summaryrefslogtreecommitdiff
path: root/boost/heap/binomial_heap.hpp
blob: a6f75c3aee3d79285a758f4aed6c9023f2312b9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
// boost heap: binomial heap
//
// Copyright (C) 2010 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_HEAP_BINOMIAL_HEAP_HPP
#define BOOST_HEAP_BINOMIAL_HEAP_HPP

#include <algorithm>
#include <utility>
#include <vector>

#include <boost/assert.hpp>

#include <boost/heap/detail/heap_comparison.hpp>
#include <boost/heap/detail/heap_node.hpp>
#include <boost/heap/detail/stable_heap.hpp>
#include <boost/heap/detail/tree_iterator.hpp>

#ifdef BOOST_HAS_PRAGMA_ONCE
#pragma once
#endif

#ifndef BOOST_DOXYGEN_INVOKED
#ifdef BOOST_HEAP_SANITYCHECKS
#define BOOST_HEAP_ASSERT BOOST_ASSERT
#else
#define BOOST_HEAP_ASSERT(expression)
#endif
#endif

namespace boost  {
namespace heap   {
namespace detail {

typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
                              boost::parameter::optional<tag::compare>,
                              boost::parameter::optional<tag::stable>,
                              boost::parameter::optional<tag::constant_time_size>,
                              boost::parameter::optional<tag::stability_counter_type>
                             > binomial_heap_signature;

template <typename T, typename Parspec>
struct make_binomial_heap_base
{
    static const bool constant_time_size = parameter::binding<Parspec,
                                                              tag::constant_time_size,
                                                              boost::mpl::true_
                                                             >::type::value;
    typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::type base_type;
    typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::allocator_argument allocator_argument;
    typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::compare_argument compare_argument;

    typedef parent_pointing_heap_node<typename base_type::internal_type> node_type;

    typedef typename allocator_argument::template rebind<node_type>::other allocator_type;

    struct type:
        base_type,
        allocator_type
    {
        type(compare_argument const & arg):
            base_type(arg)
        {}

#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
        type(type const & rhs):
            base_type(rhs), allocator_type(rhs)
        {}

        type(type && rhs):
            base_type(std::move(static_cast<base_type&>(rhs))),
            allocator_type(std::move(static_cast<allocator_type&>(rhs)))
        {}

        type & operator=(type && rhs)
        {
            base_type::operator=(std::move(static_cast<base_type&>(rhs)));
            allocator_type::operator=(std::move(static_cast<allocator_type&>(rhs)));
            return *this;
        }

        type & operator=(type const & rhs)
        {
            base_type::operator=(static_cast<base_type const &>(rhs));
            allocator_type::operator=(static_cast<allocator_type const &>(rhs));
            return *this;
        }
#endif
    };
};

}

/**
 * \class binomial_heap
 * \brief binomial heap
 *
 * The template parameter T is the type to be managed by the container.
 * The user can specify additional options and if no options are provided default options are used.
 *
 * The container supports the following options:
 * - \c boost::heap::stable<>, defaults to \c stable<false>
 * - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
 * - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
 * - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true>
 * - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
 *
 */
#ifdef BOOST_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template <typename T,
          class A0 = boost::parameter::void_,
          class A1 = boost::parameter::void_,
          class A2 = boost::parameter::void_,
          class A3 = boost::parameter::void_
         >
#endif
class binomial_heap:
    private detail::make_binomial_heap_base<T,
                                            typename detail::binomial_heap_signature::bind<A0, A1, A2, A3>::type
                                           >::type
{
    typedef typename detail::binomial_heap_signature::bind<A0, A1, A2, A3>::type bound_args;
    typedef detail::make_binomial_heap_base<T, bound_args> base_maker;
    typedef typename base_maker::type super_t;

    typedef typename super_t::internal_type internal_type;
    typedef typename super_t::size_holder_type size_holder;
    typedef typename super_t::stability_counter_type stability_counter_type;
    typedef typename base_maker::allocator_argument allocator_argument;

    template <typename Heap1, typename Heap2>
    friend struct heap_merge_emulate;

public:
    static const bool constant_time_size = super_t::constant_time_size;
    static const bool has_ordered_iterators = true;
    static const bool is_mergable = true;
    static const bool is_stable = detail::extract_stable<bound_args>::value;
    static const bool has_reserve = false;

private:
#ifndef BOOST_DOXYGEN_INVOKED
    struct implementation_defined:
        detail::extract_allocator_types<typename base_maker::allocator_argument>
    {
        typedef T value_type;
        typedef typename detail::extract_allocator_types<typename base_maker::allocator_argument>::size_type size_type;
        typedef typename detail::extract_allocator_types<typename base_maker::allocator_argument>::reference reference;

        typedef typename base_maker::compare_argument value_compare;
        typedef typename base_maker::allocator_type allocator_type;
        typedef typename base_maker::node_type node;

        typedef typename allocator_type::pointer node_pointer;
        typedef typename allocator_type::const_pointer const_node_pointer;

        typedef detail::node_handle<node_pointer, super_t, reference> handle_type;

        typedef typename base_maker::node_type node_type;

        typedef boost::intrusive::list<detail::heap_node_base<false>,
                                       boost::intrusive::constant_time_size<true>
                                       > node_list_type;

        typedef typename node_list_type::iterator node_list_iterator;
        typedef typename node_list_type::const_iterator node_list_const_iterator;
        typedef detail::value_extractor<value_type, internal_type, super_t> value_extractor;

        typedef detail::recursive_tree_iterator<node_type,
                                        node_list_const_iterator,
                                        const value_type,
                                        value_extractor,
                                        detail::list_iterator_converter<node_type, node_list_type>
                                        > iterator;
        typedef iterator const_iterator;

        typedef detail::tree_iterator<node_type,
                                     const value_type,
                                     allocator_type,
                                     value_extractor,
                                     detail::list_iterator_converter<node_type, node_list_type>,
                                     true,
                                     true,
                                     value_compare
                                    > ordered_iterator;
    };
#endif

public:
    typedef T value_type;

    typedef typename implementation_defined::size_type size_type;
    typedef typename implementation_defined::difference_type difference_type;
    typedef typename implementation_defined::value_compare value_compare;
    typedef typename implementation_defined::allocator_type allocator_type;
    typedef typename implementation_defined::reference reference;
    typedef typename implementation_defined::const_reference const_reference;
    typedef typename implementation_defined::pointer pointer;
    typedef typename implementation_defined::const_pointer const_pointer;
    /// \copydoc boost::heap::priority_queue::iterator
    typedef typename implementation_defined::iterator iterator;
    typedef typename implementation_defined::const_iterator const_iterator;
    typedef typename implementation_defined::ordered_iterator ordered_iterator;

    typedef typename implementation_defined::handle_type handle_type;

private:
    typedef typename implementation_defined::node_type node_type;
    typedef typename implementation_defined::node_list_type node_list_type;
    typedef typename implementation_defined::node_pointer node_pointer;
    typedef typename implementation_defined::const_node_pointer const_node_pointer;
    typedef typename implementation_defined::node_list_iterator node_list_iterator;
    typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator;

    typedef typename super_t::internal_compare internal_compare;

public:
    /// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &)
    explicit binomial_heap(value_compare const & cmp = value_compare()):
        super_t(cmp), top_element(0)
    {}

    /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &)
    binomial_heap(binomial_heap const & rhs):
        super_t(rhs), top_element(0)
    {
        if (rhs.empty())
            return;

        clone_forest(rhs);
        size_holder::set_size(rhs.get_size());
    }

    /// \copydoc boost::heap::priority_queue::operator=(priority_queue const &)
    binomial_heap & operator=(binomial_heap const & rhs)
    {
        clear();
        size_holder::set_size(rhs.get_size());
        static_cast<super_t&>(*this) = rhs;

        if (rhs.empty())
            top_element = NULL;
        else
            clone_forest(rhs);
        return *this;
    }

#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
    /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&)
    binomial_heap(binomial_heap && rhs):
        super_t(std::move(rhs)), top_element(rhs.top_element)
    {
        trees.splice(trees.begin(), rhs.trees);
        rhs.top_element = NULL;
    }

    /// \copydoc boost::heap::priority_queue::operator=(priority_queue &&)
    binomial_heap & operator=(binomial_heap && rhs)
    {
        clear();
        super_t::operator=(std::move(rhs));
        trees.splice(trees.begin(), rhs.trees);
        top_element = rhs.top_element;
        rhs.top_element = NULL;
        return *this;
    }
#endif

    ~binomial_heap(void)
    {
        clear();
    }

    /// \copydoc boost::heap::priority_queue::empty
    bool empty(void) const
    {
        return top_element == NULL;
    }

    /**
     * \b Effects: Returns the number of elements contained in the priority queue.
     *
     * \b Complexity: Constant, if configured with constant_time_size<true>, otherwise linear.
     *
     * */
    size_type size(void) const
    {
        if (constant_time_size)
            return size_holder::get_size();

        if (empty())
            return 0;
        else
            return detail::count_list_nodes<node_type, node_list_type>(trees);
    }

    /// \copydoc boost::heap::priority_queue::max_size
    size_type max_size(void) const
    {
        return allocator_type::max_size();
    }

    /// \copydoc boost::heap::priority_queue::clear
    void clear(void)
    {
        typedef detail::node_disposer<node_type, typename node_list_type::value_type, allocator_type> disposer;
        trees.clear_and_dispose(disposer(*this));

        size_holder::set_size(0);
        top_element = NULL;
    }

    /// \copydoc boost::heap::priority_queue::get_allocator
    allocator_type get_allocator(void) const
    {
        return *this;
    }

    /// \copydoc boost::heap::priority_queue::swap
    void swap(binomial_heap & rhs)
    {
        super_t::swap(rhs);
        std::swap(top_element, rhs.top_element);
        trees.swap(rhs.trees);
    }

    /// \copydoc boost::heap::priority_queue::top
    const_reference top(void) const
    {
        BOOST_ASSERT(!empty());

        return super_t::get_value(top_element->value);
    }

    /**
     * \b Effects: Adds a new element to the priority queue. Returns handle to element
     *
     * \b Complexity: Logarithmic.
     *
     * */
    handle_type push(value_type const & v)
    {
        node_pointer n = allocator_type::allocate(1);
        new(n) node_type(super_t::make_node(v));

        insert_node(trees.begin(), n);

        if (!top_element || super_t::operator()(top_element->value, n->value))
            top_element = n;

        size_holder::increment();
        sanity_check();
        return handle_type(n);
    }

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
    /**
     * \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns handle to element.
     *
     * \b Complexity: Logarithmic.
     *
     * */
    template <class... Args>
    handle_type emplace(Args&&... args)
    {
        node_pointer n = allocator_type::allocate(1);
        new(n) node_type(super_t::make_node(std::forward<Args>(args)...));

        insert_node(trees.begin(), n);

        if (!top_element || super_t::operator()(top_element->value, n->value))
            top_element = n;

        size_holder::increment();
        sanity_check();
        return handle_type(n);
    }
#endif

    /**
     * \b Effects: Removes the top element from the priority queue.
     *
     * \b Complexity: Logarithmic.
     *
     * */
    void pop(void)
    {
        BOOST_ASSERT(!empty());

        node_pointer element = top_element;

        trees.erase(node_list_type::s_iterator_to(*element));
        size_holder::decrement();

        if (element->child_count()) {
            size_type sz = (1 << element->child_count()) - 1;

            binomial_heap children(value_comp(), element->children, sz);
            if (trees.empty()) {
                stability_counter_type stability_count = super_t::get_stability_count();
                size_t size = constant_time_size ? size_holder::get_size()
                                                 : 0;
                swap(children);
                super_t::set_stability_count(stability_count);

                if (constant_time_size)
                    size_holder::set_size( size );
            } else
                merge_and_clear_nodes(children);

        }

        if (trees.empty())
            top_element = NULL;
        else
            update_top_element();

        element->~node_type();
        allocator_type::deallocate(element, 1);
        sanity_check();
    }

    /**
     * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
     *
     * \b Complexity: Logarithmic.
     *
     * */
    void update (handle_type handle, const_reference v)
    {
        if (super_t::operator()(super_t::get_value(handle.node_->value), v))
            increase(handle, v);
        else
            decrease(handle, v);
    }

    /**
     * \b Effects: Updates the heap after the element handled by \c handle has been changed.
     *
     * \b Complexity: Logarithmic.
     *
     * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
     * */
    void update (handle_type handle)
    {
        node_pointer this_node = handle.node_;

        if (this_node->parent) {
            if (super_t::operator()(super_t::get_value(this_node->parent->value), super_t::get_value(this_node->value)))
                increase(handle);
            else
                decrease(handle);
        }
        else
            decrease(handle);
    }

    /**
     * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
     *
     * \b Complexity: Logarithmic.
     *
     * \b Note: The new value is expected to be greater than the current one
     * */
    void increase (handle_type handle, const_reference v)
    {
        handle.node_->value = super_t::make_node(v);
        increase(handle);
    }

    /**
     * \b Effects: Updates the heap after the element handled by \c handle has been changed.
     *
     * \b Complexity: Logarithmic.
     *
     * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
     * */
    void increase (handle_type handle)
    {
        node_pointer n = handle.node_;
        siftup(n, *this);

        update_top_element();
        sanity_check();
    }

    /**
     * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
     *
     * \b Complexity: Logarithmic.
     *
     * \b Note: The new value is expected to be less than the current one
     * */
    void decrease (handle_type handle, const_reference v)
    {
        handle.node_->value = super_t::make_node(v);
        decrease(handle);
    }

    /**
     * \b Effects: Updates the heap after the element handled by \c handle has been changed.
     *
     * \b Complexity: Logarithmic.
     *
     * \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
     * */
    void decrease (handle_type handle)
    {
        node_pointer n = handle.node_;

        siftdown(n);

        update_top_element();
    }

    /**
     * \b Effects: Merge with priority queue rhs.
     *
     * \b Complexity: Logarithmic.
     *
     * */
    void merge(binomial_heap & rhs)
    {
        if (rhs.empty())
            return;

        if (empty()) {
            swap(rhs);
            return;
        }

        size_type new_size = size_holder::get_size() + rhs.get_size();
        merge_and_clear_nodes(rhs);

        size_holder::set_size(new_size);
        rhs.set_size(0);
        rhs.top_element = NULL;

        super_t::set_stability_count((std::max)(super_t::get_stability_count(),
                                     rhs.get_stability_count()));
        rhs.set_stability_count(0);
    }

public:
    /// \copydoc boost::heap::priority_queue::begin
    iterator begin(void) const
    {
        return iterator(trees.begin());
    }

    /// \copydoc boost::heap::priority_queue::end
    iterator end(void) const
    {
        return iterator(trees.end());
    }

    /// \copydoc boost::heap::fibonacci_heap::ordered_begin
    ordered_iterator ordered_begin(void) const
    {
        return ordered_iterator(trees.begin(), trees.end(), top_element, super_t::value_comp());
    }

    /// \copydoc boost::heap::fibonacci_heap::ordered_end
    ordered_iterator ordered_end(void) const
    {
        return ordered_iterator(NULL, super_t::value_comp());
    }

    /**
     * \b Effects: Removes the element handled by \c handle from the priority_queue.
     *
     * \b Complexity: Logarithmic.
     * */
    void erase(handle_type handle)
    {
        node_pointer n = handle.node_;
        siftup(n, force_inf());
        top_element = n;
        pop();
    }

    /// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator
    static handle_type s_handle_from_iterator(iterator const & it)
    {
        node_type * ptr = const_cast<node_type *>(it.get_node());
        return handle_type(ptr);
    }

    /// \copydoc boost::heap::priority_queue::value_comp
    value_compare const & value_comp(void) const
    {
        return super_t::value_comp();
    }

    /// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const
    template <typename HeapType>
    bool operator<(HeapType const & rhs) const
    {
        return detail::heap_compare(*this, rhs);
    }

    /// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const
    template <typename HeapType>
    bool operator>(HeapType const & rhs) const
    {
        return detail::heap_compare(rhs, *this);
    }

    /// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const
    template <typename HeapType>
    bool operator>=(HeapType const & rhs) const
    {
        return !operator<(rhs);
    }

    /// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const
    template <typename HeapType>
    bool operator<=(HeapType const & rhs) const
    {
        return !operator>(rhs);
    }

    /// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const
    template <typename HeapType>
    bool operator==(HeapType const & rhs) const
    {
        return detail::heap_equality(*this, rhs);
    }

    /// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const
    template <typename HeapType>
    bool operator!=(HeapType const & rhs) const
    {
        return !(*this == rhs);
    }

private:
#if !defined(BOOST_DOXYGEN_INVOKED)
    void merge_and_clear_nodes(binomial_heap & rhs)
    {
        BOOST_HEAP_ASSERT (!empty());
        BOOST_HEAP_ASSERT (!rhs.empty());

        node_list_iterator this_iterator = trees.begin();
        node_pointer carry_node = NULL;

        while (!rhs.trees.empty()) {
            node_pointer rhs_node = static_cast<node_pointer>(&rhs.trees.front());
            size_type rhs_degree = rhs_node->child_count();

            if (super_t::operator()(top_element->value, rhs_node->value))
                top_element = rhs_node;

        try_again:
            node_pointer this_node = static_cast<node_pointer>(&*this_iterator);
            size_type this_degree = this_node->child_count();
            sorted_by_degree();
            rhs.sorted_by_degree();

            if (this_degree == rhs_degree) {
                if (carry_node) {
                    if (carry_node->child_count() < this_degree) {
                        trees.insert(this_iterator, *carry_node);
                        carry_node = NULL;
                    } else {
                        rhs.trees.pop_front();
                        carry_node = merge_trees(carry_node, rhs_node);
                    }
                    ++this_iterator;
                } else {
                    this_iterator = trees.erase(this_iterator);
                    rhs.trees.pop_front();
                    carry_node = merge_trees(this_node, rhs_node);
                }

                if (this_iterator == trees.end())
                    break;
                else
                    continue;
            }

            if (this_degree < rhs_degree) {
                if (carry_node) {
                    if (carry_node->child_count() < this_degree) {
                        trees.insert(this_iterator, *carry_node);
                        carry_node = NULL;
                        ++this_iterator;
                    } else if (carry_node->child_count() == rhs_degree) {
                        rhs.trees.pop_front();
                        carry_node = merge_trees(carry_node, rhs_node);
                        continue;
                    } else {
                        this_iterator = trees.erase(this_iterator);
                        carry_node = merge_trees(this_node, carry_node);
                    }
                    goto try_again;
                } else {
                    ++this_iterator;
                    if (this_iterator == trees.end())
                        break;
                    goto try_again;
                }

                if (this_iterator == trees.end())
                    break;
                else
                    continue;
            }

            if (this_degree > rhs_degree) {
                rhs.trees.pop_front();
                if (carry_node) {
                    if (carry_node->child_count() < rhs_degree) {
                        trees.insert(this_iterator, *carry_node);
                        trees.insert(this_iterator, *rhs_node);
                        carry_node = NULL;
                    } else
                        carry_node = merge_trees(rhs_node, carry_node);
                } else
                    trees.insert(this_iterator, *rhs_node);
            }
        }

        if (!rhs.trees.empty()) {
            if (carry_node) {
                node_list_iterator rhs_it = rhs.trees.begin();
                while (static_cast<node_pointer>(&*rhs_it)->child_count() < carry_node->child_count())
                    ++rhs_it;
                rhs.insert_node(rhs_it, carry_node);
                rhs.increment();
                sorted_by_degree();
                rhs.sorted_by_degree();
                if (trees.empty()) {
                    trees.splice(trees.end(), rhs.trees, rhs.trees.begin(), rhs.trees.end());
                    update_top_element();
                } else
                    merge_and_clear_nodes(rhs);
            } else
                trees.splice(trees.end(), rhs.trees, rhs.trees.begin(), rhs.trees.end());
            return;
        }

        if (carry_node)
            insert_node(this_iterator, carry_node);
    }

    void clone_forest(binomial_heap const & rhs)
    {
        BOOST_HEAP_ASSERT(trees.empty());
        typedef typename node_type::template node_cloner<allocator_type> node_cloner;
        trees.clone_from(rhs.trees, node_cloner(*this, NULL), detail::nop_disposer());

        update_top_element();
    }

    struct force_inf
    {
        template <typename X>
        bool operator()(X const &, X const &) const
        {
            return false;
        }
    };

    template <typename Compare>
    void siftup(node_pointer n, Compare const & cmp)
    {
        while (n->parent) {
            node_pointer parent = n->parent;
            node_pointer grand_parent = parent->parent;
            if (cmp(n->value, parent->value))
                return;

            n->remove_from_parent();

            n->swap_children(parent);
            n->update_children();
            parent->update_children();

            if (grand_parent) {
                parent->remove_from_parent();
                grand_parent->add_child(n);
            } else {
                node_list_iterator it = trees.erase(node_list_type::s_iterator_to(*parent));
                trees.insert(it, *n);
            }
            n->add_child(parent);
        }
    }

    void siftdown(node_pointer n)
    {
        while (n->child_count()) {
            node_pointer max_child = detail::find_max_child<node_list_type, node_type, internal_compare>(n->children, super_t::get_internal_cmp());

            if (super_t::operator()(max_child->value, n->value))
                return;

            max_child->remove_from_parent();

            n->swap_children(max_child);
            n->update_children();
            max_child->update_children();

            node_pointer parent = n->parent;
            if (parent) {
                n->remove_from_parent();
                max_child->add_child(n);
                parent->add_child(max_child);
            } else {
                node_list_iterator position = trees.erase(node_list_type::s_iterator_to(*n));
                max_child->add_child(n);
                trees.insert(position, *max_child);
            }
        }
    }

    void insert_node(node_list_iterator it, node_pointer n)
    {
        if (it != trees.end())
            BOOST_HEAP_ASSERT(static_cast<node_pointer>(&*it)->child_count() >= n->child_count());

        while(true) {
            BOOST_HEAP_ASSERT(!n->is_linked());
            if (it == trees.end())
                break;

            node_pointer this_node = static_cast<node_pointer>(&*it);
            size_type this_degree = this_node->child_count();
            size_type n_degree = n->child_count();
            if (this_degree == n_degree) {
                BOOST_HEAP_ASSERT(it->is_linked());
                it = trees.erase(it);

                n = merge_trees(n, this_node);
            } else
                break;
        }
        trees.insert(it, *n);
    }

    // private constructor, just used in pop()
    explicit binomial_heap(value_compare const & cmp, node_list_type & child_list, size_type size):
        super_t(cmp)
    {
        size_holder::set_size(size);
        if (size)
            top_element = static_cast<node_pointer>(&*child_list.begin()); // not correct, but we will reset it later
        else
            top_element = NULL;

        for (node_list_iterator it = child_list.begin(); it != child_list.end(); ++it) {
            node_pointer n = static_cast<node_pointer>(&*it);
            n->parent = NULL;
        }

        trees.splice(trees.end(), child_list, child_list.begin(), child_list.end());

        trees.sort(detail::cmp_by_degree<node_type>());
    }

    node_pointer merge_trees (node_pointer node1, node_pointer node2)
    {
        BOOST_HEAP_ASSERT(node1->child_count() == node2->child_count());

        if (super_t::operator()(node1->value, node2->value))
            std::swap(node1, node2);

        if (node2->parent)
            node2->remove_from_parent();

        node1->add_child(node2);
        return node1;
    }

    void update_top_element(void)
    {
        top_element = detail::find_max_child<node_list_type, node_type, internal_compare>(trees, super_t::get_internal_cmp());
    }

    void sorted_by_degree(void) const
    {
#ifdef BOOST_HEAP_SANITYCHECKS
        int degree = -1;

        for (node_list_const_iterator it = trees.begin(); it != trees.end(); ++it) {
            const_node_pointer n = static_cast<const_node_pointer>(&*it);
            BOOST_HEAP_ASSERT(int(n->child_count()) > degree);
            degree = n->child_count();

            BOOST_HEAP_ASSERT((detail::is_heap<node_type, super_t>(n, *this)));

            size_type child_nodes = detail::count_nodes<node_type>(n);
            BOOST_HEAP_ASSERT(child_nodes == size_type(1 << static_cast<const_node_pointer>(&*it)->child_count()));
        }
#endif
    }

    void sanity_check(void)
    {
#ifdef BOOST_HEAP_SANITYCHECKS
        sorted_by_degree();

        if (!empty()) {
            node_pointer found_top = detail::find_max_child<node_list_type, node_type, internal_compare>(trees, super_t::get_internal_cmp());
            BOOST_HEAP_ASSERT(top_element == found_top);
        }

        if (constant_time_size) {
            size_t counted = detail::count_list_nodes<node_type, node_list_type>(trees);
            size_t stored = size_holder::get_size();
            BOOST_HEAP_ASSERT(counted == stored);
        }
#endif
    }

    node_pointer top_element;
    node_list_type trees;
#endif // BOOST_DOXYGEN_INVOKED
};


} /* namespace heap */
} /* namespace boost */

#undef BOOST_HEAP_ASSERT

#endif /* BOOST_HEAP_D_ARY_HEAP_HPP */