaussian_distribution<RealType, Policy>& dist)
{ // aka phi
   return dist.shape();
}

template <class RealType, class Policy>
inline RealType standard_deviation(const inverse_gaussian_distribution<RealType, Policy>& dist)
{
  BOOST_MATH_STD_USING
  RealType scale = dist.scale();
  RealType mean = dist.mean();
  RealType result = sqrt(mean * mean * mean / scale);
  return result;
}

template <class RealType, class Policy>
inline RealType mode(const inverse_gaussian_distribution<RealType, Policy>& dist)
{
  BOOST_MATH_STD_USING
  RealType scale = dist.scale();
  RealType  mean = dist.mean();
  RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale)) 
      - 3 * mean / (2 * scale));
  return result;
}

template <class RealType, class Policy>
inline RealType skewness(const inverse_gaussian_distribution<RealType, Policy>& dist)
{
  BOOST_MATH_STD_USING
  RealType scale = dist.scale();
  RealType  mean = dist.mean();
  RealType result = 3 * sqrt(mean/scale);
  return result;
}

template <class RealType, class Policy>
inline RealType kurtosis(const inverse_gaussian_distribution<RealType, Policy>& dist)
{
  RealType scale = dist.scale();
  RealType  mean = dist.mean();
  RealType result = 15 * mean / scale -3;
  return result;
}

template <class RealType, class Policy>
inline RealType kurtosis_excess(const inverse_gaussian_distribution<RealType, Policy>& dist)
{
  RealType scale = dist.scale();
  RealType  mean = dist.mean();
  RealType result = 15 * mean / scale;
  return result;
}

} // namespace math
} // namespace boost

// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>

#endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP