summaryrefslogtreecommitdiff
path: root/boost/interprocess/sync/upgradable_lock.hpp
blob: 93c2ed6bc4f3ef5d9ab2b6205bc0bc1a5759436c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
//
// This interface is inspired by Howard Hinnant's lock proposal.
// http://home.twcny.rr.com/hinnant/cpp_extensions/threads_move.html
//
//////////////////////////////////////////////////////////////////////////////

#ifndef BOOST_INTERPROCESS_UPGRADABLE_LOCK_HPP
#define BOOST_INTERPROCESS_UPGRADABLE_LOCK_HPP

#if (defined _MSC_VER) && (_MSC_VER >= 1200)
#  pragma once
#endif

#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>
#include <boost/interprocess/interprocess_fwd.hpp>
#include <boost/interprocess/sync/lock_options.hpp>
#include <boost/interprocess/detail/mpl.hpp>
#include <boost/interprocess/detail/type_traits.hpp>

#include <boost/interprocess/exceptions.hpp>
#include <boost/move/move.hpp>
#include <boost/interprocess/detail/posix_time_types_wrk.hpp>

//!\file
//!Describes the upgradable_lock class that serves to acquire the upgradable
//!lock of a mutex.

namespace boost {
namespace interprocess {

//!upgradable_lock is meant to carry out the tasks for read-locking, unlocking,
//!try-read-locking and timed-read-locking (recursive or not) for the Mutex.
//!Additionally the upgradable_lock can transfer ownership to a scoped_lock
//!using transfer_lock syntax. The Mutex need not supply all of the functionality.
//!If the client of upgradable_lock<Mutex> does not use functionality which the
//!Mutex does not supply, no harm is done. Mutex ownership can be shared among
//!read_locks, and a single upgradable_lock. upgradable_lock does not support
//!copy semantics. However upgradable_lock supports ownership transfer from
//!a upgradable_locks or scoped_locks via transfer_lock syntax.
template <class UpgradableMutex>
class upgradable_lock
{
   public:
   typedef UpgradableMutex mutex_type;
   /// @cond
   private:
   typedef upgradable_lock<UpgradableMutex> this_type;
   explicit upgradable_lock(scoped_lock<mutex_type>&);
   typedef bool this_type::*unspecified_bool_type;
   BOOST_MOVABLE_BUT_NOT_COPYABLE(upgradable_lock)
   /// @endcond
   public:

   //!Effects: Default constructs a upgradable_lock.
   //!Postconditions: owns() == false and mutex() == 0.
   upgradable_lock()
      : mp_mutex(0), m_locked(false)
   {}

   explicit upgradable_lock(mutex_type& m)
      : mp_mutex(&m), m_locked(false)
   {  mp_mutex->lock_upgradable();   m_locked = true;  }

   //!Postconditions: owns() == false, and mutex() == &m.
   //!Notes: The constructor will not take ownership of the mutex. There is no effect
   //!   required on the referenced mutex.
   upgradable_lock(mutex_type& m, defer_lock_type)
      : mp_mutex(&m), m_locked(false)
   {}

   //!Postconditions: owns() == true, and mutex() == &m.
   //!Notes: The constructor will suppose that the mutex is already upgradable
   //!   locked. There is no effect required on the referenced mutex.
   upgradable_lock(mutex_type& m, accept_ownership_type)
      : mp_mutex(&m), m_locked(true)
   {}

   //!Effects: m.try_lock_upgradable(). 
   //!Postconditions: mutex() == &m. owns() == the return value of the
   //!   m.try_lock_upgradable() executed within the constructor.
   //!Notes: The constructor will take upgradable-ownership of the mutex
   //!   if it can do so without waiting. Whether or not this constructor
   //!   handles recursive locking depends upon the mutex. If the mutex_type
   //!   does not support try_lock_upgradable, this constructor will fail at
   //!   compile time if instantiated, but otherwise have no effect.
   upgradable_lock(mutex_type& m, try_to_lock_type)
      : mp_mutex(&m), m_locked(false)
   {  m_locked = mp_mutex->try_lock_upgradable();   }

   //!Effects: m.timed_lock_upgradable(abs_time) 
   //!Postconditions: mutex() == &m. owns() == the return value of the
   //!   m.timed_lock_upgradable() executed within the constructor.
   //!Notes: The constructor will take upgradable-ownership of the mutex if it
   //!   can do so within the time specified. Whether or not this constructor
   //!   handles recursive locking depends upon the mutex. If the mutex_type
   //!   does not support timed_lock_upgradable, this constructor will fail
   //!   at compile time if instantiated, but otherwise have no effect.
   upgradable_lock(mutex_type& m, const boost::posix_time::ptime& abs_time)
      : mp_mutex(&m), m_locked(false)
   {  m_locked = mp_mutex->timed_lock_upgradable(abs_time);  }

   //!Effects: No effects on the underlying mutex.
   //!Postconditions: mutex() == the value upgr.mutex() had before the
   //!   construction. upgr.mutex() == 0. owns() == upgr.owns() before the
   //!   construction. upgr.owns() == false.
   //!Notes: If upgr is locked, this constructor will lock this upgradable_lock
   //!   while unlocking upgr. If upgr is unlocked, then this upgradable_lock will
   //!   be unlocked as well. Only a moved upgradable_lock's will match this
   //!   signature. An non-moved upgradable_lock can be moved with the
   //!   expression: "boost::move(lock);". This constructor does not alter the
   //!   state of the mutex, only potentially who owns it.
   upgradable_lock(BOOST_RV_REF(upgradable_lock<mutex_type>) upgr)
      : mp_mutex(0), m_locked(upgr.owns())
   {  mp_mutex = upgr.release(); }

   //!Effects: If scop.owns(), m_.unlock_and_lock_upgradable(). 
   //!Postconditions: mutex() == the value scop.mutex() had before the construction.
   //!   scop.mutex() == 0. owns() == scop.owns() before the constructor. After the
   //!   construction, scop.owns() == false.
   //!Notes: If scop is locked, this constructor will transfer the exclusive-ownership
   //!   to an upgradable-ownership of this upgradable_lock.
   //!   Only a moved sharable_lock's will match this
   //!   signature. An non-moved sharable_lock can be moved with the
   //!   expression: "boost::move(lock);".
   template<class T>
   upgradable_lock(BOOST_RV_REF(scoped_lock<T>) scop
                  , typename ipcdetail::enable_if< ipcdetail::is_same<T, UpgradableMutex> >::type * = 0)
      : mp_mutex(0), m_locked(false)
   {
      scoped_lock<mutex_type> &u_lock = scop;
      if(u_lock.owns()){
         u_lock.mutex()->unlock_and_lock_upgradable();
         m_locked = true;
      }
      mp_mutex = u_lock.release();
   }

   //!Effects: If shar.owns() then calls try_unlock_sharable_and_lock_upgradable()
   //!   on the referenced mutex. 
   //!   a)if try_unlock_sharable_and_lock_upgradable() returns true then mutex()
   //!      obtains the value from shar.release() and owns() is set to true. 
   //!   b)if try_unlock_sharable_and_lock_upgradable() returns false then shar is
   //!      unaffected and this upgradable_lock construction has the same
   //!      effects as a default construction. 
   //!   c)Else shar.owns() is false. mutex() obtains the value from shar.release()
   //!      and owns() is set to false.
   //!Notes: This construction will not block. It will try to obtain mutex
   //!   ownership from shar immediately, while changing the lock type from a
   //!   "read lock" to an "upgradable lock". If the "read lock" isn't held
   //!   in the first place, the mutex merely changes type to an unlocked
   //!   "upgradable lock". If the "read lock" is held, then mutex transfer
   //!   occurs only if it can do so in a non-blocking manner.
   template<class T>
   upgradable_lock( BOOST_RV_REF(sharable_lock<T>) shar, try_to_lock_type
                  , typename ipcdetail::enable_if< ipcdetail::is_same<T, UpgradableMutex> >::type * = 0)
      : mp_mutex(0), m_locked(false)
   {
      sharable_lock<mutex_type> &s_lock = shar;
      if(s_lock.owns()){
         if((m_locked = s_lock.mutex()->try_unlock_sharable_and_lock_upgradable()) == true){
            mp_mutex = s_lock.release();
         }
      }
      else{
         s_lock.release();
      }
   }

   //!Effects: if (owns()) m_->unlock_upgradable().
   //!Notes: The destructor behavior ensures that the mutex lock is not leaked.
   ~upgradable_lock()
   {
      try{
         if(m_locked && mp_mutex)   mp_mutex->unlock_upgradable();
      }
      catch(...){}
   }

   //!Effects: If owns(), then unlock_upgradable() is called on mutex().
   //!   *this gets the state of upgr and upgr gets set to a default constructed state.
   //!Notes: With a recursive mutex it is possible that both this and upgr own the
   //!   mutex before the assignment. In this case, this will own the mutex
   //!   after the assignment (and upgr will not), but the mutex's upgradable lock
   //!   count will be decremented by one.
   upgradable_lock &operator=(BOOST_RV_REF(upgradable_lock) upgr)
   {
      if(this->owns())
         this->unlock();
      m_locked = upgr.owns();
      mp_mutex = upgr.release();
      return *this;
   }

   //!Effects: If mutex() == 0 or if already locked, throws a lock_exception()
   //!   exception. Calls lock_upgradable() on the referenced mutex.
   //!Postconditions: owns() == true.
   //!Notes: The sharable_lock changes from a state of not owning the mutex,
   //!   to owning the mutex, blocking if necessary.
   void lock()
   {  
      if(!mp_mutex || m_locked)
         throw lock_exception();
      mp_mutex->lock_upgradable();
      m_locked = true;
   }

   //!Effects: If mutex() == 0 or if already locked, throws a lock_exception()
   //!   exception. Calls try_lock_upgradable() on the referenced mutex.
   //!Postconditions: owns() == the value returned from
   //!   mutex()->try_lock_upgradable().
   //!Notes: The upgradable_lock changes from a state of not owning the mutex,
   //!   to owning the mutex, but only if blocking was not required. If the
   //!   mutex_type does not support try_lock_upgradable(), this function will
   //!   fail at compile time if instantiated, but otherwise have no effect.
   bool try_lock()
   {  
      if(!mp_mutex || m_locked)
         throw lock_exception();
      m_locked = mp_mutex->try_lock_upgradable();
      return m_locked;
   }

   //!Effects: If mutex() == 0 or if already locked, throws a lock_exception()
   //!   exception. Calls timed_lock_upgradable(abs_time) on the referenced mutex.
   //!Postconditions: owns() == the value returned from
   //!   mutex()->timed_lock_upgradable(abs_time).
   //!Notes: The upgradable_lock changes from a state of not owning the mutex,
   //!   to owning the mutex, but only if it can obtain ownership within the
   //!   specified time. If the mutex_type does not support
   //!   timed_lock_upgradable(abs_time), this function will fail at compile
   //!   time if instantiated, but otherwise have no effect.
   bool timed_lock(const boost::posix_time::ptime& abs_time)
   {  
      if(!mp_mutex || m_locked)
         throw lock_exception();
      m_locked = mp_mutex->timed_lock_upgradable(abs_time);
      return m_locked;
   }

   //!Effects: If mutex() == 0 or if not locked, throws a lock_exception()
   //!   exception. Calls unlock_upgradable() on the referenced mutex.
   //!Postconditions: owns() == false.
   //!Notes: The upgradable_lock changes from a state of owning the mutex,
   //!   to not owning the mutex.
   void unlock()
   {
      if(!mp_mutex || !m_locked)
         throw lock_exception();
      mp_mutex->unlock_upgradable();
      m_locked = false;
   }

   //!Effects: Returns true if this scoped_lock has acquired the
   //!referenced mutex.
   bool owns() const
   {  return m_locked && mp_mutex;  }

   //!Conversion to bool.
   //!Returns owns().
   operator unspecified_bool_type() const
   {  return m_locked? &this_type::m_locked : 0;   }

   //!Effects: Returns a pointer to the referenced mutex, or 0 if
   //!there is no mutex to reference.
   mutex_type* mutex() const
   {  return  mp_mutex;  }

   //!Effects: Returns a pointer to the referenced mutex, or 0 if there is no
   //!   mutex to reference.
   //!Postconditions: mutex() == 0 and owns() == false.
   mutex_type* release()
   {
      mutex_type *mut = mp_mutex;
      mp_mutex = 0;
      m_locked = false;
      return mut;
   }

   //!Effects: Swaps state with moved lock. 
   //!Throws: Nothing.
   void swap(upgradable_lock<mutex_type> &other)
   {
      std::swap(mp_mutex, other.mp_mutex);
      std::swap(m_locked, other.m_locked);
   }

   /// @cond
   private:
   mutex_type *mp_mutex;
   bool        m_locked;
   /// @endcond
};

} // namespace interprocess
} // namespace boost

#include <boost/interprocess/detail/config_end.hpp>

#endif // BOOST_INTERPROCESS_UPGRADABLE_LOCK_HPP