summaryrefslogtreecommitdiff
path: root/boost/intrusive/bstree_algorithms.hpp
blob: dcb7e5c4ffe99fc39f4771ebbcaae7018d5ac304 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga  2007-2014
//
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////

#ifndef BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP
#define BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP

#include <cstddef>
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/detail/bstree_algorithms_base.hpp>
#include <boost/intrusive/detail/assert.hpp>
#include <boost/intrusive/detail/uncast.hpp>
#include <boost/intrusive/detail/math.hpp>
#include <boost/intrusive/detail/algo_type.hpp>

#include <boost/intrusive/detail/minimal_pair_header.hpp>

#if defined(BOOST_HAS_PRAGMA_ONCE)
#  pragma once
#endif

namespace boost {
namespace intrusive {

/// @cond

//! This type is the information that will be filled by insert_unique_check
template <class NodePtr>
struct insert_commit_data_t
{
   bool     link_left;
   NodePtr  node;
};

template <class NodePtr>
struct data_for_rebalance_t
{
   NodePtr  x;
   NodePtr  x_parent;
   NodePtr  y;
};

namespace detail {

template<class ValueTraits, class NodePtrCompare, class ExtraChecker>
struct bstree_node_checker
   : public ExtraChecker
{
   typedef ExtraChecker                            base_checker_t;
   typedef ValueTraits                             value_traits;
   typedef typename value_traits::node_traits      node_traits;
   typedef typename node_traits::const_node_ptr    const_node_ptr;

   struct return_type
      : public base_checker_t::return_type
   {
      return_type() : min_key_node_ptr(const_node_ptr()), max_key_node_ptr(const_node_ptr()), node_count(0) {}

      const_node_ptr min_key_node_ptr;
      const_node_ptr max_key_node_ptr;
      size_t   node_count;
   };

   bstree_node_checker(const NodePtrCompare& comp, ExtraChecker extra_checker)
      : base_checker_t(extra_checker), comp_(comp)
   {}

   void operator () (const const_node_ptr& p,
                     const return_type& check_return_left, const return_type& check_return_right,
                     return_type& check_return)
   {
      if (check_return_left.max_key_node_ptr)
         BOOST_INTRUSIVE_INVARIANT_ASSERT(!comp_(p, check_return_left.max_key_node_ptr));
      if (check_return_right.min_key_node_ptr)
         BOOST_INTRUSIVE_INVARIANT_ASSERT(!comp_(check_return_right.min_key_node_ptr, p));
      check_return.min_key_node_ptr = node_traits::get_left(p)? check_return_left.min_key_node_ptr : p;
      check_return.max_key_node_ptr = node_traits::get_right(p)? check_return_right.max_key_node_ptr : p;
      check_return.node_count = check_return_left.node_count + check_return_right.node_count + 1;
      base_checker_t::operator()(p, check_return_left, check_return_right, check_return);
   }

   const NodePtrCompare comp_;
};

} // namespace detail

/// @endcond



//!   This is an implementation of a binary search tree.
//!   A node in the search tree has references to its children and its parent. This
//!   is to allow traversal of the whole tree from a given node making the
//!   implementation of iterator a pointer to a node.
//!   At the top of the tree a node is used specially. This node's parent pointer
//!   is pointing to the root of the tree. Its left pointer points to the
//!   leftmost node in the tree and the right pointer to the rightmost one.
//!   This node is used to represent the end-iterator.
//!
//!                                            +---------+
//!       header------------------------------>|         |
//!                                            |         |
//!                   +----------(left)--------|         |--------(right)---------+
//!                   |                        +---------+                        |
//!                   |                             |                             |
//!                   |                             | (parent)                    |
//!                   |                             |                             |
//!                   |                             |                             |
//!                   |                        +---------+                        |
//!    root of tree ..|......................> |         |                        |
//!                   |                        |    D    |                        |
//!                   |                        |         |                        |
//!                   |                +-------+---------+-------+                |
//!                   |                |                         |                |
//!                   |                |                         |                |
//!                   |                |                         |                |
//!                   |                |                         |                |
//!                   |                |                         |                |
//!                   |          +---------+                 +---------+          |
//!                   |          |         |                 |         |          |
//!                   |          |    B    |                 |    F    |          |
//!                   |          |         |                 |         |          |
//!                   |       +--+---------+--+           +--+---------+--+       |
//!                   |       |               |           |               |       |
//!                   |       |               |           |               |       |
//!                   |       |               |           |               |       |
//!                   |   +---+-----+   +-----+---+   +---+-----+   +-----+---+   |
//!                   +-->|         |   |         |   |         |   |         |<--+
//!                       |    A    |   |    C    |   |    E    |   |    G    |
//!                       |         |   |         |   |         |   |         |
//!                       +---------+   +---------+   +---------+   +---------+
//!
//! bstree_algorithms is configured with a NodeTraits class, which encapsulates the
//! information about the node to be manipulated. NodeTraits must support the
//! following interface:
//!
//! <b>Typedefs</b>:
//!
//! <tt>node</tt>: The type of the node that forms the binary search tree
//!
//! <tt>node_ptr</tt>: A pointer to a node
//!
//! <tt>const_node_ptr</tt>: A pointer to a const node
//!
//! <b>Static functions</b>:
//!
//! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
//!
//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
//!
//! <tt>static node_ptr get_left(const_node_ptr n);</tt>
//!
//! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
//!
//! <tt>static node_ptr get_right(const_node_ptr n);</tt>
//!
//! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
template<class NodeTraits>
class bstree_algorithms : public bstree_algorithms_base<NodeTraits>
{
   public:
   typedef typename NodeTraits::node            node;
   typedef NodeTraits                           node_traits;
   typedef typename NodeTraits::node_ptr        node_ptr;
   typedef typename NodeTraits::const_node_ptr  const_node_ptr;
   typedef insert_commit_data_t<node_ptr>       insert_commit_data;
   typedef data_for_rebalance_t<node_ptr>       data_for_rebalance;

   /// @cond
   typedef bstree_algorithms<NodeTraits>        this_type;
   typedef bstree_algorithms_base<NodeTraits>   base_type;
   private:
   template<class Disposer>
   struct dispose_subtree_disposer
   {
      dispose_subtree_disposer(Disposer &disp, const node_ptr & subtree)
         : disposer_(&disp), subtree_(subtree)
      {}

      void release()
      {  disposer_ = 0;  }

      ~dispose_subtree_disposer()
      {
         if(disposer_){
            dispose_subtree(subtree_, *disposer_);
         }
      }
      Disposer *disposer_;
      const node_ptr subtree_;
   };

   /// @endcond

   public:
   //! <b>Requires</b>: 'header' is the header node of a tree.
   //!
   //! <b>Effects</b>: Returns the first node of the tree, the header if the tree is empty.
   //!
   //! <b>Complexity</b>: Constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr begin_node(const const_node_ptr & header)
   {  return node_traits::get_left(header);   }

   //! <b>Requires</b>: 'header' is the header node of a tree.
   //!
   //! <b>Effects</b>: Returns the header of the tree.
   //!
   //! <b>Complexity</b>: Constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr end_node(const const_node_ptr & header)
   {  return detail::uncast(header);   }

   //! <b>Requires</b>: 'header' is the header node of a tree.
   //!
   //! <b>Effects</b>: Returns the root of the tree if any, header otherwise
   //!
   //! <b>Complexity</b>: Constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr root_node(const const_node_ptr & header)
   {
      node_ptr p = node_traits::get_parent(header);
      return p ? p : detail::uncast(header);
   }

   //! <b>Requires</b>: 'node' is a node of the tree or a node initialized
   //!   by init(...) or init_node.
   //!
   //! <b>Effects</b>: Returns true if the node is initialized by init() or init_node().
   //!
   //! <b>Complexity</b>: Constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static bool unique(const const_node_ptr & node)
   { return !NodeTraits::get_parent(node); }

   #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
   //! <b>Requires</b>: 'node' is a node of the tree or a header node.
   //!
   //! <b>Effects</b>: Returns the header of the tree.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr get_header(const const_node_ptr & node);
   #endif

   //! <b>Requires</b>: node1 and node2 can't be header nodes
   //!  of two trees.
   //!
   //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
   //!   in the position node2 before the function. node2 will be inserted in the
   //!   position node1 had before the function.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   node1 and node2 are not equivalent according to the ordering rules.
   //!
   //!Experimental function
   static void swap_nodes(const node_ptr & node1, const node_ptr & node2)
   {
      if(node1 == node2)
         return;

      node_ptr header1(base_type::get_header(node1)), header2(base_type::get_header(node2));
      swap_nodes(node1, header1, node2, header2);
   }

   //! <b>Requires</b>: node1 and node2 can't be header nodes
   //!  of two trees with header header1 and header2.
   //!
   //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
   //!   in the position node2 before the function. node2 will be inserted in the
   //!   position node1 had before the function.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   node1 and node2 are not equivalent according to the ordering rules.
   //!
   //!Experimental function
   static void swap_nodes(const node_ptr & node1, const node_ptr & header1, const node_ptr & node2, const node_ptr & header2)
   {
      if(node1 == node2)
         return;

      //node1 and node2 must not be header nodes
      //BOOST_INTRUSIVE_INVARIANT_ASSERT((header1 != node1 && header2 != node2));
      if(header1 != header2){
         //Update header1 if necessary
         if(node1 == NodeTraits::get_left(header1)){
            NodeTraits::set_left(header1, node2);
         }

         if(node1 == NodeTraits::get_right(header1)){
            NodeTraits::set_right(header1, node2);
         }

         if(node1 == NodeTraits::get_parent(header1)){
            NodeTraits::set_parent(header1, node2);
         }

         //Update header2 if necessary
         if(node2 == NodeTraits::get_left(header2)){
            NodeTraits::set_left(header2, node1);
         }

         if(node2 == NodeTraits::get_right(header2)){
            NodeTraits::set_right(header2, node1);
         }

         if(node2 == NodeTraits::get_parent(header2)){
            NodeTraits::set_parent(header2, node1);
         }
      }
      else{
         //If both nodes are from the same tree
         //Update header if necessary
         if(node1 == NodeTraits::get_left(header1)){
            NodeTraits::set_left(header1, node2);
         }
         else if(node2 == NodeTraits::get_left(header2)){
            NodeTraits::set_left(header2, node1);
         }

         if(node1 == NodeTraits::get_right(header1)){
            NodeTraits::set_right(header1, node2);
         }
         else if(node2 == NodeTraits::get_right(header2)){
            NodeTraits::set_right(header2, node1);
         }

         if(node1 == NodeTraits::get_parent(header1)){
            NodeTraits::set_parent(header1, node2);
         }
         else if(node2 == NodeTraits::get_parent(header2)){
            NodeTraits::set_parent(header2, node1);
         }

         //Adjust data in nodes to be swapped
         //so that final link swap works as expected
         if(node1 == NodeTraits::get_parent(node2)){
            NodeTraits::set_parent(node2, node2);

            if(node2 == NodeTraits::get_right(node1)){
               NodeTraits::set_right(node1, node1);
            }
            else{
               NodeTraits::set_left(node1, node1);
            }
         }
         else if(node2 == NodeTraits::get_parent(node1)){
            NodeTraits::set_parent(node1, node1);

            if(node1 == NodeTraits::get_right(node2)){
               NodeTraits::set_right(node2, node2);
            }
            else{
               NodeTraits::set_left(node2, node2);
            }
         }
      }

      //Now swap all the links
      node_ptr temp;
      //swap left link
      temp = NodeTraits::get_left(node1);
      NodeTraits::set_left(node1, NodeTraits::get_left(node2));
      NodeTraits::set_left(node2, temp);
      //swap right link
      temp = NodeTraits::get_right(node1);
      NodeTraits::set_right(node1, NodeTraits::get_right(node2));
      NodeTraits::set_right(node2, temp);
      //swap parent link
      temp = NodeTraits::get_parent(node1);
      NodeTraits::set_parent(node1, NodeTraits::get_parent(node2));
      NodeTraits::set_parent(node2, temp);

      //Now adjust adjacent nodes for newly inserted node 1
      if((temp = NodeTraits::get_left(node1))){
         NodeTraits::set_parent(temp, node1);
      }
      if((temp = NodeTraits::get_right(node1))){
         NodeTraits::set_parent(temp, node1);
      }
      if((temp = NodeTraits::get_parent(node1)) &&
         //The header has been already updated so avoid it
         temp != header2){
         if(NodeTraits::get_left(temp) == node2){
            NodeTraits::set_left(temp, node1);
         }
         if(NodeTraits::get_right(temp) == node2){
            NodeTraits::set_right(temp, node1);
         }
      }
      //Now adjust adjacent nodes for newly inserted node 2
      if((temp = NodeTraits::get_left(node2))){
         NodeTraits::set_parent(temp, node2);
      }
      if((temp = NodeTraits::get_right(node2))){
         NodeTraits::set_parent(temp, node2);
      }
      if((temp = NodeTraits::get_parent(node2)) &&
         //The header has been already updated so avoid it
         temp != header1){
         if(NodeTraits::get_left(temp) == node1){
            NodeTraits::set_left(temp, node2);
         }
         if(NodeTraits::get_right(temp) == node1){
            NodeTraits::set_right(temp, node2);
         }
      }
   }

   //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
   //!   and new_node must not be inserted in a tree.
   //!
   //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
   //!   tree with new_node. The tree does not need to be rebalanced
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   new_node is not equivalent to node_to_be_replaced according to the
   //!   ordering rules. This function is faster than erasing and inserting
   //!   the node, since no rebalancing and comparison is needed. Experimental function
   static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & new_node)
   {
      if(node_to_be_replaced == new_node)
         return;
      replace_node(node_to_be_replaced, base_type::get_header(node_to_be_replaced), new_node);
   }

   //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
   //!   with header "header" and new_node must not be inserted in a tree.
   //!
   //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
   //!   tree with new_node. The tree does not need to be rebalanced
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   new_node is not equivalent to node_to_be_replaced according to the
   //!   ordering rules. This function is faster than erasing and inserting
   //!   the node, since no rebalancing or comparison is needed. Experimental function
   static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & header, const node_ptr & new_node)
   {
      if(node_to_be_replaced == new_node)
         return;

      //Update header if necessary
      if(node_to_be_replaced == NodeTraits::get_left(header)){
         NodeTraits::set_left(header, new_node);
      }

      if(node_to_be_replaced == NodeTraits::get_right(header)){
         NodeTraits::set_right(header, new_node);
      }

      if(node_to_be_replaced == NodeTraits::get_parent(header)){
         NodeTraits::set_parent(header, new_node);
      }

      //Now set data from the original node
      node_ptr temp;
      NodeTraits::set_left(new_node, NodeTraits::get_left(node_to_be_replaced));
      NodeTraits::set_right(new_node, NodeTraits::get_right(node_to_be_replaced));
      NodeTraits::set_parent(new_node, NodeTraits::get_parent(node_to_be_replaced));

      //Now adjust adjacent nodes for newly inserted node
      if((temp = NodeTraits::get_left(new_node))){
         NodeTraits::set_parent(temp, new_node);
      }
      if((temp = NodeTraits::get_right(new_node))){
         NodeTraits::set_parent(temp, new_node);
      }
      if((temp = NodeTraits::get_parent(new_node)) &&
         //The header has been already updated so avoid it
         temp != header){
         if(NodeTraits::get_left(temp) == node_to_be_replaced){
            NodeTraits::set_left(temp, new_node);
         }
         if(NodeTraits::get_right(temp) == node_to_be_replaced){
            NodeTraits::set_right(temp, new_node);
         }
      }
   }

   #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
   //! <b>Requires</b>: 'node' is a node from the tree except the header.
   //!
   //! <b>Effects</b>: Returns the next node of the tree.
   //!
   //! <b>Complexity</b>: Average constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr next_node(const node_ptr & node);

   //! <b>Requires</b>: 'node' is a node from the tree except the leftmost node.
   //!
   //! <b>Effects</b>: Returns the previous node of the tree.
   //!
   //! <b>Complexity</b>: Average constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr prev_node(const node_ptr & node);

   //! <b>Requires</b>: 'node' is a node of a tree but not the header.
   //!
   //! <b>Effects</b>: Returns the minimum node of the subtree starting at p.
   //!
   //! <b>Complexity</b>: Logarithmic to the size of the subtree.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr minimum(node_ptr node);

   //! <b>Requires</b>: 'node' is a node of a tree but not the header.
   //!
   //! <b>Effects</b>: Returns the maximum node of the subtree starting at p.
   //!
   //! <b>Complexity</b>: Logarithmic to the size of the subtree.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr maximum(node_ptr node);
   #endif

   //! <b>Requires</b>: 'node' must not be part of any tree.
   //!
   //! <b>Effects</b>: After the function unique(node) == true.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
   static void init(const node_ptr & node)
   {
      NodeTraits::set_parent(node, node_ptr());
      NodeTraits::set_left(node, node_ptr());
      NodeTraits::set_right(node, node_ptr());
   };

   //! <b>Effects</b>: Returns true if node is in the same state as if called init(node)
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   static bool inited(const const_node_ptr & node)
   {
      return !NodeTraits::get_parent(node) &&
             !NodeTraits::get_left(node)   &&
             !NodeTraits::get_right(node)  ;
   };

   //! <b>Requires</b>: node must not be part of any tree.
   //!
   //! <b>Effects</b>: Initializes the header to represent an empty tree.
   //!   unique(header) == true.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
   static void init_header(const node_ptr & header)
   {
      NodeTraits::set_parent(header, node_ptr());
      NodeTraits::set_left(header, header);
      NodeTraits::set_right(header, header);
   }

   //! <b>Requires</b>: "disposer" must be an object function
   //!   taking a node_ptr parameter and shouldn't throw.
   //!
   //! <b>Effects</b>: Empties the target tree calling
   //!   <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
   //!    except the header.
   //!
   //! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
   //!   number of elements of tree target tree when calling this function.
   //!
   //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
   template<class Disposer>
   static void clear_and_dispose(const node_ptr & header, Disposer disposer)
   {
      node_ptr source_root = NodeTraits::get_parent(header);
      if(!source_root)
         return;
      dispose_subtree(source_root, disposer);
      init_header(header);
   }

   //! <b>Requires</b>: header is the header of a tree.
   //!
   //! <b>Effects</b>: Unlinks the leftmost node from the tree, and
   //!   updates the header link to the new leftmost node.
   //!
   //! <b>Complexity</b>: Average complexity is constant time.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Notes</b>: This function breaks the tree and the tree can
   //!   only be used for more unlink_leftmost_without_rebalance calls.
   //!   This function is normally used to achieve a step by step
   //!   controlled destruction of the tree.
   static node_ptr unlink_leftmost_without_rebalance(const node_ptr & header)
   {
      node_ptr leftmost = NodeTraits::get_left(header);
      if (leftmost == header)
         return node_ptr();
      node_ptr leftmost_parent(NodeTraits::get_parent(leftmost));
      node_ptr leftmost_right (NodeTraits::get_right(leftmost));
      bool is_root = leftmost_parent == header;

      if (leftmost_right){
         NodeTraits::set_parent(leftmost_right, leftmost_parent);
         NodeTraits::set_left(header, base_type::minimum(leftmost_right));

         if (is_root)
            NodeTraits::set_parent(header, leftmost_right);
         else
            NodeTraits::set_left(NodeTraits::get_parent(header), leftmost_right);
      }
      else if (is_root){
         NodeTraits::set_parent(header, node_ptr());
         NodeTraits::set_left(header,  header);
         NodeTraits::set_right(header, header);
      }
      else{
         NodeTraits::set_left(leftmost_parent, node_ptr());
         NodeTraits::set_left(header, leftmost_parent);
      }
      return leftmost;
   }

   //! <b>Requires</b>: node is a node of the tree but it's not the header.
   //!
   //! <b>Effects</b>: Returns the number of nodes of the subtree.
   //!
   //! <b>Complexity</b>: Linear time.
   //!
   //! <b>Throws</b>: Nothing.
   static std::size_t size(const const_node_ptr & header)
   {
      node_ptr beg(begin_node(header));
      node_ptr end(end_node(header));
      std::size_t i = 0;
      for(;beg != end; beg = base_type::next_node(beg)) ++i;
      return i;
   }

   //! <b>Requires</b>: header1 and header2 must be the header nodes
   //!  of two trees.
   //!
   //! <b>Effects</b>: Swaps two trees. After the function header1 will contain
   //!   links to the second tree and header2 will have links to the first tree.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   static void swap_tree(const node_ptr & header1, const node_ptr & header2)
   {
      if(header1 == header2)
         return;

      node_ptr tmp;

      //Parent swap
      tmp = NodeTraits::get_parent(header1);
      NodeTraits::set_parent(header1, NodeTraits::get_parent(header2));
      NodeTraits::set_parent(header2, tmp);
      //Left swap
      tmp = NodeTraits::get_left(header1);
      NodeTraits::set_left(header1, NodeTraits::get_left(header2));
      NodeTraits::set_left(header2, tmp);
      //Right swap
      tmp = NodeTraits::get_right(header1);
      NodeTraits::set_right(header1, NodeTraits::get_right(header2));
      NodeTraits::set_right(header2, tmp);

      //Now test parent
      node_ptr h1_parent(NodeTraits::get_parent(header1));
      if(h1_parent){
         NodeTraits::set_parent(h1_parent, header1);
      }
      else{
         NodeTraits::set_left(header1, header1);
         NodeTraits::set_right(header1, header1);
      }

      node_ptr h2_parent(NodeTraits::get_parent(header2));
      if(h2_parent){
         NodeTraits::set_parent(h2_parent, header2);
      }
      else{
         NodeTraits::set_left(header2, header2);
         NodeTraits::set_right(header2, header2);
      }
   }

   #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED)
   //! <b>Requires</b>: p is a node of a tree.
   //!
   //! <b>Effects</b>: Returns true if p is the header of the tree.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   static bool is_header(const const_node_ptr & p);
   #endif

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns a node_ptr to the first element that is equivalent to
   //!   "key" according to "comp" or "header" if that element does not exist.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr find
      (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
   {
      node_ptr end = detail::uncast(header);
      node_ptr y = lower_bound(header, key, comp);
      return (y == end || comp(key, y)) ? end : y;
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!   'lower_key' must not be greater than 'upper_key' according to 'comp'. If
   //!   'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be true.
   //!
   //! <b>Effects</b>: Returns an a pair with the following criteria:
   //!
   //!   first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise
   //!
   //!   second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   //!
   //! <b>Note</b>: This function can be more efficient than calling upper_bound
   //!   and lower_bound for lower_key and upper_key.
   //!
   //! <b>Note</b>: Experimental function, the interface might change.
   template< class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, node_ptr> bounded_range
      ( const const_node_ptr & header
      , const KeyType &lower_key
      , const KeyType &upper_key
      , KeyNodePtrCompare comp
      , bool left_closed
      , bool right_closed)
   {
      node_ptr y = detail::uncast(header);
      node_ptr x = NodeTraits::get_parent(header);

      while(x){
         //If x is less than lower_key the target
         //range is on the right part
         if(comp(x, lower_key)){
            //Check for invalid input range
            BOOST_INTRUSIVE_INVARIANT_ASSERT(comp(x, upper_key));
            x = NodeTraits::get_right(x);
         }
         //If the upper_key is less than x, the target
         //range is on the left part
         else if(comp(upper_key, x)){
            y = x;
            x = NodeTraits::get_left(x);
         }
         else{
            //x is inside the bounded range(lower_key <= x <= upper_key),
            //so we must split lower and upper searches
            //
            //Sanity check: if lower_key and upper_key are equal, then both left_closed and right_closed can't be false
            BOOST_INTRUSIVE_INVARIANT_ASSERT(left_closed || right_closed || comp(lower_key, x) || comp(x, upper_key));
            return std::pair<node_ptr,node_ptr>(
               left_closed
                  //If left_closed, then comp(x, lower_key) is already the lower_bound
                  //condition so we save one comparison and go to the next level
                  //following traditional lower_bound algo
                  ? lower_bound_loop(NodeTraits::get_left(x), x, lower_key, comp)
                  //If left-open, comp(x, lower_key) is not the upper_bound algo
                  //condition so we must recheck current 'x' node with upper_bound algo
                  : upper_bound_loop(x, y, lower_key, comp)
            ,
               right_closed
                  //If right_closed, then comp(upper_key, x) is already the upper_bound
                  //condition so we can save one comparison and go to the next level
                  //following lower_bound algo
                  ? upper_bound_loop(NodeTraits::get_right(x), y, upper_key, comp)
                  //If right-open, comp(upper_key, x) is not the lower_bound algo
                  //condition so we must recheck current 'x' node with lower_bound algo
                  : lower_bound_loop(x, y, upper_key, comp)
            );
         }
      }
      return std::pair<node_ptr,node_ptr> (y, y);
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns the number of elements with a key equivalent to "key"
   //!   according to "comp".
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static std::size_t count
      (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
   {
      std::pair<node_ptr, node_ptr> ret = equal_range(header, key, comp);
      std::size_t n = 0;
      while(ret.first != ret.second){
         ++n;
         ret.first = base_type::next_node(ret.first);
      }
      return n;
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
   //!   all elements that are equivalent to "key" according to "comp" or an
   //!   empty range that indicates the position where those elements would be
   //!   if there are no equivalent elements.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, node_ptr> equal_range
      (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
   {
      return bounded_range(header, key, key, comp, true, true);
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
   //!   the first element that is equivalent to "key" according to "comp" or an
   //!   empty range that indicates the position where that element would be
   //!   if there are no equivalent elements.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, node_ptr> lower_bound_range
      (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
   {
      node_ptr const lb(lower_bound(header, key, comp));
      std::pair<node_ptr, node_ptr> ret_ii(lb, lb);
      if(lb != header && !comp(key, lb)){
         ret_ii.second = base_type::next_node(ret_ii.second);
      }
      return ret_ii;
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns a node_ptr to the first element that is
   //!   not less than "key" according to "comp" or "header" if that element does
   //!   not exist.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr lower_bound
      (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
   {
      return lower_bound_loop(NodeTraits::get_parent(header), detail::uncast(header), key, comp);
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns a node_ptr to the first element that is greater
   //!   than "key" according to "comp" or "header" if that element does not exist.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr upper_bound
      (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
   {
      return upper_bound_loop(NodeTraits::get_parent(header), detail::uncast(header), key, comp);
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   "commit_data" must have been obtained from a previous call to
   //!   "insert_unique_check". No objects should have been inserted or erased
   //!   from the set between the "insert_unique_check" that filled "commit_data"
   //!   and the call to "insert_commit".
   //!
   //!
   //! <b>Effects</b>: Inserts new_node in the set using the information obtained
   //!   from the "commit_data" that a previous "insert_check" filled.
   //!
   //! <b>Complexity</b>: Constant time.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
   //!   previously executed to fill "commit_data". No value should be inserted or
   //!   erased between the "insert_check" and "insert_commit" calls.
   static void insert_unique_commit
      (const node_ptr & header, const node_ptr & new_value, const insert_commit_data &commit_data)
   {  return insert_commit(header, new_value, commit_data); }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares KeyType with a node_ptr.
   //!
   //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
   //!   tree according to "comp" and obtains the needed information to realize
   //!   a constant-time node insertion if there is no equivalent node.
   //!
   //! <b>Returns</b>: If there is an equivalent value
   //!   returns a pair containing a node_ptr to the already present node
   //!   and false. If there is not equivalent key can be inserted returns true
   //!   in the returned pair's boolean and fills "commit_data" that is meant to
   //!   be used with the "insert_commit" function to achieve a constant-time
   //!   insertion function.
   //!
   //! <b>Complexity</b>: Average complexity is at most logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   //!
   //! <b>Notes</b>: This function is used to improve performance when constructing
   //!   a node is expensive and the user does not want to have two equivalent nodes
   //!   in the tree: if there is an equivalent value
   //!   the constructed object must be discarded. Many times, the part of the
   //!   node that is used to impose the order is much cheaper to construct
   //!   than the node and this function offers the possibility to use that part
   //!   to check if the insertion will be successful.
   //!
   //!   If the check is successful, the user can construct the node and use
   //!   "insert_commit" to insert the node in constant-time. This gives a total
   //!   logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
   //!
   //!   "commit_data" remains valid for a subsequent "insert_unique_commit" only
   //!   if no more objects are inserted or erased from the set.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, bool> insert_unique_check
      (const const_node_ptr & header, const KeyType &key
      ,KeyNodePtrCompare comp, insert_commit_data &commit_data
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      std::size_t depth = 0;
      node_ptr h(detail::uncast(header));
      node_ptr y(h);
      node_ptr x(NodeTraits::get_parent(y));
      node_ptr prev = node_ptr();

      //Find the upper bound, cache the previous value and if we should
      //store it in the left or right node
      bool left_child = true;
      while(x){
         ++depth;
         y = x;
         x = (left_child = comp(key, x)) ?
               NodeTraits::get_left(x) : (prev = y, NodeTraits::get_right(x));
      }

      if(pdepth)  *pdepth = depth;

      //Since we've found the upper bound there is no other value with the same key if:
      //    - There is no previous node
      //    - The previous node is less than the key
      const bool not_present = !prev || comp(prev, key);
      if(not_present){
         commit_data.link_left = left_child;
         commit_data.node      = y;
      }
      return std::pair<node_ptr, bool>(prev, not_present);
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares KeyType with a node_ptr.
   //!   "hint" is node from the "header"'s tree.
   //!
   //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
   //!   tree according to "comp" using "hint" as a hint to where it should be
   //!   inserted and obtains the needed information to realize
   //!   a constant-time node insertion if there is no equivalent node.
   //!   If "hint" is the upper_bound the function has constant time
   //!   complexity (two comparisons in the worst case).
   //!
   //! <b>Returns</b>: If there is an equivalent value
   //!   returns a pair containing a node_ptr to the already present node
   //!   and false. If there is not equivalent key can be inserted returns true
   //!   in the returned pair's boolean and fills "commit_data" that is meant to
   //!   be used with the "insert_commit" function to achieve a constant-time
   //!   insertion function.
   //!
   //! <b>Complexity</b>: Average complexity is at most logarithmic, but it is
   //!   amortized constant time if new_node should be inserted immediately before "hint".
   //!
   //! <b>Throws</b>: If "comp" throws.
   //!
   //! <b>Notes</b>: This function is used to improve performance when constructing
   //!   a node is expensive and the user does not want to have two equivalent nodes
   //!   in the tree: if there is an equivalent value
   //!   the constructed object must be discarded. Many times, the part of the
   //!   node that is used to impose the order is much cheaper to construct
   //!   than the node and this function offers the possibility to use that part
   //!   to check if the insertion will be successful.
   //!
   //!   If the check is successful, the user can construct the node and use
   //!   "insert_commit" to insert the node in constant-time. This gives a total
   //!   logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
   //!
   //!   "commit_data" remains valid for a subsequent "insert_unique_commit" only
   //!   if no more objects are inserted or erased from the set.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, bool> insert_unique_check
      (const const_node_ptr & header, const node_ptr &hint, const KeyType &key
      ,KeyNodePtrCompare comp, insert_commit_data &commit_data
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      //hint must be bigger than the key
      if(hint == header || comp(key, hint)){
         node_ptr prev(hint);
         //Previous value should be less than the key
         if(hint == begin_node(header) || comp((prev = base_type::prev_node(hint)), key)){
            commit_data.link_left = unique(header) || !NodeTraits::get_left(hint);
            commit_data.node      = commit_data.link_left ? hint : prev;
            if(pdepth){
               *pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
            }
            return std::pair<node_ptr, bool>(node_ptr(), true);
         }
      }
      //Hint was wrong, use hintless insertion
      return insert_unique_check(header, key, comp, commit_data, pdepth);
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   NodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares two node_ptrs. "hint" is node from
   //!   the "header"'s tree.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to
   //!   where it will be inserted. If "hint" is the upper_bound
   //!   the insertion takes constant time (two comparisons in the worst case).
   //!
   //! <b>Complexity</b>: Logarithmic in general, but it is amortized
   //!   constant time if new_node is inserted immediately before "hint".
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class NodePtrCompare>
   static node_ptr insert_equal
      (const node_ptr & h, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      insert_commit_data commit_data;
      insert_equal_check(h, hint, new_node, comp, commit_data, pdepth);
      insert_commit(h, new_node, commit_data);
      return new_node;
   }

   //! <b>Requires</b>: "h" must be the header node of a tree.
   //!   NodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares two node_ptrs.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before the upper bound
   //!   according to "comp".
   //!
   //! <b>Complexity</b>: Average complexity for insert element is at
   //!   most logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class NodePtrCompare>
   static node_ptr insert_equal_upper_bound
      (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      insert_commit_data commit_data;
      insert_equal_upper_bound_check(h, new_node, comp, commit_data, pdepth);
      insert_commit(h, new_node, commit_data);
      return new_node;
   }

   //! <b>Requires</b>: "h" must be the header node of a tree.
   //!   NodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares two node_ptrs.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before the lower bound
   //!   according to "comp".
   //!
   //! <b>Complexity</b>: Average complexity for insert element is at
   //!   most logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   template<class NodePtrCompare>
   static node_ptr insert_equal_lower_bound
      (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      insert_commit_data commit_data;
      insert_equal_lower_bound_check(h, new_node, comp, commit_data, pdepth);
      insert_commit(h, new_node, commit_data);
      return new_node;
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   "pos" must be a valid iterator or header (end) node.
   //!   "pos" must be an iterator pointing to the successor to "new_node"
   //!   once inserted according to the order of already inserted nodes. This function does not
   //!   check "pos" and this precondition must be guaranteed by the caller.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before "pos".
   //!
   //! <b>Complexity</b>: Constant-time.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: If "pos" is not the successor of the newly inserted "new_node"
   //! tree invariants might be broken.
   static node_ptr insert_before
      (const node_ptr & header, const node_ptr & pos, const node_ptr & new_node
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      insert_commit_data commit_data;
      insert_before_check(header, pos, commit_data, pdepth);
      insert_commit(header, new_node, commit_data);
      return new_node;
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   "new_node" must be, according to the used ordering no less than the
   //!   greatest inserted key.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before "pos".
   //!
   //! <b>Complexity</b>: Constant-time.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: If "new_node" is less than the greatest inserted key
   //! tree invariants are broken. This function is slightly faster than
   //! using "insert_before".
   static void push_back
      (const node_ptr & header, const node_ptr & new_node
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      insert_commit_data commit_data;
      push_back_check(header, commit_data, pdepth);
      insert_commit(header, new_node, commit_data);
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   "new_node" must be, according to the used ordering, no greater than the
   //!   lowest inserted key.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before "pos".
   //!
   //! <b>Complexity</b>: Constant-time.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Note</b>: If "new_node" is greater than the lowest inserted key
   //! tree invariants are broken. This function is slightly faster than
   //! using "insert_before".
   static void push_front
      (const node_ptr & header, const node_ptr & new_node
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      insert_commit_data commit_data;
      push_front_check(header, commit_data, pdepth);
      insert_commit(header, new_node, commit_data);
   }

   //! <b>Requires</b>: 'node' can't be a header node.
   //!
   //! <b>Effects</b>: Calculates the depth of a node: the depth of a
   //! node is the length (number of edges) of the path from the root
   //! to that node. (The root node is at depth 0.)
   //!
   //! <b>Complexity</b>: Logarithmic to the number of nodes in the tree.
   //!
   //! <b>Throws</b>: Nothing.
   static std::size_t depth(const_node_ptr node)
   {
      std::size_t depth = 0;
      node_ptr p_parent;
      while(node != NodeTraits::get_parent(p_parent = NodeTraits::get_parent(node))){
         ++depth;
         node = p_parent;
      }
      return depth;
   }

   //! <b>Requires</b>: "cloner" must be a function
   //!   object taking a node_ptr and returning a new cloned node of it. "disposer" must
   //!   take a node_ptr and shouldn't throw.
   //!
   //! <b>Effects</b>: First empties target tree calling
   //!   <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
   //!    except the header.
   //!
   //!   Then, duplicates the entire tree pointed by "source_header" cloning each
   //!   source node with <tt>node_ptr Cloner::operator()(const node_ptr &)</tt> to obtain
   //!   the nodes of the target tree. If "cloner" throws, the cloned target nodes
   //!   are disposed using <tt>void disposer(const node_ptr &)</tt>.
   //!
   //! <b>Complexity</b>: Linear to the number of element of the source tree plus the
   //!   number of elements of tree target tree when calling this function.
   //!
   //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
   template <class Cloner, class Disposer>
   static void clone
      (const const_node_ptr & source_header, const node_ptr & target_header, Cloner cloner, Disposer disposer)
   {
      if(!unique(target_header)){
         clear_and_dispose(target_header, disposer);
      }

      node_ptr leftmost, rightmost;
      node_ptr new_root = clone_subtree
         (source_header, target_header, cloner, disposer, leftmost, rightmost);

      //Now update header node
      NodeTraits::set_parent(target_header, new_root);
      NodeTraits::set_left  (target_header, leftmost);
      NodeTraits::set_right (target_header, rightmost);
   }

   //! <b>Requires</b>: header must be the header of a tree, z a node
   //!    of that tree and z != header.
   //!
   //! <b>Effects</b>: Erases node "z" from the tree with header "header".
   //!
   //! <b>Complexity</b>: Amortized constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static void erase(const node_ptr & header, const node_ptr & z)
   {
      data_for_rebalance ignored;
      erase(header, z, ignored);
   }

   //! <b>Requires</b>: node is a tree node but not the header.
   //!
   //! <b>Effects</b>: Unlinks the node and rebalances the tree.
   //!
   //! <b>Complexity</b>: Average complexity is constant time.
   //!
   //! <b>Throws</b>: Nothing.
   static void unlink(const node_ptr & node)
   {
      node_ptr x = NodeTraits::get_parent(node);
      if(x){
         while(!base_type::is_header(x))
            x = NodeTraits::get_parent(x);
         erase(x, node);
      }
   }

   //! <b>Requires</b>: header must be the header of a tree.
   //!
   //! <b>Effects</b>: Rebalances the tree.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear.
   static void rebalance(const node_ptr & header)
   {
      node_ptr root = NodeTraits::get_parent(header);
      if(root){
         rebalance_subtree(root);
      }
   }

   //! <b>Requires</b>: old_root is a node of a tree. It shall not be null.
   //!
   //! <b>Effects</b>: Rebalances the subtree rooted at old_root.
   //!
   //! <b>Returns</b>: The new root of the subtree.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear.
   static node_ptr rebalance_subtree(const node_ptr & old_root)
   {
      //Taken from:
      //"Tree rebalancing in optimal time and space"
      //Quentin F. Stout and Bette L. Warren

      //To avoid irregularities in the algorithm (old_root can be a
      //left or right child or even the root of the tree) just put the
      //root as the right child of its parent. Before doing this backup
      //information to restore the original relationship after
      //the algorithm is applied.
      node_ptr super_root = NodeTraits::get_parent(old_root);
      BOOST_INTRUSIVE_INVARIANT_ASSERT(super_root);

      //Get root info
      node_ptr super_root_right_backup = NodeTraits::get_right(super_root);
      bool super_root_is_header = NodeTraits::get_parent(super_root) == old_root;
      bool old_root_is_right  = is_right_child(old_root);
      NodeTraits::set_right(super_root, old_root);

      std::size_t size;
      subtree_to_vine(super_root, size);
      vine_to_subtree(super_root, size);
      node_ptr new_root = NodeTraits::get_right(super_root);

      //Recover root
      if(super_root_is_header){
         NodeTraits::set_right(super_root, super_root_right_backup);
         NodeTraits::set_parent(super_root, new_root);
      }
      else if(old_root_is_right){
         NodeTraits::set_right(super_root, new_root);
      }
      else{
         NodeTraits::set_right(super_root, super_root_right_backup);
         NodeTraits::set_left(super_root, new_root);
      }
      return new_root;
   }

   //! <b>Effects</b>: Asserts the integrity of the container with additional checks provided by the user.
   //!
   //! <b>Requires</b>: header must be the header of a tree.
   //!
   //! <b>Complexity</b>: Linear time.
   //!
   //! <b>Note</b>: The method might not have effect when asserts are turned off (e.g., with NDEBUG).
   //!   Experimental function, interface might change in future versions.
   template<class Checker>
   static void check(const const_node_ptr& header, Checker checker, typename Checker::return_type& checker_return)
   {
      const_node_ptr root_node_ptr = NodeTraits::get_parent(header);
      if (!root_node_ptr){
         // check left&right header pointers
         BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_left(header) == header);
         BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_right(header) == header);
      }
      else{
         // check parent pointer of root node
         BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(root_node_ptr) == header);
         // check subtree from root
         check_subtree(root_node_ptr, checker, checker_return);
         // check left&right header pointers
         const_node_ptr p = root_node_ptr;
         while (NodeTraits::get_left(p)) { p = NodeTraits::get_left(p); }
         BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_left(header) == p);
         p = root_node_ptr;
         while (NodeTraits::get_right(p)) { p = NodeTraits::get_right(p); }
         BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_right(header) == p);
      }
   }

   protected:
   static void erase(const node_ptr & header, const node_ptr & z, data_for_rebalance &info)
   {
      node_ptr y(z);
      node_ptr x;
      const node_ptr z_left(NodeTraits::get_left(z));
      const node_ptr z_right(NodeTraits::get_right(z));

      if(!z_left){
         x = z_right;    // x might be null.
      }
      else if(!z_right){ // z has exactly one non-null child. y == z.
         x = z_left;       // x is not null.
         BOOST_ASSERT(x);
      }
      else{ //make y != z
         // y = find z's successor
         y = base_type::minimum(z_right);
         x = NodeTraits::get_right(y);     // x might be null.
      }

      node_ptr x_parent;
      const node_ptr z_parent(NodeTraits::get_parent(z));
      const bool z_is_leftchild(NodeTraits::get_left(z_parent) == z);

      if(y != z){ //has two children and y is the minimum of z
         //y is z's successor and it has a null left child.
         //x is the right child of y (it can be null)
         //Relink y in place of z and link x with y's old parent
         NodeTraits::set_parent(z_left, y);
         NodeTraits::set_left(y, z_left);
         if(y != z_right){
            //Link y with the right tree of z
            NodeTraits::set_right(y, z_right);
            NodeTraits::set_parent(z_right, y);
            //Link x with y's old parent (y must be a left child)
            x_parent = NodeTraits::get_parent(y);
            BOOST_ASSERT(NodeTraits::get_left(x_parent) == y);
            if(x)
               NodeTraits::set_parent(x, x_parent);
            //Since y was the successor and not the right child of z, it must be a left child
            NodeTraits::set_left(x_parent, x);
         }
         else{ //y was the right child of y so no need to fix x's position
            x_parent = y;
         }
         NodeTraits::set_parent(y, z_parent);
         this_type::set_child(header, y, z_parent, z_is_leftchild);
      }
      else {  // z has zero or one child, x is one child (it can be null)
         //Just link x to z's parent
         x_parent = z_parent;
         if(x)
            NodeTraits::set_parent(x, z_parent);
         this_type::set_child(header, x, z_parent, z_is_leftchild);

         //Now update leftmost/rightmost in case z was one of them
         if(NodeTraits::get_left(header) == z){
            //z_left must be null because z is the leftmost
            BOOST_ASSERT(!z_left);
            NodeTraits::set_left(header, !z_right ?
               z_parent :  // makes leftmost == header if z == root
               base_type::minimum(z_right));
         }
         if(NodeTraits::get_right(header) == z){
            //z_right must be null because z is the rightmost
            BOOST_ASSERT(!z_right);
            NodeTraits::set_right(header, !z_left ?
               z_parent :  // makes rightmost == header if z == root
               base_type::maximum(z_left));
         }
      }

      //If z had 0/1 child, y == z and one of its children (and maybe null)
      //If z had 2 children, y is the successor of z and x is the right child of y
      info.x = x;
      info.y = y;
      //If z had 0/1 child, x_parent is the new parent of the old right child of y (z's successor)
      //If z had 2 children, x_parent is the new parent of y (z_parent)
      BOOST_ASSERT(!x || NodeTraits::get_parent(x) == x_parent);
      info.x_parent = x_parent;
   }

   //! <b>Requires</b>: node is a node of the tree but it's not the header.
   //!
   //! <b>Effects</b>: Returns the number of nodes of the subtree.
   //!
   //! <b>Complexity</b>: Linear time.
   //!
   //! <b>Throws</b>: Nothing.
   static std::size_t subtree_size(const const_node_ptr & subtree)
   {
      std::size_t count = 0;
      if (subtree){
         node_ptr n = detail::uncast(subtree);
         node_ptr m = NodeTraits::get_left(n);
         while(m){
            n = m;
            m = NodeTraits::get_left(n);
         }

         while(1){
            ++count;
            node_ptr n_right(NodeTraits::get_right(n));
            if(n_right){
               n = n_right;
               m = NodeTraits::get_left(n);
               while(m){
                  n = m;
                  m = NodeTraits::get_left(n);
               }
            }
            else {
               do{
                  if (n == subtree){
                     return count;
                  }
                  m = n;
                  n = NodeTraits::get_parent(n);
               }while(NodeTraits::get_left(n) != m);
            }
         }
      }
      return count;
   }

   //! <b>Requires</b>: p is a node of a tree.
   //!
   //! <b>Effects</b>: Returns true if p is a left child.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   static bool is_left_child(const node_ptr & p)
   {  return NodeTraits::get_left(NodeTraits::get_parent(p)) == p;  }

   //! <b>Requires</b>: p is a node of a tree.
   //!
   //! <b>Effects</b>: Returns true if p is a right child.
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Throws</b>: Nothing.
   static bool is_right_child(const node_ptr & p)
   {  return NodeTraits::get_right(NodeTraits::get_parent(p)) == p;  }

   static void insert_before_check
      (const node_ptr &header, const node_ptr & pos
      , insert_commit_data &commit_data
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      node_ptr prev(pos);
      if(pos != NodeTraits::get_left(header))
         prev = base_type::prev_node(pos);
      bool link_left = unique(header) || !NodeTraits::get_left(pos);
      commit_data.link_left = link_left;
      commit_data.node = link_left ? pos : prev;
      if(pdepth){
         *pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
      }
   }

   static void push_back_check
      (const node_ptr & header, insert_commit_data &commit_data
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      node_ptr prev(NodeTraits::get_right(header));
      if(pdepth){
         *pdepth = prev == header ? 0 : depth(prev) + 1;
      }
      commit_data.link_left = false;
      commit_data.node = prev;
   }

   static void push_front_check
      (const node_ptr & header, insert_commit_data &commit_data
         #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
         , std::size_t *pdepth = 0
         #endif
      )
   {
      node_ptr pos(NodeTraits::get_left(header));
      if(pdepth){
         *pdepth = pos == header ? 0 : depth(pos) + 1;
      }
      commit_data.link_left = true;
      commit_data.node = pos;
   }

   template<class NodePtrCompare>
   static void insert_equal_check
      (const node_ptr &header, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp
      , insert_commit_data &commit_data
      /// @cond
      , std::size_t *pdepth = 0
      /// @endcond
      )
   {
      if(hint == header || !comp(hint, new_node)){
         node_ptr prev(hint);
         if(hint == NodeTraits::get_left(header) ||
            !comp(new_node, (prev = base_type::prev_node(hint)))){
            bool link_left = unique(header) || !NodeTraits::get_left(hint);
            commit_data.link_left = link_left;
            commit_data.node = link_left ? hint : prev;
            if(pdepth){
               *pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
            }
         }
         else{
            insert_equal_upper_bound_check(header, new_node, comp, commit_data, pdepth);
         }
      }
      else{
         insert_equal_lower_bound_check(header, new_node, comp, commit_data, pdepth);
      }
   }

   template<class NodePtrCompare>
   static void insert_equal_upper_bound_check
      (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
   {
      std::size_t depth = 0;
      node_ptr y(h);
      node_ptr x(NodeTraits::get_parent(y));

      while(x){
         ++depth;
         y = x;
         x = comp(new_node, x) ?
               NodeTraits::get_left(x) : NodeTraits::get_right(x);
      }
      if(pdepth)  *pdepth = depth;
      commit_data.link_left = (y == h) || comp(new_node, y);
      commit_data.node = y;
   }

   template<class NodePtrCompare>
   static void insert_equal_lower_bound_check
      (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
   {
      std::size_t depth = 0;
      node_ptr y(h);
      node_ptr x(NodeTraits::get_parent(y));

      while(x){
         ++depth;
         y = x;
         x = !comp(x, new_node) ?
               NodeTraits::get_left(x) : NodeTraits::get_right(x);
      }
      if(pdepth)  *pdepth = depth;
      commit_data.link_left = (y == h) || !comp(y, new_node);
      commit_data.node = y;
   }

   static void insert_commit
      (const node_ptr & header, const node_ptr & new_node, const insert_commit_data &commit_data)
   {
      //Check if commit_data has not been initialized by a insert_unique_check call.
      BOOST_INTRUSIVE_INVARIANT_ASSERT(commit_data.node != node_ptr());
      node_ptr parent_node(commit_data.node);
      if(parent_node == header){
         NodeTraits::set_parent(header, new_node);
         NodeTraits::set_right(header, new_node);
         NodeTraits::set_left(header, new_node);
      }
      else if(commit_data.link_left){
         NodeTraits::set_left(parent_node, new_node);
         if(parent_node == NodeTraits::get_left(header))
             NodeTraits::set_left(header, new_node);
      }
      else{
         NodeTraits::set_right(parent_node, new_node);
         if(parent_node == NodeTraits::get_right(header))
             NodeTraits::set_right(header, new_node);
      }
      NodeTraits::set_parent(new_node, parent_node);
      NodeTraits::set_right(new_node, node_ptr());
      NodeTraits::set_left(new_node, node_ptr());
   }

   //Fix header and own's parent data when replacing x with own, providing own's old data with parent
   static void set_child(const node_ptr & header, const node_ptr & new_child, const node_ptr & new_parent, const bool link_left)
   {
      if(new_parent == header)
         NodeTraits::set_parent(header, new_child);
      else if(link_left)
         NodeTraits::set_left(new_parent, new_child);
      else
         NodeTraits::set_right(new_parent, new_child);
   }

   // rotate p to left (no header and p's parent fixup)
   static void rotate_left_no_parent_fix(const node_ptr & p, const node_ptr &p_right)
   {
      node_ptr p_right_left(NodeTraits::get_left(p_right));
      NodeTraits::set_right(p, p_right_left);
      if(p_right_left){
         NodeTraits::set_parent(p_right_left, p);
      }
      NodeTraits::set_left(p_right, p);
      NodeTraits::set_parent(p, p_right);
   }

   // rotate p to left (with header and p's parent fixup)
   static void rotate_left(const node_ptr & p, const node_ptr & p_right, const node_ptr & p_parent, const node_ptr & header)
   {
      const bool p_was_left(NodeTraits::get_left(p_parent) == p);
      rotate_left_no_parent_fix(p, p_right);
      NodeTraits::set_parent(p_right, p_parent);
      set_child(header, p_right, p_parent, p_was_left);
   }

   // rotate p to right (no header and p's parent fixup)
   static void rotate_right_no_parent_fix(const node_ptr & p, const node_ptr &p_left)
   {
      node_ptr p_left_right(NodeTraits::get_right(p_left));
      NodeTraits::set_left(p, p_left_right);
      if(p_left_right){
         NodeTraits::set_parent(p_left_right, p);
      }
      NodeTraits::set_right(p_left, p);
      NodeTraits::set_parent(p, p_left);
   }

   // rotate p to right (with header and p's parent fixup)
   static void rotate_right(const node_ptr & p, const node_ptr & p_left, const node_ptr & p_parent, const node_ptr & header)
   {
      const bool p_was_left(NodeTraits::get_left(p_parent) == p);
      rotate_right_no_parent_fix(p, p_left);
      NodeTraits::set_parent(p_left, p_parent);
      set_child(header, p_left, p_parent, p_was_left);
   }

   private:

   static void subtree_to_vine(node_ptr vine_tail, std::size_t &size)
   {
      //Inspired by LibAVL:
      //It uses a clever optimization for trees with parent pointers.
      //No parent pointer is updated when transforming a tree to a vine as
      //most of them will be overriten during compression rotations.
      //A final pass must be made after the rebalancing to updated those
      //pointers not updated by tree_to_vine + compression calls
      std::size_t len = 0;
      node_ptr remainder = NodeTraits::get_right(vine_tail);
      while(remainder){
         node_ptr tempptr = NodeTraits::get_left(remainder);
         if(!tempptr){   //move vine-tail down one
            vine_tail = remainder;
            remainder = NodeTraits::get_right(remainder);
            ++len;
         }
         else{ //rotate
            NodeTraits::set_left(remainder, NodeTraits::get_right(tempptr));
            NodeTraits::set_right(tempptr, remainder);
            remainder = tempptr;
            NodeTraits::set_right(vine_tail, tempptr);
         }
      }
      size = len;
   }

   static void compress_subtree(node_ptr scanner, std::size_t count)
   {
      while(count--){   //compress "count" spine nodes in the tree with pseudo-root scanner
         node_ptr child = NodeTraits::get_right(scanner);
         node_ptr child_right = NodeTraits::get_right(child);
         NodeTraits::set_right(scanner, child_right);
         //Avoid setting the parent of child_right
         scanner = child_right;
         node_ptr scanner_left = NodeTraits::get_left(scanner);
         NodeTraits::set_right(child, scanner_left);
         if(scanner_left)
            NodeTraits::set_parent(scanner_left, child);
         NodeTraits::set_left(scanner, child);
         NodeTraits::set_parent(child, scanner);
      }
   }

   static void vine_to_subtree(const node_ptr & super_root, std::size_t count)
   {
      const std::size_t one_szt = 1u;
      std::size_t leaf_nodes = count + one_szt - std::size_t(one_szt << detail::floor_log2(count + one_szt));
      compress_subtree(super_root, leaf_nodes);  //create deepest leaves
      std::size_t vine_nodes = count - leaf_nodes;
      while(vine_nodes > 1){
         vine_nodes /= 2;
         compress_subtree(super_root, vine_nodes);
      }

      //Update parents of nodes still in the in the original vine line
      //as those have not been updated by subtree_to_vine or compress_subtree
      for ( node_ptr q = super_root, p = NodeTraits::get_right(super_root)
          ; p
          ; q = p, p = NodeTraits::get_right(p)){
         NodeTraits::set_parent(p, q);
      }
   }

   //! <b>Requires</b>: "n" must be a node inserted in a tree.
   //!
   //! <b>Effects</b>: Returns a pointer to the header node of the tree.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //!
   //! <b>Throws</b>: Nothing.
   static node_ptr get_root(const node_ptr & node)
   {
      BOOST_INTRUSIVE_INVARIANT_ASSERT((!inited(node)));
      node_ptr x = NodeTraits::get_parent(node);
      if(x){
         while(!base_type::is_header(x)){
            x = NodeTraits::get_parent(x);
         }
         return x;
      }
      else{
         return node;
      }
   }

   template <class Cloner, class Disposer>
   static node_ptr clone_subtree
      (const const_node_ptr &source_parent, const node_ptr &target_parent
      , Cloner cloner, Disposer disposer
      , node_ptr &leftmost_out, node_ptr &rightmost_out
      )
   {
      node_ptr target_sub_root = target_parent;
      node_ptr source_root = NodeTraits::get_parent(source_parent);
      if(!source_root){
         leftmost_out = rightmost_out = source_root;
      }
      else{
         //We'll calculate leftmost and rightmost nodes while iterating
         node_ptr current = source_root;
         node_ptr insertion_point = target_sub_root = cloner(current);

         //We'll calculate leftmost and rightmost nodes while iterating
         node_ptr leftmost  = target_sub_root;
         node_ptr rightmost = target_sub_root;

         //First set the subroot
         NodeTraits::set_left(target_sub_root, node_ptr());
         NodeTraits::set_right(target_sub_root, node_ptr());
         NodeTraits::set_parent(target_sub_root, target_parent);

         dispose_subtree_disposer<Disposer> rollback(disposer, target_sub_root);
         while(true) {
            //First clone left nodes
            if( NodeTraits::get_left(current) &&
               !NodeTraits::get_left(insertion_point)) {
               current = NodeTraits::get_left(current);
               node_ptr temp = insertion_point;
               //Clone and mark as leaf
               insertion_point = cloner(current);
               NodeTraits::set_left  (insertion_point, node_ptr());
               NodeTraits::set_right (insertion_point, node_ptr());
               //Insert left
               NodeTraits::set_parent(insertion_point, temp);
               NodeTraits::set_left  (temp, insertion_point);
               //Update leftmost
               if(rightmost == target_sub_root)
                  leftmost = insertion_point;
            }
            //Then clone right nodes
            else if( NodeTraits::get_right(current) &&
                     !NodeTraits::get_right(insertion_point)){
               current = NodeTraits::get_right(current);
               node_ptr temp = insertion_point;
               //Clone and mark as leaf
               insertion_point = cloner(current);
               NodeTraits::set_left  (insertion_point, node_ptr());
               NodeTraits::set_right (insertion_point, node_ptr());
               //Insert right
               NodeTraits::set_parent(insertion_point, temp);
               NodeTraits::set_right (temp, insertion_point);
               //Update rightmost
               rightmost = insertion_point;
            }
            //If not, go up
            else if(current == source_root){
               break;
            }
            else{
               //Branch completed, go up searching more nodes to clone
               current = NodeTraits::get_parent(current);
               insertion_point = NodeTraits::get_parent(insertion_point);
            }
         }
         rollback.release();
         leftmost_out   = leftmost;
         rightmost_out  = rightmost;
      }
      return target_sub_root;
   }

   template<class Disposer>
   static void dispose_subtree(node_ptr x, Disposer disposer)
   {
      while (x){
         node_ptr save(NodeTraits::get_left(x));
         if (save) {
            // Right rotation
            NodeTraits::set_left(x, NodeTraits::get_right(save));
            NodeTraits::set_right(save, x);
         }
         else {
            save = NodeTraits::get_right(x);
            init(x);
            disposer(x);
         }
         x = save;
      }
   }

   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr lower_bound_loop
      (node_ptr x, node_ptr y, const KeyType &key, KeyNodePtrCompare comp)
   {
      while(x){
         if(comp(x, key)){
            x = NodeTraits::get_right(x);
         }
         else{
            y = x;
            x = NodeTraits::get_left(x);
         }
      }
      return y;
   }

   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr upper_bound_loop
      (node_ptr x, node_ptr y, const KeyType &key, KeyNodePtrCompare comp)
   {
      while(x){
         if(comp(key, x)){
            y = x;
            x = NodeTraits::get_left(x);
         }
         else{
            x = NodeTraits::get_right(x);
         }
      }
      return y;
   }

   template<class Checker>
   static void check_subtree(const const_node_ptr& node, Checker checker, typename Checker::return_type& check_return)
   {
      const_node_ptr left = NodeTraits::get_left(node);
      const_node_ptr right = NodeTraits::get_right(node);
      typename Checker::return_type check_return_left;
      typename Checker::return_type check_return_right;
      if (left)
      {
         BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(left) == node);
         check_subtree(left, checker, check_return_left);
      }
      if (right)
      {
         BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(right) == node);
         check_subtree(right, checker, check_return_right);
      }
      checker(node, check_return_left, check_return_right, check_return);
   }
};

/// @cond

template<class NodeTraits>
struct get_algo<BsTreeAlgorithms, NodeTraits>
{
   typedef bstree_algorithms<NodeTraits> type;
};

template <class ValueTraits, class NodePtrCompare, class ExtraChecker>
struct get_node_checker<BsTreeAlgorithms, ValueTraits, NodePtrCompare, ExtraChecker>
{
   typedef detail::bstree_node_checker<ValueTraits, NodePtrCompare, ExtraChecker> type;
};

/// @endcond

}  //namespace intrusive
}  //namespace boost

#include <boost/intrusive/detail/config_end.hpp>

#endif //BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP