summaryrefslogtreecommitdiff
path: root/boost/interprocess/mem_algo/detail/multi_simple_seq_fit_impl.hpp
blob: c84d4e6fb7b2251006dafaf306893e07cdf9e57b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////

#ifndef BOOST_INTERPROCESS_MEM_ALGO_DETAIL_SIMPLE_SEQ_FIT_IMPL_HPP
#define BOOST_INTERPROCESS_MEM_ALGO_DETAIL_SIMPLE_SEQ_FIT_IMPL_HPP

#if defined(_MSC_VER)
#  pragma once
#endif

#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/detail/workaround.hpp>

#include <boost/intrusive/pointer_traits.hpp>

#include <boost/interprocess/interprocess_fwd.hpp>
#include <boost/interprocess/containers/allocation_type.hpp>
#include <boost/interprocess/offset_ptr.hpp>
#include <boost/interprocess/sync/interprocess_mutex.hpp>
#include <boost/interprocess/exceptions.hpp>
#include <boost/interprocess/detail/utilities.hpp>
#include <boost/interprocess/detail/multi_segment_services.hpp>
#include <boost/type_traits/alignment_of.hpp>
#include <boost/type_traits/type_with_alignment.hpp>
#include <boost/interprocess/detail/min_max.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <algorithm>
#include <utility>
#include <cstring>

#include <boost/assert.hpp>
#include <new>

/*!\file
   Describes sequential fit algorithm used to allocate objects in shared memory.
   This class is intended as a base class for single segment and multi-segment
   implementations.
*/

namespace boost {

namespace interprocess {

namespace ipcdetail {

/*!This class implements the simple sequential fit algorithm with a simply
   linked list of free buffers.
   This class is intended as a base class for single segment and multi-segment
   implementations.*/
template<class MutexFamily, class VoidPointer>
class simple_seq_fit_impl
{
   //Non-copyable
   simple_seq_fit_impl();
   simple_seq_fit_impl(const simple_seq_fit_impl &);
   simple_seq_fit_impl &operator=(const simple_seq_fit_impl &);

   public:
   /*!Shared interprocess_mutex family used for the rest of the Interprocess framework*/
   typedef MutexFamily        mutex_family;
   /*!Pointer type to be used with the rest of the Interprocess framework*/
   typedef VoidPointer        void_pointer;

   typedef typename boost::intrusive::pointer_traits<char_ptr>::difference_type difference_type;
   typedef typename boost::make_unsigned<difference_type>::type size_type;


   private:
   struct block_ctrl;
   typedef typename boost::intrusive::
      pointer_traits<void_pointer>::template
         rebind_pointer<block_ctrl>::type                         block_ctrl_ptr;

   /*!Block control structure*/
   struct block_ctrl
   {
      /*!Offset pointer to the next block.*/
      block_ctrl_ptr m_next;
      /*!This block's memory size (including block_ctrl
         header) in BasicSize units*/
      size_type    m_size;

      size_type get_user_bytes() const
      {  return this->m_size*Alignment - BlockCtrlBytes; }

      size_type get_total_bytes() const
      {  return this->m_size*Alignment; }

      static block_ctrl *get_block_from_addr(void *addr)
      {
         return reinterpret_cast<block_ctrl*>
            (reinterpret_cast<char*>(addr) - BlockCtrlBytes);
      }

      void *get_addr() const
      {
         return reinterpret_cast<block_ctrl*>
            (reinterpret_cast<const char*>(this) + BlockCtrlBytes);
      }

   };

   /*!Shared interprocess_mutex to protect memory allocate/deallocate*/
   typedef typename MutexFamily::mutex_type        interprocess_mutex;

   /*!This struct includes needed data and derives from
      interprocess_mutex to allow EBO when using null interprocess_mutex*/
   struct header_t : public interprocess_mutex
   {
      /*!Pointer to the first free block*/
      block_ctrl        m_root;
      /*!Allocated bytes for internal checking*/
      size_type       m_allocated;
      /*!The size of the memory segment*/
      size_type       m_size;
   }  m_header;

   public:
   /*!Constructor. "size" is the total size of the managed memory segment,
      "extra_hdr_bytes" indicates the extra bytes beginning in the sizeof(simple_seq_fit_impl)
      offset that the allocator should not use at all.*/
   simple_seq_fit_impl           (size_type size, size_type extra_hdr_bytes);
   /*!Destructor.*/
   ~simple_seq_fit_impl();
   /*!Obtains the minimum size needed by the algorithm*/
   static size_type get_min_size (size_type extra_hdr_bytes);

   //Functions for single segment management

   /*!Allocates bytes, returns 0 if there is not more memory*/
   void* allocate             (size_type nbytes);

   /*!Deallocates previously allocated bytes*/
   void   deallocate          (void *addr);

   /*!Returns the size of the memory segment*/
   size_type get_size()  const;

   /*!Increases managed memory in extra_size bytes more*/
   void grow(size_type extra_size);

   /*!Returns true if all allocated memory has been deallocated*/
   bool all_memory_deallocated();

   /*!Makes an internal sanity check and returns true if success*/
   bool check_sanity();

   //!Initializes to zero all the memory that's not in use.
   //!This function is normally used for security reasons.
   void clear_free_memory();

   std::pair<void *, bool>
      allocation_command  (boost::interprocess::allocation_type command,   size_type limit_size,
                           size_type preferred_size,size_type &received_size,
                           void *reuse_ptr = 0, size_type backwards_multiple = 1);

   /*!Returns the size of the buffer previously allocated pointed by ptr*/
   size_type size(void *ptr) const;

   /*!Allocates aligned bytes, returns 0 if there is not more memory.
      Alignment must be power of 2*/
   void* allocate_aligned     (size_type nbytes, size_type alignment);

   /*!Allocates bytes, if there is no more memory, it executes functor
      f(size_type) to allocate a new segment to manage. The functor returns
      std::pair<void*, size_type> indicating the base address and size of
      the new segment. If the new segment can't be allocated, allocate
      it will return 0.*/
   void* multi_allocate(size_type nbytes);

   private:
   /*!Real allocation algorithm with min allocation option*/
   std::pair<void *, bool> priv_allocate(boost::interprocess::allocation_type command
                                        ,size_type min_size
                                        ,size_type preferred_size
                                        ,size_type &received_size
                                        ,void *reuse_ptr = 0);
   /*!Returns next block if it's free.
      Returns 0 if next block is not free.*/
   block_ctrl *priv_next_block_if_free(block_ctrl *ptr);

   /*!Returns previous block's if it's free.
      Returns 0 if previous block is not free.*/
   std::pair<block_ctrl*, block_ctrl*>priv_prev_block_if_free(block_ctrl *ptr);

   /*!Real expand function implementation*/
   bool priv_expand(void *ptr
                   ,size_type min_size, size_type preferred_size
                   ,size_type &received_size);

   /*!Real expand to both sides implementation*/
   void* priv_expand_both_sides(boost::interprocess::allocation_type command
                               ,size_type min_size
                               ,size_type preferred_size
                               ,size_type &received_size
                               ,void *reuse_ptr
                               ,bool only_preferred_backwards);

   /*!Real shrink function implementation*/
   bool priv_shrink(void *ptr
                   ,size_type max_size, size_type preferred_size
                   ,size_type &received_size);

   //!Real private aligned allocation function
   void* priv_allocate_aligned     (size_type nbytes, size_type alignment);

   /*!Checks if block has enough memory and splits/unlinks the block
      returning the address to the users*/
   void* priv_check_and_allocate(size_type units
                                ,block_ctrl* prev
                                ,block_ctrl* block
                                ,size_type &received_size);
   /*!Real deallocation algorithm*/
   void priv_deallocate(void *addr);

   /*!Makes a new memory portion available for allocation*/
   void priv_add_segment(void *addr, size_type size);

   static const std::size_t Alignment = ::boost::alignment_of<boost::ipcdetail::max_align>::value;
   static const std::size_t BlockCtrlBytes = ipcdetail::ct_rounded_size<sizeof(block_ctrl), Alignment>::value;
   static const std::size_t BlockCtrlSize  = BlockCtrlBytes/Alignment;
   static const std::size_t MinBlockSize   = BlockCtrlSize + Alignment;

   public:
   static const std::size_t PayloadPerAllocation = BlockCtrlBytes;
};

template<class MutexFamily, class VoidPointer>
inline simple_seq_fit_impl<MutexFamily, VoidPointer>::
   simple_seq_fit_impl(size_type size, size_type extra_hdr_bytes)
{
   //Initialize sizes and counters
   m_header.m_allocated = 0;
   m_header.m_size      = size;

   //Initialize pointers
   size_type block1_off  = ipcdetail::get_rounded_size(sizeof(*this)+extra_hdr_bytes, Alignment);
   m_header.m_root.m_next  = reinterpret_cast<block_ctrl*>
                              (reinterpret_cast<char*>(this) + block1_off);
   m_header.m_root.m_next->m_size  = (size - block1_off)/Alignment;
   m_header.m_root.m_next->m_next  = &m_header.m_root;
}

template<class MutexFamily, class VoidPointer>
inline simple_seq_fit_impl<MutexFamily, VoidPointer>::~simple_seq_fit_impl()
{
   //There is a memory leak!
//   BOOST_ASSERT(m_header.m_allocated == 0);
//   BOOST_ASSERT(m_header.m_root.m_next->m_next == block_ctrl_ptr(&m_header.m_root));
}

template<class MutexFamily, class VoidPointer>
inline void simple_seq_fit_impl<MutexFamily, VoidPointer>::grow(size_type extra_size)
{
   //Old highest address block's end offset
   size_type old_end = m_header.m_size/Alignment*Alignment;

   //Update managed buffer's size
   m_header.m_size += extra_size;

   //We need at least MinBlockSize blocks to create a new block
   if((m_header.m_size - old_end) < MinBlockSize){
      return;
   }

   //We'll create a new free block with extra_size bytes
   block_ctrl *new_block = reinterpret_cast<block_ctrl*>
                              (reinterpret_cast<char*>(this) + old_end);

   new_block->m_next = 0;
   new_block->m_size = (m_header.m_size - old_end)/Alignment;
   m_header.m_allocated += new_block->m_size*Alignment;
   this->priv_deallocate(reinterpret_cast<char*>(new_block) + BlockCtrlBytes);
}

template<class MutexFamily, class VoidPointer>
inline void simple_seq_fit_impl<MutexFamily, VoidPointer>::priv_add_segment(void *addr, size_type size)
{
   //Check size
   BOOST_ASSERT(!(size < MinBlockSize));
   if(size < MinBlockSize)
      return;
   //Construct big block using the new segment
   block_ctrl *new_block   = static_cast<block_ctrl *>(addr);
   new_block->m_size       = size/Alignment;
   new_block->m_next       = 0;
   //Simulate this block was previously allocated
   m_header.m_allocated   += new_block->m_size*Alignment;
   //Return block and insert it in the free block list
   this->priv_deallocate(reinterpret_cast<char*>(new_block) + BlockCtrlBytes);
}

template<class MutexFamily, class VoidPointer>
inline typename simple_seq_fit_impl<MutexFamily, VoidPointer>::size_type
simple_seq_fit_impl<MutexFamily, VoidPointer>::get_size()  const
   {  return m_header.m_size;  }

template<class MutexFamily, class VoidPointer>
inline typename simple_seq_fit_impl<MutexFamily, VoidPointer>::size_type
simple_seq_fit_impl<MutexFamily, VoidPointer>::
   get_min_size (size_type extra_hdr_bytes)
{
   return ipcdetail::get_rounded_size(sizeof(simple_seq_fit_impl)+extra_hdr_bytes
                                  ,Alignment)
          + MinBlockSize;
}

template<class MutexFamily, class VoidPointer>
inline bool simple_seq_fit_impl<MutexFamily, VoidPointer>::
    all_memory_deallocated()
{
   //-----------------------
   boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
   //-----------------------
   return m_header.m_allocated == 0 &&
          ipcdetail::to_raw_pointer(m_header.m_root.m_next->m_next) == &m_header.m_root;
}

template<class MutexFamily, class VoidPointer>
inline void simple_seq_fit_impl<MutexFamily, VoidPointer>::clear_free_memory()
{
   //-----------------------
   boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
   //-----------------------
   block_ctrl *block = ipcdetail::to_raw_pointer(m_header.m_root.m_next);

   //Iterate through all free portions
   do{
      //Just clear user the memory part reserved for the user
      std::memset( reinterpret_cast<char*>(block) + BlockCtrlBytes
                 , 0
                 , block->m_size*Alignment - BlockCtrlBytes);
      block = ipcdetail::to_raw_pointer(block->m_next);
   }
   while(block != &m_header.m_root);
}

template<class MutexFamily, class VoidPointer>
inline bool simple_seq_fit_impl<MutexFamily, VoidPointer>::
    check_sanity()
{
   //-----------------------
   boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
   //-----------------------
   block_ctrl *block = ipcdetail::to_raw_pointer(m_header.m_root.m_next);

   size_type free_memory = 0;

   //Iterate through all blocks obtaining their size
   do{
      //Free blocks's next must be always valid
      block_ctrl *next = ipcdetail::to_raw_pointer(block->m_next);
      if(!next){
         return false;
      }
      free_memory += block->m_size*Alignment;
      block = next;
   }
   while(block != &m_header.m_root);

   //Check allocated bytes are less than size
   if(m_header.m_allocated > m_header.m_size){
      return false;
   }

   //Check free bytes are less than size
   if(free_memory > m_header.m_size){
      return false;
   }
   return true;
}

template<class MutexFamily, class VoidPointer>
inline void* simple_seq_fit_impl<MutexFamily, VoidPointer>::
   allocate(size_type nbytes)
{
   //-----------------------
   boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
   //-----------------------
   size_type ignore;
   return priv_allocate(boost::interprocess::allocate_new, nbytes, nbytes, ignore).first;
}

template<class MutexFamily, class VoidPointer>
inline void* simple_seq_fit_impl<MutexFamily, VoidPointer>::
   allocate_aligned(size_type nbytes, size_type alignment)
{
   //-----------------------
   boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
   //-----------------------
   return priv_allocate_aligned(nbytes, alignment);
}

template<class MutexFamily, class VoidPointer>
inline std::pair<void *, bool> simple_seq_fit_impl<MutexFamily, VoidPointer>::
   allocation_command  (boost::interprocess::allocation_type command,   size_type min_size,
                        size_type preferred_size,size_type &received_size,
                        void *reuse_ptr, size_type backwards_multiple)
{
   //-----------------------
   boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
   //-----------------------
   (void)backwards_multiple;
   command &= ~boost::interprocess::expand_bwd;
   if(!command)
      return std::pair<void *, bool>(0, false);
   return priv_allocate(command, min_size, preferred_size, received_size, reuse_ptr);
}

template<class MutexFamily, class VoidPointer>
inline typename simple_seq_fit_impl<MutexFamily, VoidPointer>::size_type
simple_seq_fit_impl<MutexFamily, VoidPointer>::
   size(void *ptr) const
{
   //We need no synchronization since this block is not going
   //to be modified
   //Obtain the real size of the block
   block_ctrl *block = reinterpret_cast<block_ctrl*>
                        (reinterpret_cast<char*>(ptr) - BlockCtrlBytes);
   return block->m_size*Alignment - BlockCtrlBytes;
}

template<class MutexFamily, class VoidPointer>
inline void* simple_seq_fit_impl<MutexFamily, VoidPointer>::
   multi_allocate(size_type nbytes)
{
   //-----------------------
   boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
   //-----------------------
   //Multisegment pointer. Let's try first the normal allocation
   //since it's faster.
   size_type ignore;
   void *addr = this->priv_allocate(boost::interprocess::allocate_new, nbytes, nbytes, ignore).first;
   if(!addr){
      //If this fails we will try the allocation through the segment
      //creator.
      size_type group, id;
      //Obtain the segment group of this segment
      void_pointer::get_group_and_id(this, group, id);
      if(group == 0){
         //Ooops, group 0 is not valid.
         return 0;
      }
      //Now obtain the polymorphic functor that creates
      //new segments and try to allocate again.
      boost::interprocess::multi_segment_services *p_services =
         static_cast<boost::interprocess::multi_segment_services*>
                     (void_pointer::find_group_data(group));
      BOOST_ASSERT(p_services);
     std::pair<void *, std::size_t> ret =
         p_services->create_new_segment(MinBlockSize > nbytes ? MinBlockSize : nbytes);
      if(ret.first){
         priv_add_segment(ret.first, ret.second);
         addr = this->priv_allocate(boost::interprocess::allocate_new, nbytes, nbytes, ignore).first;
      }
   }
   return addr;
}

template<class MutexFamily, class VoidPointer>
void* simple_seq_fit_impl<MutexFamily, VoidPointer>::
   priv_expand_both_sides(boost::interprocess::allocation_type command
                         ,size_type min_size
                         ,size_type preferred_size
                         ,size_type &received_size
                         ,void *reuse_ptr
                         ,bool only_preferred_backwards)
{
   typedef std::pair<block_ctrl *, block_ctrl *> prev_block_t;
   block_ctrl *reuse = block_ctrl::get_block_from_addr(reuse_ptr);
   received_size = 0;

   if(this->size(reuse_ptr) > min_size){
      received_size = this->size(reuse_ptr);
      return reuse_ptr;
   }

   if(command & boost::interprocess::expand_fwd){
      if(priv_expand(reuse_ptr, min_size, preferred_size, received_size))
         return reuse_ptr;
   }
   else{
      received_size = this->size(reuse_ptr);
   }
   if(command & boost::interprocess::expand_bwd){
      size_type extra_forward = !received_size ? 0 : received_size + BlockCtrlBytes;
      prev_block_t prev_pair = priv_prev_block_if_free(reuse);
      block_ctrl *prev = prev_pair.second;
      if(!prev){
         return 0;
      }

      size_type needs_backwards =
         ipcdetail::get_rounded_size(preferred_size - extra_forward, Alignment);

      if(!only_preferred_backwards){
         needs_backwards =
            max_value(ipcdetail::get_rounded_size(min_size - extra_forward, Alignment)
                     ,min_value(prev->get_user_bytes(), needs_backwards));
      }

      //Check if previous block has enough size
      if((prev->get_user_bytes()) >=  needs_backwards){
         //Now take all next space. This will succeed
         if(!priv_expand(reuse_ptr, received_size, received_size, received_size)){
            BOOST_ASSERT(0);
         }

         //We need a minimum size to split the previous one
         if((prev->get_user_bytes() - needs_backwards) > 2*BlockCtrlBytes){
            block_ctrl *new_block = reinterpret_cast<block_ctrl *>
               (reinterpret_cast<char*>(reuse) - needs_backwards - BlockCtrlBytes);
            new_block->m_next = 0;
            new_block->m_size =
               BlockCtrlSize + (needs_backwards + extra_forward)/Alignment;
            prev->m_size =
               (prev->get_total_bytes() - needs_backwards)/Alignment - BlockCtrlSize;
            received_size = needs_backwards + extra_forward;
            m_header.m_allocated += needs_backwards + BlockCtrlBytes;
            return new_block->get_addr();
         }
         else{
            //Just merge the whole previous block
            block_ctrl *prev_2_block = prev_pair.first;
            //Update received size and allocation
            received_size = extra_forward + prev->get_user_bytes();
            m_header.m_allocated += prev->get_total_bytes();
            //Now unlink it from previous block
            prev_2_block->m_next = prev->m_next;
            prev->m_size = reuse->m_size + prev->m_size;
            prev->m_next = 0;
            return prev->get_addr();
         }
      }
   }
   return 0;
}

template<class MutexFamily, class VoidPointer>
std::pair<void *, bool> simple_seq_fit_impl<MutexFamily, VoidPointer>::
   priv_allocate(boost::interprocess::allocation_type command
                ,size_type limit_size
                ,size_type preferred_size
                ,size_type &received_size
                ,void *reuse_ptr)
{
   if(command & boost::interprocess::shrink_in_place){
      bool success =
         this->priv_shrink(reuse_ptr, limit_size, preferred_size, received_size);
      return std::pair<void *, bool> ((success ? reuse_ptr : 0), true);
   }
   typedef std::pair<void *, bool> return_type;
   received_size = 0;

   if(limit_size > preferred_size)
      return return_type(0, false);

   //Number of units to request (including block_ctrl header)
   size_type nunits = ipcdetail::get_rounded_size(preferred_size, Alignment)/Alignment + BlockCtrlSize;

   //Get the root and the first memory block
   block_ctrl *prev                 = &m_header.m_root;
   block_ctrl *block                = ipcdetail::to_raw_pointer(prev->m_next);
   block_ctrl *root                 = &m_header.m_root;
   block_ctrl *biggest_block        = 0;
   block_ctrl *prev_biggest_block   = 0;
   size_type biggest_size         = limit_size;

   //Expand in place
   //reuse_ptr, limit_size, preferred_size, received_size
   //
   if(reuse_ptr && (command & (boost::interprocess::expand_fwd | boost::interprocess::expand_bwd))){
      void *ret = priv_expand_both_sides
         (command, limit_size, preferred_size, received_size, reuse_ptr, true);
      if(ret)
         return return_type(ret, true);
   }

   if(command & boost::interprocess::allocate_new){
      received_size = 0;
      while(block != root){
         //Update biggest block pointers
         if(block->m_size > biggest_size){
            prev_biggest_block = prev;
            biggest_size  = block->m_size;
            biggest_block = block;
         }
         void *addr = this->priv_check_and_allocate(nunits, prev, block, received_size);
         if(addr) return return_type(addr, false);
         //Bad luck, let's check next block
         prev  = block;
         block = ipcdetail::to_raw_pointer(block->m_next);
      }

      //Bad luck finding preferred_size, now if we have any biggest_block
      //try with this block
      if(biggest_block){
         received_size = biggest_block->m_size*Alignment - BlockCtrlSize;
         nunits = ipcdetail::get_rounded_size(limit_size, Alignment)/Alignment + BlockCtrlSize;
         void *ret = this->priv_check_and_allocate
                        (nunits, prev_biggest_block, biggest_block, received_size);
         if(ret)
            return return_type(ret, false);
      }
   }
   //Now try to expand both sides with min size
   if(reuse_ptr && (command & (boost::interprocess::expand_fwd | boost::interprocess::expand_bwd))){
      return return_type(priv_expand_both_sides
         (command, limit_size, preferred_size, received_size, reuse_ptr, false), true);
   }
   return return_type(0, false);
}

template<class MutexFamily, class VoidPointer>
inline typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *
   simple_seq_fit_impl<MutexFamily, VoidPointer>::
      priv_next_block_if_free
         (typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *ptr)
{
   //Take the address where the next block should go
   block_ctrl *next_block = reinterpret_cast<block_ctrl*>
      (reinterpret_cast<char*>(ptr) + ptr->m_size*Alignment);

   //Check if the adjacent block is in the managed segment
   size_type distance = (reinterpret_cast<char*>(next_block) - reinterpret_cast<char*>(this))/Alignment;
   if(distance >= (m_header.m_size/Alignment)){
      //"next_block" does not exist so we can't expand "block"
      return 0;
   }

   if(!next_block->m_next)
      return 0;

   return next_block;
}

template<class MutexFamily, class VoidPointer>
inline
   std::pair<typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *
            ,typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *>
   simple_seq_fit_impl<MutexFamily, VoidPointer>::
      priv_prev_block_if_free
         (typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl *ptr)
{
   typedef std::pair<block_ctrl *, block_ctrl *> prev_pair_t;
   //Take the address where the previous block should go
   block_ctrl *root           = &m_header.m_root;
   block_ctrl *prev_2_block   = root;
   block_ctrl *prev_block = ipcdetail::to_raw_pointer(root->m_next);
   while((reinterpret_cast<char*>(prev_block) + prev_block->m_size*Alignment)
            != (reinterpret_cast<char*>(ptr))
         && prev_block != root){
      prev_2_block = prev_block;
      prev_block = ipcdetail::to_raw_pointer(prev_block->m_next);
   }

   if(prev_block == root || !prev_block->m_next)
      return prev_pair_t(0, 0);

   //Check if the previous block is in the managed segment
   size_type distance = (reinterpret_cast<char*>(prev_block) - reinterpret_cast<char*>(this))/Alignment;
   if(distance >= (m_header.m_size/Alignment)){
      //"previous_block" does not exist so we can't expand "block"
      return prev_pair_t(0, 0);
   }
   return prev_pair_t(prev_2_block, prev_block);
}


template<class MutexFamily, class VoidPointer>
inline bool simple_seq_fit_impl<MutexFamily, VoidPointer>::
   priv_expand (void *ptr
               ,size_type min_size
               ,size_type preferred_size
               ,size_type &received_size)
{
   //Obtain the real size of the block
   block_ctrl *block = reinterpret_cast<block_ctrl*>
                        (reinterpret_cast<char*>(ptr) - BlockCtrlBytes);
   size_type old_block_size = block->m_size;

   //All used blocks' next is marked with 0 so check it
   BOOST_ASSERT(block->m_next == 0);

   //Put this to a safe value
   received_size = old_block_size*Alignment - BlockCtrlBytes;

   //Now translate it to Alignment units
   min_size       = ipcdetail::get_rounded_size(min_size, Alignment)/Alignment;
   preferred_size = ipcdetail::get_rounded_size(preferred_size, Alignment)/Alignment;

   //Some parameter checks
   if(min_size > preferred_size)
      return false;

   size_type data_size = old_block_size - BlockCtrlSize;

   if(data_size >= min_size)
      return true;

   block_ctrl *next_block = priv_next_block_if_free(block);
   if(!next_block){
      return false;
   }

   //Is "block" + "next_block" big enough?
   size_type merged_size = old_block_size + next_block->m_size;

   //Now we can expand this block further than before
   received_size = merged_size*Alignment - BlockCtrlBytes;

   if(merged_size < (min_size + BlockCtrlSize)){
      return false;
   }

   //We can fill expand. Merge both blocks,
   block->m_next = next_block->m_next;
   block->m_size = merged_size;

   //Find the previous free block of next_block
   block_ctrl *prev = &m_header.m_root;
   while(ipcdetail::to_raw_pointer(prev->m_next) != next_block){
      prev = ipcdetail::to_raw_pointer(prev->m_next);
   }

   //Now insert merged block in the free list
   //This allows reusing allocation logic in this function
   m_header.m_allocated -= old_block_size*Alignment;
   prev->m_next = block;

   //Now use check and allocate to do the allocation logic
   preferred_size += BlockCtrlSize;
   size_type nunits = preferred_size < merged_size ? preferred_size : merged_size;

   //This must success since nunits is less than merged_size!
   if(!this->priv_check_and_allocate (nunits, prev, block, received_size)){
      //Something very ugly is happening here. This is a bug
      //or there is memory corruption
      BOOST_ASSERT(0);
      return false;
   }
   return true;
}

template<class MutexFamily, class VoidPointer>
inline bool simple_seq_fit_impl<MutexFamily, VoidPointer>::
   priv_shrink (void *ptr
               ,size_type max_size
               ,size_type preferred_size
               ,size_type &received_size)
{
   //Obtain the real size of the block
   block_ctrl *block = reinterpret_cast<block_ctrl*>
                        (reinterpret_cast<char*>(ptr) - BlockCtrlBytes);
   size_type block_size = block->m_size;

   //All used blocks' next is marked with 0 so check it
   BOOST_ASSERT(block->m_next == 0);

   //Put this to a safe value
   received_size = block_size*Alignment - BlockCtrlBytes;

   //Now translate it to Alignment units
   max_size       = max_size/Alignment;
   preferred_size = ipcdetail::get_rounded_size(preferred_size, Alignment)/Alignment;

   //Some parameter checks
   if(max_size < preferred_size)
      return false;

   size_type data_size = block_size - BlockCtrlSize;

   if(data_size < preferred_size)
      return false;

   if(data_size == preferred_size)
      return true;

   //We must be able to create at least a new empty block
   if((data_size - preferred_size) < BlockCtrlSize){
      return false;
   }

   //Now we can just rewrite the size of the old buffer
   block->m_size = preferred_size + BlockCtrlSize;

   //Update new size
   received_size = preferred_size*Alignment;

   //We create the new block
   block = reinterpret_cast<block_ctrl*>
               (reinterpret_cast<char*>(block) + block->m_size*Alignment);

   //Write control data to simulate this new block was previously allocated
   block->m_next = 0;
   block->m_size = data_size - preferred_size;

   //Now deallocate the new block to insert it in the free list
   this->priv_deallocate(reinterpret_cast<char*>(block)+BlockCtrlBytes);
   return true;
}

template<class MutexFamily, class VoidPointer>
inline void* simple_seq_fit_impl<MutexFamily, VoidPointer>::
   priv_allocate_aligned(size_type nbytes, size_type alignment)
{
   //Ensure power of 2
   if ((alignment & (alignment - size_type(1u))) != 0){
      //Alignment is not power of two
      BOOST_ASSERT((alignment & (alignment - size_type(1u))) != 0);
      return 0;
   }

   size_type ignore;
   if(alignment <= Alignment){
      return priv_allocate(boost::interprocess::allocate_new, nbytes, nbytes, ignore).first;
   }

   size_type request =
      nbytes + alignment + MinBlockSize*Alignment - BlockCtrlBytes;
   void *buffer = priv_allocate(boost::interprocess::allocate_new, request, request, ignore).first;
   if(!buffer)
      return 0;
   else if ((((std::size_t)(buffer)) % alignment) == 0)
      return buffer;

   char *aligned_portion = reinterpret_cast<char*>
      (reinterpret_cast<size_type>(static_cast<char*>(buffer) + alignment - 1) & -alignment);

   char *pos = ((aligned_portion - reinterpret_cast<char*>(buffer)) >= (MinBlockSize*Alignment)) ?
      aligned_portion : (aligned_portion + alignment);

   block_ctrl *first = reinterpret_cast<block_ctrl*>
                           (reinterpret_cast<char*>(buffer) - BlockCtrlBytes);

   block_ctrl *second = reinterpret_cast<block_ctrl*>(pos - BlockCtrlBytes);

   size_type old_size = first->m_size;

   first->m_size  = (reinterpret_cast<char*>(second) - reinterpret_cast<char*>(first))/Alignment;
   second->m_size = old_size - first->m_size;

   //Write control data to simulate this new block was previously allocated
   second->m_next = 0;

   //Now deallocate the new block to insert it in the free list
   this->priv_deallocate(reinterpret_cast<char*>(first) + BlockCtrlBytes);
   return reinterpret_cast<char*>(second) + BlockCtrlBytes;
}

template<class MutexFamily, class VoidPointer> inline
void* simple_seq_fit_impl<MutexFamily, VoidPointer>::priv_check_and_allocate
   (size_type nunits
   ,typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl* prev
   ,typename simple_seq_fit_impl<MutexFamily, VoidPointer>::block_ctrl* block
   ,size_type &received_size)
{
   size_type upper_nunits = nunits + BlockCtrlSize;
   bool found = false;

   if (block->m_size > upper_nunits){
      //This block is bigger than needed, split it in
      //two blocks, the first's size will be (block->m_size-units)
      //the second's size (units)
      size_type total_size = block->m_size;
      block->m_size  = nunits;
      block_ctrl *new_block = reinterpret_cast<block_ctrl*>
                     (reinterpret_cast<char*>(block) + Alignment*nunits);
      new_block->m_size  = total_size - nunits;
      new_block->m_next  = block->m_next;
      prev->m_next = new_block;
      found = true;
   }
   else if (block->m_size >= nunits){
      //This block has exactly the right size with an extra
      //unusable extra bytes.
      prev->m_next = block->m_next;
      found = true;
   }

   if(found){
      //We need block_ctrl for deallocation stuff, so
      //return memory user can overwrite
      m_header.m_allocated += block->m_size*Alignment;
      received_size =  block->m_size*Alignment - BlockCtrlBytes;
      //Mark the block as allocated
      block->m_next = 0;
      //Check alignment
      BOOST_ASSERT(((reinterpret_cast<char*>(block) - reinterpret_cast<char*>(this))
               % Alignment) == 0 );
      return reinterpret_cast<char*>(block) + BlockCtrlBytes;
   }
   return 0;
}

template<class MutexFamily, class VoidPointer>
void simple_seq_fit_impl<MutexFamily, VoidPointer>::deallocate(void* addr)
{
   if(!addr)   return;
   //-----------------------
   boost::interprocess::scoped_lock<interprocess_mutex> guard(m_header);
   //-----------------------
   return this->priv_deallocate(addr);
}

template<class MutexFamily, class VoidPointer>
void simple_seq_fit_impl<MutexFamily, VoidPointer>::priv_deallocate(void* addr)
{
   if(!addr)   return;

   //Let's get free block list. List is always sorted
   //by memory address to allow block merging.
   //Pointer next always points to the first
   //(lower address) block
   block_ctrl_ptr prev  = &m_header.m_root;
   block_ctrl_ptr pos   = m_header.m_root.m_next;
   block_ctrl_ptr block = reinterpret_cast<block_ctrl*>
                           (reinterpret_cast<char*>(addr) - BlockCtrlBytes);

   //All used blocks' next is marked with 0 so check it
   BOOST_ASSERT(block->m_next == 0);

   //Check if alignment and block size are right
   BOOST_ASSERT((reinterpret_cast<char*>(addr) - reinterpret_cast<char*>(this))
            % Alignment == 0 );

   size_type total_size = Alignment*block->m_size;
   BOOST_ASSERT(m_header.m_allocated >= total_size);

   //Update used memory count
   m_header.m_allocated -= total_size;

   //Let's find the previous and the next block of the block to deallocate
   //This ordering comparison must be done with original pointers
   //types since their mapping to raw pointers can be different
   //in each process
   while((ipcdetail::to_raw_pointer(pos) != &m_header.m_root) && (block > pos)){
      prev = pos;
      pos = pos->m_next;
   }

   //Try to combine with upper block
   if ((reinterpret_cast<char*>(ipcdetail::to_raw_pointer(block))
            + Alignment*block->m_size) ==
        reinterpret_cast<char*>(ipcdetail::to_raw_pointer(pos))){

      block->m_size += pos->m_size;
      block->m_next  = pos->m_next;
   }
   else{
      block->m_next = pos;
   }

   //Try to combine with lower block
   if ((reinterpret_cast<char*>(ipcdetail::to_raw_pointer(prev))
            + Alignment*prev->m_size) ==
        reinterpret_cast<char*>(ipcdetail::to_raw_pointer(block))){
      prev->m_size += block->m_size;
      prev->m_next  = block->m_next;
   }
   else{
      prev->m_next = block;
   }
}

}  //namespace ipcdetail {

}  //namespace interprocess {

}  //namespace boost {

#include <boost/interprocess/detail/config_end.hpp>

#endif   //#ifndef BOOST_INTERPROCESS_MEM_ALGO_DETAIL_SIMPLE_SEQ_FIT_IMPL_HPP