summaryrefslogtreecommitdiff
path: root/boost/graph/subgraph.hpp
blob: b98c3902671c0d27cf9184da61b755c966eca6b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
//=======================================================================
// Copyright 2001 University of Notre Dame.
// Authors: Jeremy G. Siek and Lie-Quan Lee
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================

#ifndef BOOST_SUBGRAPH_HPP
#define BOOST_SUBGRAPH_HPP

// UNDER CONSTRUCTION

#include <boost/config.hpp>
#include <list>
#include <vector>
#include <map>
#include <boost/assert.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/graph_mutability_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/iterator/indirect_iterator.hpp>

#include <boost/static_assert.hpp>
#include <boost/assert.hpp>
#include <boost/type_traits/is_same.hpp>

namespace boost {

struct subgraph_tag { };

/** @name Property Lookup
 * The local_property and global_property functions are used to create
 * structures that determine the lookup strategy for properties in subgraphs.
 * Note that the nested kind member is used to help interoperate with actual
 * Property types.
 */
//@{
template <typename T>
struct local_property
{
    typedef T kind;
    local_property(T x) : value(x) { }
    T value;
};

template <typename T>
inline local_property<T> local(T x)
{ return local_property<T>(x); }

template <typename T>
struct global_property
{
    typedef T kind;
    global_property(T x) : value(x) { }
    T value;
};

template <typename T>
inline global_property<T> global(T x)
{ return global_property<T>(x); }
//@}

// Invariants of an induced subgraph:
//   - If vertex u is in subgraph g, then u must be in g.parent().
//   - If edge e is in subgraph g, then e must be in g.parent().
//   - If edge e=(u,v) is in the root graph, then edge e
//     is also in any subgraph that contains both vertex u and v.

// The Graph template parameter must have a vertex_index and edge_index
// internal property. It is assumed that the vertex indices are assigned
// automatically by the graph during a call to add_vertex(). It is not
// assumed that the edge vertices are assigned automatically, they are
// explicitly assigned here.

template <typename Graph>
class subgraph {
    typedef graph_traits<Graph> Traits;
    typedef std::list<subgraph<Graph>*> ChildrenList;
public:
    // Graph requirements
    typedef typename Traits::vertex_descriptor         vertex_descriptor;
    typedef typename Traits::edge_descriptor           edge_descriptor;
    typedef typename Traits::directed_category         directed_category;
    typedef typename Traits::edge_parallel_category    edge_parallel_category;
    typedef typename Traits::traversal_category        traversal_category;

    // IncidenceGraph requirements
    typedef typename Traits::out_edge_iterator         out_edge_iterator;
    typedef typename Traits::degree_size_type          degree_size_type;

    // AdjacencyGraph requirements
    typedef typename Traits::adjacency_iterator        adjacency_iterator;

    // VertexListGraph requirements
    typedef typename Traits::vertex_iterator           vertex_iterator;
    typedef typename Traits::vertices_size_type        vertices_size_type;

    // EdgeListGraph requirements
    typedef typename Traits::edge_iterator             edge_iterator;
    typedef typename Traits::edges_size_type           edges_size_type;

    typedef typename Traits::in_edge_iterator          in_edge_iterator;

    typedef typename Graph::edge_property_type         edge_property_type;
    typedef typename Graph::vertex_property_type       vertex_property_type;
    typedef typename Graph::vertex_bundled             vertex_bundled;
    typedef typename Graph::edge_bundled               edge_bundled;
    typedef subgraph_tag                               graph_tag;
    typedef Graph                                      graph_type;
    typedef typename Graph::graph_property_type        graph_property_type;

    // Create the main graph, the root of the subgraph tree
    subgraph()
        : m_parent(0), m_edge_counter(0)
    { }

    subgraph(const graph_property_type& p)
        : m_graph(p), m_parent(0), m_edge_counter(0)
    { }

    subgraph(vertices_size_type n, const graph_property_type& p = graph_property_type())
        : m_graph(n, p), m_parent(0), m_edge_counter(0), m_global_vertex(n)
    {
        typename Graph::vertex_iterator v, v_end;
        vertices_size_type i = 0;
        for(boost::tie(v, v_end) = vertices(m_graph); v != v_end; ++v)
            m_global_vertex[i++] = *v;
    }

    // copy constructor
    subgraph(const subgraph& x)
        : m_graph(x.m_graph), m_parent(x.m_parent), m_edge_counter(x.m_edge_counter)
        , m_global_vertex(x.m_global_vertex), m_global_edge(x.m_global_edge)
    {
        // Do a deep copy (recursive).
        for(typename ChildrenList::const_iterator i = x.m_children.begin();
            i != x.m_children.end(); ++i)
        {
            m_children.push_back(new subgraph<Graph>( **i ));
        }
    }


    ~subgraph() {
      for(typename ChildrenList::iterator i = m_children.begin();
          i != m_children.end(); ++i)
        {
            delete *i;
        }
    }

    // Return a null vertex descriptor for the graph.
    static vertex_descriptor null_vertex()
    { return Traits::null_vertex(); }


    // Create a subgraph
    subgraph<Graph>& create_subgraph() {
        m_children.push_back(new subgraph<Graph>());
        m_children.back()->m_parent = this;
        return *m_children.back();
    }

    // Create a subgraph with the specified vertex set.
    template <typename VertexIterator>
    subgraph<Graph>& create_subgraph(VertexIterator first, VertexIterator last) {
        m_children.push_back(new subgraph<Graph>());
        m_children.back()->m_parent = this;
        for(; first != last; ++first) {
            add_vertex(*first, *m_children.back());
        }
        return *m_children.back();
    }

    // local <-> global descriptor conversion functions
    vertex_descriptor local_to_global(vertex_descriptor u_local) const
    { return is_root() ? u_local : m_global_vertex[u_local]; }

    vertex_descriptor global_to_local(vertex_descriptor u_global) const {
        vertex_descriptor u_local; bool in_subgraph;
        if (is_root()) return u_global;
        boost::tie(u_local, in_subgraph) = this->find_vertex(u_global);
        BOOST_ASSERT(in_subgraph == true);
        return u_local;
    }

    edge_descriptor local_to_global(edge_descriptor e_local) const
    { return is_root() ? e_local : m_global_edge[get(get(edge_index, m_graph), e_local)]; }

    edge_descriptor global_to_local(edge_descriptor e_global) const
    { return is_root() ? e_global : (*m_local_edge.find(get(get(edge_index, root().m_graph), e_global))).second; }

    // Is vertex u (of the root graph) contained in this subgraph?
    // If so, return the matching local vertex.
    std::pair<vertex_descriptor, bool>
    find_vertex(vertex_descriptor u_global) const {
        if (is_root()) return std::make_pair(u_global, true);
        typename LocalVertexMap::const_iterator i = m_local_vertex.find(u_global);
        bool valid = i != m_local_vertex.end();
        return std::make_pair((valid ? (*i).second : null_vertex()), valid);
    }

    // Is edge e (of the root graph) contained in this subgraph?
    // If so, return the matching local edge.
    std::pair<edge_descriptor, bool>
    find_edge(edge_descriptor e_global) const {
        if (is_root()) return std::make_pair(e_global, true);
        typename LocalEdgeMap::const_iterator i =
          m_local_edge.find(get(get(edge_index, root().m_graph), e_global));
        bool valid = i != m_local_edge.end();
        return std::make_pair((valid ? (*i).second : edge_descriptor()), valid);
    }

    // Return the parent graph.
    subgraph& parent() { return *m_parent; }
    const subgraph& parent() const { return *m_parent; }

    // Return true if this is the root subgraph
    bool is_root() const { return m_parent == 0; }

    // Return the root graph of the subgraph tree.
    subgraph& root()
    { return is_root() ? *this : m_parent->root(); }

    const subgraph& root() const
    { return is_root() ? *this : m_parent->root(); }

    // Return the children subgraphs of this graph/subgraph.
    // Use a list of pointers because the VC++ std::list doesn't like
    // storing incomplete type.
    typedef indirect_iterator<
        typename ChildrenList::const_iterator
      , subgraph<Graph>
      , std::bidirectional_iterator_tag
    >
    children_iterator;

    typedef indirect_iterator<
        typename ChildrenList::const_iterator
      , subgraph<Graph> const
      , std::bidirectional_iterator_tag
    >
    const_children_iterator;

    std::pair<const_children_iterator, const_children_iterator> children() const {
      return std::make_pair(const_children_iterator(m_children.begin()),
                            const_children_iterator(m_children.end()));
    }

    std::pair<children_iterator, children_iterator> children() {
      return std::make_pair(children_iterator(m_children.begin()),
                            children_iterator(m_children.end()));
    }

    std::size_t num_children() const { return m_children.size(); }

#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
    // Defualt property access delegates the lookup to global properties.
    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type&
    operator[](Descriptor x)
    { return is_root() ? m_graph[x] : root().m_graph[local_to_global(x)]; }

    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type const&
    operator[](Descriptor x) const
    { return is_root() ? m_graph[x] : root().m_graph[local_to_global(x)]; }

    // Local property access returns the local property of the given descripor.
    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type&
    operator[](local_property<Descriptor> x)
    { return m_graph[x.value]; }

    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type const&
    operator[](local_property<Descriptor> x) const
    { return m_graph[x.value]; }

    // Global property access returns the global property associated with the
    // given descriptor. This is an alias for the default bundled property
    // access operations.
    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type&
    operator[](global_property<Descriptor> x)
    { return (*this)[x.value]; }

    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type const&
    operator[](global_property<Descriptor> x) const
    { return (*this)[x.value]; }

#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES

    //  private:
    typedef typename property_map<Graph, edge_index_t>::type EdgeIndexMap;
    typedef typename property_traits<EdgeIndexMap>::value_type edge_index_type;
    BOOST_STATIC_ASSERT((!is_same<edge_index_type,
                        boost::detail::error_property_not_found>::value));

private:
    typedef std::vector<vertex_descriptor> GlobalVertexList;
    typedef std::vector<edge_descriptor> GlobalEdgeList;
    typedef std::map<vertex_descriptor, vertex_descriptor> LocalVertexMap;
    typedef std::map<edge_index_type, edge_descriptor> LocalEdgeMap;
    // TODO: Should the LocalVertexMap be: map<index_type, descriptor>?
    // TODO: Can we relax the indexing requirement if both descriptors are
    // LessThanComparable?
    // TODO: Should we really be using unorderd_map for improved lookup times?

public: // Probably shouldn't be public....
    Graph m_graph;
    subgraph<Graph>* m_parent;
    edge_index_type m_edge_counter; // for generating unique edge indices
    ChildrenList m_children;
    GlobalVertexList m_global_vertex; // local -> global
    LocalVertexMap m_local_vertex;  // global -> local
    GlobalEdgeList m_global_edge;              // local -> global
    LocalEdgeMap m_local_edge; // global -> local

    edge_descriptor local_add_edge(vertex_descriptor u_local,
                                   vertex_descriptor v_local,
                                   edge_descriptor e_global)
    {
        edge_descriptor e_local;
        bool inserted;
        boost::tie(e_local, inserted) = add_edge(u_local, v_local, m_graph);
        put(edge_index, m_graph, e_local, m_edge_counter++);
        m_global_edge.push_back(e_global);
        m_local_edge[get(get(edge_index, this->root()), e_global)] = e_local;
        return e_local;
    }
};

#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// TODO: I don't think these are required since the default metafunction
// returns Graph::vertex_bundled.
template <typename Graph>
struct vertex_bundle_type<subgraph<Graph> >
    : vertex_bundle_type<Graph>
{ };

template<typename Graph>
struct edge_bundle_type<subgraph<Graph> >
    : edge_bundle_type<Graph>
{ };
#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES

//===========================================================================
// Functions special to the Subgraph Class

template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex(typename subgraph<G>::vertex_descriptor u_global,
           subgraph<G>& g)
{
    BOOST_ASSERT(!g.is_root());
    typename subgraph<G>::vertex_descriptor u_local, v_global;
    typename subgraph<G>::edge_descriptor e_global;

    u_local = add_vertex(g.m_graph);
    g.m_global_vertex.push_back(u_global);
    g.m_local_vertex[u_global] = u_local;

    subgraph<G>& r = g.root();

    // remember edge global and local maps
    {
        typename subgraph<G>::out_edge_iterator ei, ei_end;
        for (boost::tie(ei, ei_end) = out_edges(u_global, r);
            ei != ei_end; ++ei) {
            e_global = *ei;
            v_global = target(e_global, r);
            if (g.find_vertex(v_global).second == true)
            g.local_add_edge(u_local, g.global_to_local(v_global), e_global);
        }
    }
    if (is_directed(g)) { // not necessary for undirected graph
        typename subgraph<G>::vertex_iterator vi, vi_end;
        typename subgraph<G>::out_edge_iterator ei, ei_end;
        for(boost::tie(vi, vi_end) = vertices(r); vi != vi_end; ++vi) {
            v_global = *vi;
            if (v_global == u_global)
                continue; // don't insert self loops twice!
            if (!g.find_vertex(v_global).second)
                continue; // not a subgraph vertex => try next one
            for(boost::tie(ei, ei_end) = out_edges(*vi, r); ei != ei_end; ++ei) {
                e_global = *ei;
                if(target(e_global, r) == u_global) {
                    g.local_add_edge(g.global_to_local(v_global), u_local, e_global);
                }
            }
        }
    }

    return u_local;
}

// NOTE: Descriptors are local unless otherwise noted.

//===========================================================================
// Functions required by the IncidenceGraph concept

template <typename G>
std::pair<typename graph_traits<G>::out_edge_iterator,
          typename graph_traits<G>::out_edge_iterator>
out_edges(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return out_edges(v, g.m_graph); }

template <typename G>
typename graph_traits<G>::degree_size_type
out_degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return out_degree(v, g.m_graph); }

template <typename G>
typename graph_traits<G>::vertex_descriptor
source(typename graph_traits<G>::edge_descriptor e, const subgraph<G>& g)
{ return source(e, g.m_graph); }

template <typename G>
typename graph_traits<G>::vertex_descriptor
target(typename graph_traits<G>::edge_descriptor e, const subgraph<G>& g)
{ return target(e, g.m_graph); }

//===========================================================================
// Functions required by the BidirectionalGraph concept

template <typename G>
std::pair<typename graph_traits<G>::in_edge_iterator,
          typename graph_traits<G>::in_edge_iterator>
in_edges(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return in_edges(v, g.m_graph); }

template <typename G>
typename graph_traits<G>::degree_size_type
in_degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return in_degree(v, g.m_graph); }

template <typename G>
typename graph_traits<G>::degree_size_type
degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return degree(v, g.m_graph); }

//===========================================================================
// Functions required by the AdjacencyGraph concept

template <typename G>
std::pair<typename subgraph<G>::adjacency_iterator,
          typename subgraph<G>::adjacency_iterator>
adjacent_vertices(typename subgraph<G>::vertex_descriptor v, const subgraph<G>& g)
{ return adjacent_vertices(v, g.m_graph); }

//===========================================================================
// Functions required by the VertexListGraph concept

template <typename G>
std::pair<typename subgraph<G>::vertex_iterator,
          typename subgraph<G>::vertex_iterator>
vertices(const subgraph<G>& g)
{ return vertices(g.m_graph); }

template <typename G>
typename subgraph<G>::vertices_size_type
num_vertices(const subgraph<G>& g)
{ return num_vertices(g.m_graph); }

//===========================================================================
// Functions required by the EdgeListGraph concept

template <typename G>
std::pair<typename subgraph<G>::edge_iterator,
          typename subgraph<G>::edge_iterator>
edges(const subgraph<G>& g)
{ return edges(g.m_graph); }

template <typename G>
typename subgraph<G>::edges_size_type
num_edges(const subgraph<G>& g)
{ return num_edges(g.m_graph); }

//===========================================================================
// Functions required by the AdjacencyMatrix concept

template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
edge(typename subgraph<G>::vertex_descriptor u,
     typename subgraph<G>::vertex_descriptor v,
     const subgraph<G>& g)
{ return edge(u, v, g.m_graph); }

//===========================================================================
// Functions required by the MutableGraph concept

namespace detail {

    template <typename Vertex, typename Edge, typename Graph>
    void add_edge_recur_down(Vertex u_global, Vertex v_global, Edge e_global,
                             subgraph<Graph>& g);

    template <typename Vertex, typename Edge, typename Children, typename G>
    void children_add_edge(Vertex u_global, Vertex v_global, Edge e_global,
                           Children& c, subgraph<G>* orig)
    {
        for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
            if ((*i)->find_vertex(u_global).second &&
                (*i)->find_vertex(v_global).second)
            {
                add_edge_recur_down(u_global, v_global, e_global, **i, orig);
            }
        }
    }

    template <typename Vertex, typename Edge, typename Graph>
    void add_edge_recur_down(Vertex u_global, Vertex v_global, Edge e_global,
                             subgraph<Graph>& g, subgraph<Graph>* orig)
    {
        if(&g != orig ) {
            // add local edge only if u_global and v_global are in subgraph g
            Vertex u_local, v_local;
            bool u_in_subgraph, v_in_subgraph;
            boost::tie(u_local, u_in_subgraph) = g.find_vertex(u_global);
            boost::tie(v_local, v_in_subgraph) = g.find_vertex(v_global);
            if(u_in_subgraph && v_in_subgraph) {
                g.local_add_edge(u_local, v_local, e_global);
            }
        }
        children_add_edge(u_global, v_global, e_global, g.m_children, orig);
    }

    template <typename Vertex, typename Graph>
    std::pair<typename subgraph<Graph>::edge_descriptor, bool>
    add_edge_recur_up(Vertex u_global, Vertex v_global,
                      const typename Graph::edge_property_type& ep,
                      subgraph<Graph>& g, subgraph<Graph>* orig)
    {
        if(g.is_root()) {
            typename subgraph<Graph>::edge_descriptor e_global;
            bool inserted;
            boost::tie(e_global, inserted) = add_edge(u_global, v_global, ep, g.m_graph);
            put(edge_index, g.m_graph, e_global, g.m_edge_counter++);
            g.m_global_edge.push_back(e_global);
            children_add_edge(u_global, v_global, e_global, g.m_children, orig);
            return std::make_pair(e_global, inserted);
        } else {
            return add_edge_recur_up(u_global, v_global, ep, *g.m_parent, orig);
        }
    }

} // namespace detail

// Add an edge to the subgraph g, specified by the local vertex descriptors u
// and v. In addition, the edge will be added to any (all) other subgraphs that
// contain vertex descriptors u and v.

template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
add_edge(typename subgraph<G>::vertex_descriptor u,
         typename subgraph<G>::vertex_descriptor v,
         const typename G::edge_property_type& ep,
         subgraph<G>& g)
{
    if (g.is_root()) {
        // u and v are really global
        return detail::add_edge_recur_up(u, v, ep, g, &g);
    } else {
        typename subgraph<G>::edge_descriptor e_local, e_global;
        bool inserted;
        boost::tie(e_global, inserted) =
            detail::add_edge_recur_up(g.local_to_global(u),
                                      g.local_to_global(v),
                                      ep, g, &g);
        e_local = g.local_add_edge(u, v, e_global);
        return std::make_pair(e_local, inserted);
    }
}

template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
add_edge(typename subgraph<G>::vertex_descriptor u,
         typename subgraph<G>::vertex_descriptor v,
         subgraph<G>& g)
{ return add_edge(u, v, typename G::edge_property_type(), g); }

namespace detail {
    //-------------------------------------------------------------------------
    // implementation of remove_edge(u,v,g)
    template <typename Vertex, typename Graph>
    void remove_edge_recur_down(Vertex u_global, Vertex v_global,
                                subgraph<Graph>& g);

    template <typename Vertex, typename Children>
    void children_remove_edge(Vertex u_global, Vertex v_global,
                              Children& c)
    {
        for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
            if((*i)->find_vertex(u_global).second &&
               (*i)->find_vertex(v_global).second)
            {
                remove_edge_recur_down(u_global, v_global, **i);
            }
        }
    }

    template <typename Vertex, typename Graph>
    void remove_edge_recur_down(Vertex u_global, Vertex v_global,
                                subgraph<Graph>& g)
    {
        Vertex u_local, v_local;
        u_local = g.m_local_vertex[u_global];
        v_local = g.m_local_vertex[v_global];
        remove_edge(u_local, v_local, g.m_graph);
        children_remove_edge(u_global, v_global, g.m_children);
    }

    template <typename Vertex, typename Graph>
    void remove_edge_recur_up(Vertex u_global, Vertex v_global,
                              subgraph<Graph>& g)
    {
        if(g.is_root()) {
            remove_edge(u_global, v_global, g.m_graph);
            children_remove_edge(u_global, v_global, g.m_children);
        } else {
            remove_edge_recur_up(u_global, v_global, *g.m_parent);
        }
    }

    //-------------------------------------------------------------------------
    // implementation of remove_edge(e,g)

    template <typename G, typename Edge, typename Children>
    void children_remove_edge(Edge e_global, Children& c)
    {
        for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
            std::pair<typename subgraph<G>::edge_descriptor, bool> found =
              (*i)->find_edge(e_global);
            if (!found.second) {
              continue;
            }
            children_remove_edge<G>(e_global, (*i)->m_children);
            remove_edge(found.first, (*i)->m_graph);
        }
    }

} // namespace detail

template <typename G>
void
remove_edge(typename subgraph<G>::vertex_descriptor u,
            typename subgraph<G>::vertex_descriptor v,
            subgraph<G>& g)
{
    if(g.is_root()) {
        detail::remove_edge_recur_up(u, v, g);
    } else {
        detail::remove_edge_recur_up(g.local_to_global(u),
                                     g.local_to_global(v), g);
    }
}

template <typename G>
void
remove_edge(typename subgraph<G>::edge_descriptor e, subgraph<G>& g)
{
    typename subgraph<G>::edge_descriptor e_global = g.local_to_global(e);
#ifndef NDEBUG
    std::pair<typename subgraph<G>::edge_descriptor, bool> fe = g.find_edge(e_global);
    BOOST_ASSERT(fe.second && fe.first == e);
#endif //NDEBUG
    subgraph<G> &root = g.root(); // chase to root
    detail::children_remove_edge<G>(e_global, root.m_children);
    remove_edge(e_global, root.m_graph); // kick edge from root
}

// This is slow, but there may not be a good way to do it safely otherwise
template <typename Predicate, typename G>
void
remove_edge_if(Predicate p, subgraph<G>& g) {
  while (true) {
    bool any_removed = false;
    typedef typename subgraph<G>::edge_iterator ei_type;
    for (std::pair<ei_type, ei_type> ep = edges(g);
         ep.first != ep.second; ++ep.first) {
      if (p(*ep.first)) {
        any_removed = true;
        remove_edge(*ep.first, g);
        break; /* Since iterators may be invalidated */
      }
    }
    if (!any_removed) break;
  }
}

template <typename G>
void
clear_vertex(typename subgraph<G>::vertex_descriptor v, subgraph<G>& g) {
  while (true) {
    typedef typename subgraph<G>::out_edge_iterator oei_type;
    std::pair<oei_type, oei_type> p = out_edges(v, g);
    if (p.first == p.second) break;
    remove_edge(*p.first, g);
  }
}

namespace detail {
    template <typename G>
    typename subgraph<G>::vertex_descriptor
    add_vertex_recur_up(subgraph<G>& g)
    {
        typename subgraph<G>::vertex_descriptor u_local, u_global;
        if (g.is_root()) {
            u_global = add_vertex(g.m_graph);
            g.m_global_vertex.push_back(u_global);
        } else {
            u_global = add_vertex_recur_up(*g.m_parent);
            u_local = add_vertex(g.m_graph);
            g.m_global_vertex.push_back(u_global);
            g.m_local_vertex[u_global] = u_local;
        }
        return u_global;
    }
} // namespace detail

template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex(subgraph<G>& g)
{
    typename subgraph<G>::vertex_descriptor  u_local, u_global;
    if(g.is_root()) {
        u_global = add_vertex(g.m_graph);
        g.m_global_vertex.push_back(u_global);
        u_local = u_global;
    } else {
        u_global = detail::add_vertex_recur_up(g.parent());
        u_local = add_vertex(g.m_graph);
        g.m_global_vertex.push_back(u_global);
        g.m_local_vertex[u_global] = u_local;
    }
    return u_local;
}


#if 0
// TODO: Under Construction
template <typename G>
void remove_vertex(typename subgraph<G>::vertex_descriptor u, subgraph<G>& g)
{ BOOST_ASSERT(false); }
#endif

//===========================================================================
// Functions required by the PropertyGraph concept

/**
 * The global property map returns the global properties associated with local
 * descriptors.
 */
template <typename GraphPtr, typename PropertyMap, typename Tag>
class subgraph_global_property_map
    : public put_get_helper<
        typename property_traits<PropertyMap>::reference,
        subgraph_global_property_map<GraphPtr, PropertyMap, Tag>
    >
{
    typedef property_traits<PropertyMap> Traits;
public:
    typedef typename Traits::category category;
    typedef typename Traits::value_type value_type;
    typedef typename Traits::key_type key_type;
    typedef typename Traits::reference reference;

    subgraph_global_property_map()
    { }

    subgraph_global_property_map(GraphPtr g)
        : m_g(g)
    { }

    reference operator[](key_type e) const {
        PropertyMap pmap = get(Tag(), m_g->root().m_graph);
        return m_g->is_root()
            ? pmap[e]
            : pmap[m_g->local_to_global(e)];
    }

    GraphPtr m_g;
};

/**
 * The local property map returns the local property associated with the local
 * descriptors.
 */
template <typename GraphPtr, typename PropertyMap, typename Tag>
class subgraph_local_property_map
    : public put_get_helper<
        typename property_traits<PropertyMap>::reference,
        subgraph_local_property_map<GraphPtr, PropertyMap, Tag>
    >
{
    typedef property_traits<PropertyMap> Traits;
public:
    typedef typename Traits::category category;
    typedef typename Traits::value_type value_type;
    typedef typename Traits::key_type key_type;
    typedef typename Traits::reference reference;

    typedef Tag tag;
    typedef PropertyMap pmap;

    subgraph_local_property_map()
    { }

    subgraph_local_property_map(GraphPtr g)
        : m_g(g)
    { }

    reference operator[](key_type e) const {
        // Get property map on the underlying graph.
        PropertyMap pmap = get(Tag(), m_g->m_graph);
        return pmap[e];
    }

    GraphPtr m_g;
};

namespace detail {
    // Extract the actual tags from local or global property maps so we don't
    // try to find non-properties.
    template <typename P> struct extract_lg_tag { typedef P type; };
    template <typename P> struct extract_lg_tag< local_property<P> > {
        typedef P type;
    };
    template <typename P> struct extract_lg_tag< global_property<P> > {
        typedef P type;
    };

    // NOTE: Mysterious Property template parameter unused in both metafunction
    // classes.
    struct subgraph_global_pmap {
        template <class Tag, class SubGraph, class Property>
        struct bind_ {
            typedef typename SubGraph::graph_type Graph;
            typedef SubGraph* SubGraphPtr;
            typedef const SubGraph* const_SubGraphPtr;
            typedef typename extract_lg_tag<Tag>::type TagType;
            typedef typename property_map<Graph, TagType>::type PMap;
            typedef typename property_map<Graph, TagType>::const_type const_PMap;
        public:
            typedef subgraph_global_property_map<SubGraphPtr, PMap, TagType> type;
            typedef subgraph_global_property_map<const_SubGraphPtr, const_PMap, TagType>
            const_type;
        };
    };

    struct subgraph_local_pmap {
        template <class Tag, class SubGraph, class Property>
        struct bind_ {
            typedef typename SubGraph::graph_type Graph;
            typedef SubGraph* SubGraphPtr;
            typedef const SubGraph* const_SubGraphPtr;
            typedef typename extract_lg_tag<Tag>::type TagType;
            typedef typename property_map<Graph, TagType>::type PMap;
            typedef typename property_map<Graph, TagType>::const_type const_PMap;
        public:
            typedef subgraph_local_property_map<SubGraphPtr, PMap, TagType> type;
            typedef subgraph_local_property_map<const_SubGraphPtr, const_PMap, TagType>
            const_type;
        };
    };

    // These metafunctions select the corresponding metafunctions above, and
    // are used by the choose_pmap metafunction below to specialize the choice
    // of local/global property map. By default, we defer to the global
    // property.
    template <class Tag>
    struct subgraph_choose_pmap_helper {
        typedef subgraph_global_pmap type;
    };
    template <class Tag>
    struct subgraph_choose_pmap_helper< local_property<Tag> > {
        typedef subgraph_local_pmap type;
    };
    template <class Tag>
    struct subgraph_choose_pmap_helper< global_property<Tag> > {
        typedef subgraph_global_pmap type;
    };

    // As above, unless we're requesting vertex_index_t. Then it's always a
    // local property map. This enables the correct translation of descriptors
    // between local and global layers.
    template <>
    struct subgraph_choose_pmap_helper<vertex_index_t> {
        typedef subgraph_local_pmap type;
    };
    template <>
    struct subgraph_choose_pmap_helper< local_property<vertex_index_t> > {
        typedef subgraph_local_pmap type;
    };
    template <>
    struct subgraph_choose_pmap_helper< global_property<vertex_index_t> > {
        typedef subgraph_local_pmap type;
    };

    // Determine the kind of property. If SameType<Tag, vertex_index_t>, then
    // the property lookup is always local. Otherwise, the lookup is global.
    // NOTE: Property parameter is basically unused.
    template <class Tag, class Graph, class Property>
    struct subgraph_choose_pmap {
        typedef typename subgraph_choose_pmap_helper<Tag>::type Helper;
        typedef typename Helper::template bind_<Tag, Graph, Property> Bind;
        typedef typename Bind::type type;
        typedef typename Bind::const_type const_type;
    };

    // Used by the vertex/edge property selectors to determine the kind(s) of
    // property maps used by the property_map type generator.
    struct subgraph_property_generator {
        template <class SubGraph, class Property, class Tag>
        struct bind_ {
            typedef subgraph_choose_pmap<Tag, SubGraph, Property> Choice;
            typedef typename Choice::type type;
            typedef typename Choice::const_type const_type;
        };
    };

  } // namespace detail

template <>
struct vertex_property_selector<subgraph_tag> {
    typedef detail::subgraph_property_generator type;
};

template <>
struct edge_property_selector<subgraph_tag> {
    typedef detail::subgraph_property_generator type;
};

#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
/** @internal
 * This property map implements local or global bundled property access on
 * an underlying graph. The LocalGlobal template template parameter must be
 * one of the local_property or global_property templates.
 */
template <
    typename Graph, typename Descriptor, typename Bundle, typename T,
    template <typename> class LocalGlobal>
struct subgraph_lg_bundle_property_map
    : put_get_helper<
        T&,
        subgraph_lg_bundle_property_map<Graph, Descriptor, Bundle, T, LocalGlobal>
    >
{
private:
    typedef LocalGlobal<Descriptor> Wrap;
public:
    typedef Descriptor key_type;
    typedef typename remove_const<T>::type value_type;
    typedef T& reference;
    typedef lvalue_property_map_tag category;

    subgraph_lg_bundle_property_map()
    { }

    subgraph_lg_bundle_property_map(Graph* g, T Bundle::* p)
        : m_g(g), m_prop(p)
    { }

    reference operator[](key_type k) const
    { return (*m_g)[Wrap(k)].*m_prop; }

private:
    Graph* m_g;
    T Bundle::* m_prop;
};

// Specialize the property map template to generate bundled property maps.
// NOTE: I'm cheating (actually double-dipping) with the local/global subgraph
// property templates. I'm not using them store descriptors, just specialize
// the property map template for specific lookups.
namespace graph_detail {
    // Help decoding some of the types required for property map definitions.
    template <typename Graph, typename T, typename Bundle>
    struct bundled_subgraph_pmap_helper {
        typedef subgraph<Graph> Subgraph;
        typedef graph_traits<Subgraph> Traits;
        typedef typename Subgraph::vertex_bundled VertBundled;
        typedef typename Subgraph::edge_bundled EdgeBundled;

        // Deduce the descriptor from the template params
        typedef typename mpl::if_<
            detail::is_vertex_bundle<VertBundled, EdgeBundled, Bundle>,
            typename Traits::vertex_descriptor, typename Traits::edge_descriptor
        >::type Desc;

        // Deduce the bundled property type
        typedef typename mpl::if_<
            detail::is_vertex_bundle<VertBundled, EdgeBundled, Bundle>,
            VertBundled, EdgeBundled
        >::type Prop;
    };
} // namespace graph_detail

template <typename Graph, typename T, typename Bundle>
struct property_map<subgraph<Graph>, local_property<T Bundle::*> >
    : graph_detail::bundled_subgraph_pmap_helper<Graph, T, Bundle>
{
private:
    typedef graph_detail::bundled_subgraph_pmap_helper<Graph, T, Bundle> Base;
    typedef typename Base::Subgraph Subgraph;
    typedef typename Base::Desc Desc;
    typedef typename Base::Prop Prop;
public:
    typedef subgraph_lg_bundle_property_map<
        Subgraph, Desc, Prop, T, local_property
    > type;
    typedef subgraph_lg_bundle_property_map<
        Subgraph const, Desc, Prop, T const, local_property
    > const_type;
};

template <typename Graph, typename T, typename Bundle>
struct property_map<subgraph<Graph>, global_property<T Bundle::*> >
    : graph_detail::bundled_subgraph_pmap_helper<Graph, T, Bundle>
{
private:
    typedef graph_detail::bundled_subgraph_pmap_helper<Graph, T, Bundle> Base;
    typedef typename Base::Subgraph Subgraph;
    typedef typename Base::Desc Desc;
    typedef typename Base::Prop Prop;
public:
    typedef subgraph_lg_bundle_property_map<
        Subgraph, Desc, Prop, T, global_property
    > type;
    typedef subgraph_lg_bundle_property_map<
        Subgraph const, Desc, Prop, T const, global_property
    > const_type;
};
#endif

// ==================================================
// get(p, g), get(p, g, k), and put(p, g, k, v)
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, Property>::type
get(Property, subgraph<G>& g) {
    typedef typename property_map< subgraph<G>, Property>::type PMap;
    return PMap(&g);
}

template <typename G, typename Property>
typename property_map<subgraph<G>, Property>::const_type
get(Property, const subgraph<G>& g) {
    typedef typename property_map< subgraph<G>, Property>::const_type PMap;
    return PMap(&g);
}

template <typename G, typename Property, typename Key>
typename property_traits<
    typename property_map<subgraph<G>, Property>::const_type
>::value_type
get(Property, const subgraph<G>& g, const Key& k) {
    typedef typename property_map< subgraph<G>, Property>::const_type PMap;
    PMap pmap(&g);
    return pmap[k];
}

template <typename G, typename Property, typename Key, typename Value>
void put(Property, subgraph<G>& g, const Key& k, const Value& val) {
    typedef typename property_map< subgraph<G>, Property>::type PMap;
    PMap pmap(&g);
    pmap[k] = val;
}

// ==================================================
// get(global(p), g)
// NOTE: get(global(p), g, k) and put(global(p), g, k, v) not supported
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, global_property<Property> >::type
get(global_property<Property>, subgraph<G>& g) {
    typedef typename property_map<
        subgraph<G>, global_property<Property>
    >::type Map;
    return Map(&g);
}

template <typename G, typename Property>
typename property_map<subgraph<G>, global_property<Property> >::const_type
get(global_property<Property>, const subgraph<G>& g) {
    typedef typename property_map<
        subgraph<G>, global_property<Property>
    >::const_type Map;
    return Map(&g);
}

// ==================================================
// get(local(p), g)
// NOTE: get(local(p), g, k) and put(local(p), g, k, v) not supported
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, local_property<Property> >::type
get(local_property<Property>, subgraph<G>& g) {
    typedef typename property_map<
        subgraph<G>, local_property<Property>
    >::type Map;
    return Map(&g);
}

template <typename G, typename Property>
typename property_map<subgraph<G>, local_property<Property> >::const_type
get(local_property<Property>, const subgraph<G>& g) {
    typedef typename property_map<
        subgraph<G>, local_property<Property>
    >::const_type Map;
    return Map(&g);
}

#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// ==================================================
// get(bundle(p), g)
// ==================================================

template<typename G, typename T, typename Bundle>
inline typename property_map<subgraph<G>, T Bundle::*>::type
get(T Bundle::* p, subgraph<G>& g) {
    typedef typename property_map<subgraph<G>, T Bundle::*>::type Map;
    return Map(&g, p);
}

template<typename G, typename T, typename Bundle>
inline typename property_map<subgraph<G>, T Bundle::*>::const_type
get(T Bundle::* p, subgraph<G> const& g) {
    typedef typename property_map<subgraph<G>, T Bundle::*>::const_type Map;
    return Map(&g, p);
}

template <typename Graph, typename Type, typename Bundle, typename Key>
inline Type get(Type Bundle::* p, subgraph<Graph> const& g, Key const& k)
{ return get(get(p, g), k); }

template <typename Graph, typename Type, typename Bundle, typename Key,
          typename Value>
inline void put(Type Bundle::* p, Graph& g, Key const& k, Value const& v)
{ put(get(p, g), k, v); }

// =========================================================
// Local bundled, get

template<typename G, typename T, typename Bundle>
inline typename property_map<
    subgraph<G>, local_property<T Bundle::*>
>::type
get(local_property<T Bundle::*> p, subgraph<G>& g) {
    typedef typename property_map<
        subgraph<G>, local_property<T Bundle::*>
    >::type Map;
    return Map(&g, p.value);
}

template<typename G, typename T, typename Bundle>
inline typename property_map<
    subgraph<G>, local_property<T Bundle::*>
>::const_type
get(local_property<T Bundle::*> p, subgraph<G> const& g) {
    typedef typename property_map<
        subgraph<G>, local_property<T Bundle::*>
    >::const_type Map;
    return Map(&g, p.value);
}

template <typename Graph, typename Type, typename Bundle, typename Key>
inline Type get(local_property<Type Bundle::*> p, subgraph<Graph> const& g,
                Key const& k)
{ return get(get(p, g), k); }

// =========================================================
// Global bundled, get

template<typename G, typename T, typename Bundle>
inline typename property_map<
    subgraph<G>, global_property<T Bundle::*>
>::type
get(global_property<T Bundle::*> p, subgraph<G>& g) {
    typedef typename property_map<
        subgraph<G>, global_property<T Bundle::*>
    >::type Map;
    return Map(&g, p.value);
}

template<typename G, typename T, typename Bundle>
inline typename property_map<
    subgraph<G>, global_property<T Bundle::*>
>::const_type
get(global_property<T Bundle::*> p, subgraph<G> const& g) {
    typedef typename property_map<
        subgraph<G>, global_property<T Bundle::*>
    >::const_type Map;
    return Map(&g, p.value);
}

template <typename Graph, typename Type, typename Bundle, typename Key>
inline Type get(global_property<Type Bundle::*> p, subgraph<Graph> const& g,
                Key const& k)
{ return get(get(p, g), k); }

#endif

template <typename G, typename Tag>
inline typename graph_property<G, Tag>::type&
get_property(subgraph<G>& g, Tag tag) {
    return get_property(g.m_graph, tag);
}

template <typename G, typename Tag>
inline const typename graph_property<G, Tag>::type&
get_property(const subgraph<G>& g, Tag tag) {
    return get_property(g.m_graph, tag);
}

//===========================================================================
// Miscellaneous Functions

template <typename G>
typename subgraph<G>::vertex_descriptor
vertex(typename subgraph<G>::vertices_size_type n, const subgraph<G>& g)
{ return vertex(n, g.m_graph); }

//===========================================================================
// Mutability Traits
// Just pull the mutability traits form the underlying graph. Note that this
// will probably fail (badly) for labeled graphs.
template <typename G>
struct graph_mutability_traits< subgraph<G> > {
    typedef typename graph_mutability_traits<G>::category category;
};

} // namespace boost

#endif // BOOST_SUBGRAPH_HPP