summaryrefslogtreecommitdiff
path: root/boost/graph/distributed/hohberg_biconnected_components.hpp
blob: 9422aa04f0cd170231b295037aa8ab731f1303de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
// Copyright 2005 The Trustees of Indiana University.

// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Douglas Gregor
//           Andrew Lumsdaine

// An implementation of Walter Hohberg's distributed biconnected
// components algorithm, from:
//
//   Walter Hohberg. How to Find Biconnected Components in Distributed
//   Networks. J. Parallel Distrib. Comput., 9(4):374-386, 1990.
//
#ifndef BOOST_GRAPH_DISTRIBUTED_HOHBERG_BICONNECTED_COMPONENTS_HPP
#define BOOST_GRAPH_DISTRIBUTED_HOHBERG_BICONNECTED_COMPONENTS_HPP

#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif

/* You can define PBGL_HOHBERG_DEBUG to an integer value (1, 2, or 3)
 * to enable debugging information. 1 includes only the phases of the
 * algorithm and messages as their are received. 2 and 3 add
 * additional levels of detail about internal data structures related
 * to the algorithm itself.
 *
 * #define PBGL_HOHBERG_DEBUG 1
*/

#include <boost/graph/graph_traits.hpp>
#include <boost/graph/parallel/container_traits.hpp>
#include <boost/graph/parallel/process_group.hpp>
#include <boost/static_assert.hpp>
#include <boost/mpi/operations.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/graph/graph_concepts.hpp>
#include <boost/graph/iteration_macros.hpp>
#include <boost/optional.hpp>
#include <utility> // for std::pair
#include <boost/assert.hpp>
#include <algorithm> // for std::find, std::mismatch
#include <vector>
#include <boost/graph/parallel/algorithm.hpp>
#include <boost/graph/distributed/connected_components.hpp>
#include <boost/concept/assert.hpp>

namespace boost { namespace graph { namespace distributed {

namespace hohberg_detail {
  enum message_kind {
    /* A header for the PATH message, stating which edge the message
       is coming on and how many vertices will be following. The data
       structure communicated will be a path_header. */
    msg_path_header,
    /* A message containing the vertices that make up a path. It will
       always follow a msg_path_header and will contain vertex
       descriptors, only. */
    msg_path_vertices,
    /* A header for the TREE message, stating the value of gamma and
       the number of vertices to come in the following
       msg_tree_vertices. */
    msg_tree_header,
    /* A message containing the vertices that make up the set of
       vertices in the same bicomponent as the sender. It will always
       follow a msg_tree_header and will contain vertex descriptors,
       only. */
    msg_tree_vertices,
    /* Provides a name for the biconnected component of the edge. */
    msg_name
  };

  // Payload for a msg_path_header message.
  template<typename EdgeDescriptor>
  struct path_header
  {
    // The edge over which the path is being communicated
    EdgeDescriptor edge;

    // The length of the path, i.e., the number of vertex descriptors
    // that will be coming in the next msg_path_vertices message.
    std::size_t    path_length;

    template<typename Archiver>
    void serialize(Archiver& ar, const unsigned int /*version*/)
    {
      ar & edge & path_length;
    }
  };

  // Payload for a msg_tree_header message.
  template<typename Vertex, typename Edge>
  struct tree_header
  {
    // The edge over which the tree is being communicated
    Edge edge;

    // Gamma, which is the eta of the sender.
    Vertex gamma;

    // The length of the list of vertices in the bicomponent, i.e.,
    // the number of vertex descriptors that will be coming in the
    // next msg_tree_vertices message.
    std::size_t    bicomp_length;

    template<typename Archiver>
    void serialize(Archiver& ar, const unsigned int /*version*/)
    {
      ar & edge & gamma & bicomp_length;
    }
  };

  // Payload for the msg_name message.
  template<typename EdgeDescriptor>
  struct name_header
  {
    // The edge being communicated and named.
    EdgeDescriptor edge;

    // The 0-based name of the component
    std::size_t name;

    template<typename Archiver>
    void serialize(Archiver& ar, const unsigned int /*version*/)
    {
      ar & edge & name;
    }
  };

  /* Computes the branch point between two paths. The branch point is
     the last position at which both paths are equivalent, beyond
     which the paths diverge. Both paths must have length > 0 and the
     initial elements of the paths must be equal. This is guaranteed
     in Hohberg's algorithm because all paths start at the
     leader. Returns the value at the branch point. */
  template<typename T>
  T branch_point(const std::vector<T>& p1, const std::vector<T>& p2)
  {
    BOOST_ASSERT(!p1.empty());
    BOOST_ASSERT(!p2.empty());
    BOOST_ASSERT(p1.front() == p2.front());

    typedef typename std::vector<T>::const_iterator iterator;

    iterator mismatch_pos;
    if (p1.size() <= p2.size())
      mismatch_pos = std::mismatch(p1.begin(), p1.end(), p2.begin()).first;
    else
      mismatch_pos = std::mismatch(p2.begin(), p2.end(), p1.begin()).first;
    --mismatch_pos;
    return *mismatch_pos;
  }

  /* Computes the infimum of vertices a and b in the given path. The
     infimum is the largest element that is on the paths from a to the
     root and from b to the root. */
  template<typename T>
  T infimum(const std::vector<T>& parent_path, T a, T b)
  {
    using std::swap;

    typedef typename std::vector<T>::const_iterator iterator;
    iterator first = parent_path.begin(), last = parent_path.end();

#if defined(PBGL_HOHBERG_DEBUG) and PBGL_HOHBERG_DEBUG > 2
    std::cerr << "infimum(";
    for (iterator i = first; i != last; ++i) {
      if (i != first) std::cerr << ' ';
      std::cerr << local(*i) << '@' << owner(*i);
    }
    std::cerr << ", " << local(a) << '@' << owner(a) << ", "
              << local(b) << '@' << owner(b) << ") = ";
#endif

    if (a == b) {
#if defined(PBGL_HOHBERG_DEBUG) && PBGL_HOHBERG_DEBUG > 2
      std::cerr << local(a) << '@' << owner(a) << std::endl;
#endif
      return a;
    }

    // Try to find a or b, whichever is closest to the end
    --last;
    while (*last != a) {
      // If we match b, swap the two so we'll be looking for b later.
      if (*last == b) { swap(a,b); break; }

      if (last == first) {
#if defined(PBGL_HOHBERG_DEBUG) && PBGL_HOHBERG_DEBUG > 2
        std::cerr << local(*first) << '@' << owner(*first) << std::endl;
#endif
        return *first;
      }
      else --last;
    }

    // Try to find b (which may originally have been a)
    while (*last != b) {
      if (last == first) {
#if defined(PBGL_HOHBERG_DEBUG) and PBGL_HOHBERG_DEBUG > 2
        std::cerr << local(*first) << '@' << owner(*first) << std::endl;
#endif
        return *first;
      }
      else --last;
    }

#if defined(PBGL_HOHBERG_DEBUG) && PBGL_HOHBERG_DEBUG > 2
    std::cerr << local(*last) << '@' << owner(*last) << std::endl;
#endif
    // We've found b; it's the infimum.
    return *last;
  }
} // end namespace hohberg_detail

/* A message that will be stored for each edge by Hohberg's algorithm. */
template<typename Graph>
struct hohberg_message
{
  typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
  typedef typename graph_traits<Graph>::edge_descriptor   Edge;

  // Assign from a path message
  void assign(const std::vector<Vertex>& path)
  {
    gamma = graph_traits<Graph>::null_vertex();
    path_or_bicomp = path;
  }

  // Assign from a tree message
  void assign(Vertex gamma, const std::vector<Vertex>& in_same_bicomponent)
  {
    this->gamma = gamma;
    path_or_bicomp = in_same_bicomponent;
  }

  bool is_path() const { return gamma == graph_traits<Graph>::null_vertex(); }
  bool is_tree() const { return gamma != graph_traits<Graph>::null_vertex(); }

  /// The "gamma" of a tree message, or null_vertex() for a path message
  Vertex gamma;

  // Either the path for a path message or the in_same_bicomponent
  std::vector<Vertex> path_or_bicomp;
};


/* An abstraction of a vertex processor in Hohberg's algorithm. The
   hohberg_vertex_processor class is responsible for processing
   messages transmitted to it via its edges. */
template<typename Graph>
class hohberg_vertex_processor
{
  typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
  typedef typename graph_traits<Graph>::edge_descriptor   Edge;
  typedef typename graph_traits<Graph>::degree_size_type  degree_size_type;
  typedef typename graph_traits<Graph>::edges_size_type   edges_size_type;
  typedef typename boost::graph::parallel::process_group_type<Graph>::type
    ProcessGroup;
  typedef std::vector<Vertex> path_t;
  typedef typename path_t::iterator path_iterator;

 public:
  hohberg_vertex_processor()
    : phase(1),
      parent(graph_traits<Graph>::null_vertex()),
      eta(graph_traits<Graph>::null_vertex())
  {
  }

  // Called to initialize a leader in the algorithm, which involves
  // sending out the initial path messages and being ready to receive
  // them.
  void initialize_leader(Vertex alpha, const Graph& g);

  /// Handle a path message on edge e. The path will be destroyed by
  /// this operation.
  void
  operator()(Edge e, path_t& path, const Graph& g);

  /// Handle a tree message on edge e. in_same_bicomponent will be
  /// destroyed by this operation.
  void
  operator()(Edge e, Vertex gamma, path_t& in_same_bicomponent,
             const Graph& g);

  // Handle a name message.
  void operator()(Edge e, edges_size_type name, const Graph& g);

  // Retrieve the phase
  unsigned char get_phase() const { return phase; }

  // Start the naming phase. The current phase must be 3 (echo), and
  // the offset contains the offset at which this processor should
  // begin when labelling its bicomponents. The offset is just a
  // parallel prefix sum of the number of bicomponents in each
  // processor that precedes it (globally).
  void
  start_naming_phase(Vertex alpha, const Graph& g, edges_size_type offset);

  /* Determine the number of bicomponents that we will be naming
   * ourselves.
   */
  edges_size_type num_starting_bicomponents(Vertex alpha, const Graph& g);

  // Fill in the edge component map with biconnected component
  // numbers.
  template<typename ComponentMap>
  void fill_edge_map(Vertex alpha, const Graph& g, ComponentMap& component);

 protected:
  /* Start the echo phase (phase 3) where we propagate information up
     the tree. */
  void echo_phase(Vertex alpha, const Graph& g);

  /* Retrieve the index of edge in the out-edges list of target(e, g). */
  std::size_t get_edge_index(Edge e, const Graph& g);

  /* Retrieve the index of the edge incidence on v in the out-edges
     list of vertex u. */
  std::size_t get_incident_edge_index(Vertex u, Vertex v, const Graph& g);

  /* Keeps track of which phase of the algorithm we are in. There are
   * four phases plus the "finished" phase:
   *
   *   1) Building the spanning tree
   *   2) Discovering cycles
   *   3) Echoing back up the spanning tree
   *   4) Labelling biconnected components
   *   5) Finished
   */
  unsigned char phase;

  /* The parent of this vertex in the spanning tree. This value will
     be graph_traits<Graph>::null_vertex() for the leader. */
  Vertex parent;

  /* The farthest ancestor up the tree that resides in the same
     biconnected component as we do. This information is approximate:
     we might not know about the actual farthest ancestor, but this is
     the farthest one we've seen so far. */
  Vertex eta;

  /* The number of edges that have not yet transmitted any messages to
     us. This starts at the degree of the vertex and decreases as we
     receive messages. When this counter hits zero, we're done with
     the second phase of the algorithm. In Hohberg's paper, the actual
     remaining edge set E is stored with termination when all edges
     have been removed from E, but we only need to detect termination
     so the set E need not be explicitly represented. */
  degree_size_type num_edges_not_transmitted;

  /* The path from the root of the spanning tree to this vertex. This
     vector will always store only the parts of the path leading up to
     this vertex, and not the vertex itself. Thus, it will be empty
     for the leader. */
  std::vector<Vertex> path_from_root;

  /* Structure containing all of the extra data we need to keep around
     PER EDGE. This information can not be contained within a property
     map, because it can't be shared among vertices without breaking
     the algorithm. Decreasing the size of this structure will drastically */
  struct per_edge_data
  {
    hohberg_message<Graph> msg;
    std::vector<Vertex> M;
    bool is_tree_edge;
    degree_size_type partition;
  };

  /* Data for each edge in the graph. This structure will be indexed
     by the position of the edge in the out_edges() list. */
  std::vector<per_edge_data> edge_data;

  /* The mapping from local partition numbers (0..n-1) to global
     partition numbers. */
  std::vector<edges_size_type> local_to_global_partitions;

  friend class boost::serialization::access;

  // We cannot actually serialize a vertex processor, nor would we
  // want to. However, the fact that we're putting instances into a
  // distributed_property_map means that we need to have a serialize()
  // function available.
  template<typename Archiver>
  void serialize(Archiver&, const unsigned int /*version*/)
  {
    BOOST_ASSERT(false);
  }
};

template<typename Graph>
void
hohberg_vertex_processor<Graph>::initialize_leader(Vertex alpha,
                                                   const Graph& g)
{
  using namespace hohberg_detail;

  ProcessGroup pg = process_group(g);

  typename property_map<Graph, vertex_owner_t>::const_type
    owner = get(vertex_owner, g);

  path_header<Edge> header;
  header.path_length = 1;
  BGL_FORALL_OUTEDGES_T(alpha, e, g, Graph) {
    header.edge = e;
    send(pg, get(owner, target(e, g)), msg_path_header, header);
    send(pg, get(owner, target(e, g)), msg_path_vertices, alpha);
  }

  num_edges_not_transmitted = degree(alpha, g);
  edge_data.resize(num_edges_not_transmitted);
  phase = 2;
}

template<typename Graph>
void
hohberg_vertex_processor<Graph>::operator()(Edge e, path_t& path,
                                            const Graph& g)
{
  using namespace hohberg_detail;

  typename property_map<Graph, vertex_owner_t>::const_type
    owner = get(vertex_owner, g);

#ifdef PBGL_HOHBERG_DEBUG
//  std::cerr << local(source(e, g)) << '@' << owner(source(e, g)) << " -> "
//            << local(target(e, g)) << '@' << owner(target(e, g)) << ": path(";
//  for (std::size_t i = 0; i < path.size(); ++i) {
//    if (i > 0) std::cerr << ' ';
//    std::cerr << local(path[i]) << '@' << owner(path[i]);
//  }
  std::cerr << "), phase = " << (int)phase << std::endl;
#endif

  // Get access to edge-specific data
  if (edge_data.empty())
    edge_data.resize(degree(target(e, g), g));
  per_edge_data& edata = edge_data[get_edge_index(e, g)];

  // Record the message. We'll need it in phase 3.
  edata.msg.assign(path);

  // Note: "alpha" refers to the vertex "processor" receiving the
  // message.
  Vertex alpha = target(e, g);

  switch (phase) {
  case 1:
    {
      num_edges_not_transmitted = degree(alpha, g) - 1;
      edata.is_tree_edge = true;
      parent = path.back();
      eta = parent;
      edata.M.clear(); edata.M.push_back(parent);

      // Broadcast the path from the root to our potential children in
      // the spanning tree.
      path.push_back(alpha);
      path_header<Edge> header;
      header.path_length = path.size();
      ProcessGroup pg = process_group(g);
      BGL_FORALL_OUTEDGES_T(alpha, oe, g, Graph) {
        // Skip the tree edge we just received
        if (target(oe, g) != source(e, g)) {
          header.edge = oe;
          send(pg, get(owner, target(oe, g)), msg_path_header, header);
          send(pg, get(owner, target(oe, g)), msg_path_vertices, &path[0],
               header.path_length);
        }
      }
      path.pop_back();

      // Swap the old path in, to save some extra copying. Nobody
      path_from_root.swap(path);

      // Once we have received our place in the spanning tree, move on
      // to phase 2.
      phase = 2;

      // If we only had only edge, skip to phase 3.
      if (num_edges_not_transmitted == 0)
        echo_phase(alpha, g);
      return;
    }

  case 2:
    {
      --num_edges_not_transmitted;
      edata.is_tree_edge = false;

      // Determine if alpha (our vertex) is in the path
      path_iterator pos = std::find(path.begin(), path.end(), alpha);
      if (pos != path.end()) {
        // Case A: There is a cycle alpha beta ... gamma alpha
        // M(e) <- {beta, gammar}
        edata.M.clear();
        ++pos;
        // If pos == path.end(), we have a self-loop
        if (pos != path.end()) {
          // Add beta
          edata.M.push_back(*pos);
          ++pos;
        }
        // If pos == path.end(), we have a self-loop or beta == gamma
        // (parallel edge). Otherwise, add gamma.
        if (pos != path.end()) edata.M.push_back(path.back());
      } else {
        // Case B: There is a cycle but we haven't seen alpha yet.
        // M(e) = {parent, path.back()}
        edata.M.clear();
        edata.M.push_back(path.back());
        if (parent != path.back()) edata.M.push_back(parent);

        // eta = inf(eta, bra(pi_t, pi))
        eta = infimum(path_from_root, eta, branch_point(path_from_root, path));
      }
      if (num_edges_not_transmitted == 0)
        echo_phase(alpha, g);
      break;
    }

  default:
//    std::cerr << "Phase is " << int(phase) << "\n";
    BOOST_ASSERT(false);
  }
}

template<typename Graph>
void
hohberg_vertex_processor<Graph>::operator()(Edge e, Vertex gamma,
                                            path_t& in_same_bicomponent,
                                            const Graph& g)
{
  using namespace hohberg_detail;

#ifdef PBGL_HOHBERG_DEBUG
  std::cerr << local(source(e, g)) << '@' << owner(source(e, g)) << " -> "
            << local(target(e, g)) << '@' << owner(target(e, g)) << ": tree("
            << local(gamma) << '@' << owner(gamma) << ", ";
  for (std::size_t i = 0; i < in_same_bicomponent.size(); ++i) {
    if (i > 0) std::cerr << ' ';
    std::cerr << local(in_same_bicomponent[i]) << '@'
              << owner(in_same_bicomponent[i]);
  }
  std::cerr << ", " << local(source(e, g)) << '@' << owner(source(e, g))
            << "), phase = " << (int)phase << std::endl;
#endif

  // Get access to edge-specific data
  per_edge_data& edata = edge_data[get_edge_index(e, g)];

  // Record the message. We'll need it in phase 3.
  edata.msg.assign(gamma, in_same_bicomponent);

  // Note: "alpha" refers to the vertex "processor" receiving the
  // message.
  Vertex alpha = target(e, g);
  Vertex beta = source(e, g);

  switch (phase) {
  case 2:
    --num_edges_not_transmitted;
    edata.is_tree_edge = true;

    if (gamma == alpha) {
      // Case C
      edata.M.swap(in_same_bicomponent);
    } else {
      // Case D
      edata.M.clear();
      edata.M.push_back(parent);
      if (beta != parent) edata.M.push_back(beta);
      eta = infimum(path_from_root, eta, gamma);
    }
    if (num_edges_not_transmitted == 0)
      echo_phase(alpha, g);
    break;

  default:
    BOOST_ASSERT(false);
  }
}

template<typename Graph>
void
hohberg_vertex_processor<Graph>::operator()(Edge e, edges_size_type name,
                                            const Graph& g)
{
  using namespace hohberg_detail;

#ifdef PBGL_HOHBERG_DEBUG
  std::cerr << local(source(e, g)) << '@' << owner(source(e, g)) << " -> "
            << local(target(e, g)) << '@' << owner(target(e, g)) << ": name("
            << name << "), phase = " << (int)phase << std::endl;
#endif

  BOOST_ASSERT(phase == 4);

  typename property_map<Graph, vertex_owner_t>::const_type
    owner = get(vertex_owner, g);

  // Send name messages along the spanning tree edges that are in the
  // same bicomponent as the edge to our parent.
  ProcessGroup pg = process_group(g);

  Vertex alpha = target(e, g);

  std::size_t idx = 0;
  BGL_FORALL_OUTEDGES_T(alpha, e, g, Graph) {
    per_edge_data& edata = edge_data[idx++];
    if (edata.is_tree_edge
        && find(edata.M.begin(), edata.M.end(), parent) != edata.M.end()
        && target(e, g) != parent) {
      // Notify our children in the spanning tree of this name
      name_header<Edge> header;
      header.edge = e;
      header.name = name;
      send(pg, get(owner, target(e, g)), msg_name, header);
    } else if (target(e, g) == parent) {
      // Map from local partition numbers to global bicomponent numbers
      local_to_global_partitions[edata.partition] = name;
    }
  }

  // Final stage
  phase = 5;
}

template<typename Graph>
typename hohberg_vertex_processor<Graph>::edges_size_type
hohberg_vertex_processor<Graph>::
num_starting_bicomponents(Vertex alpha, const Graph& g)
{
  edges_size_type not_mapped = (std::numeric_limits<edges_size_type>::max)();

  edges_size_type result = 0;
  std::size_t idx = 0;
  BGL_FORALL_OUTEDGES_T(alpha, e, g, Graph) {
    per_edge_data& edata = edge_data[idx++];
    if (edata.is_tree_edge
        && find(edata.M.begin(), edata.M.end(), parent) == edata.M.end()) {
      // Map from local partition numbers to global bicomponent numbers
      if (local_to_global_partitions[edata.partition] == not_mapped)
        local_to_global_partitions[edata.partition] = result++;
    }
  }

#ifdef PBGL_HOHBERG_DEBUG
  std::cerr << local(alpha) << '@' << owner(alpha) << " has " << result
            << " bicomponents originating at it." << std::endl;
#endif

  return result;
}

template<typename Graph>
template<typename ComponentMap>
void
hohberg_vertex_processor<Graph>::
fill_edge_map(Vertex alpha, const Graph& g, ComponentMap& component)
{
  std::size_t idx = 0;
  BGL_FORALL_OUTEDGES_T(alpha, e, g, Graph) {
    per_edge_data& edata = edge_data[idx++];
    local_put(component, e, local_to_global_partitions[edata.partition]);

#if defined(PBGL_HOHBERG_DEBUG) && PBGL_HOHBERG_DEBUG > 2
    std::cerr << "component("
              << local(source(e, g)) << '@' << owner(source(e, g)) << " -> "
              << local(target(e, g)) << '@' << owner(target(e, g)) << ") = "
              << local_to_global_partitions[edata.partition]
              << " (partition = " << edata.partition << " of "
              << local_to_global_partitions.size() << ")" << std::endl;
#endif
  }
}

template<typename Graph>
void
hohberg_vertex_processor<Graph>::
start_naming_phase(Vertex alpha, const Graph& g, edges_size_type offset)
{
  using namespace hohberg_detail;

  BOOST_ASSERT(phase == 4);

  typename property_map<Graph, vertex_owner_t>::const_type
    owner = get(vertex_owner, g);

  // Send name messages along the spanning tree edges of the
  // components that we get to number.
  ProcessGroup pg = process_group(g);

  bool has_more_children_to_name = false;

  // Map from local partition numbers to global bicomponent numbers
  edges_size_type not_mapped = (std::numeric_limits<edges_size_type>::max)();
  for (std::size_t i = 0; i < local_to_global_partitions.size(); ++i) {
    if (local_to_global_partitions[i] != not_mapped)
      local_to_global_partitions[i] += offset;
  }

  std::size_t idx = 0;
  BGL_FORALL_OUTEDGES_T(alpha, e, g, Graph) {
    per_edge_data& edata = edge_data[idx++];
    if (edata.is_tree_edge
        && find(edata.M.begin(), edata.M.end(), parent) == edata.M.end()) {
      // Notify our children in the spanning tree of this new name
      name_header<Edge> header;
      header.edge = e;
      header.name = local_to_global_partitions[edata.partition];
      send(pg, get(owner, target(e, g)), msg_name, header);
    } else if (edata.is_tree_edge) {
      has_more_children_to_name = true;
    }
#if defined(PBGL_HOHBERG_DEBUG) && PBGL_HOHBERG_DEBUG > 2
    std::cerr << "M[" << local(source(e, g)) << '@' << owner(source(e, g))
              << " -> " << local(target(e, g)) << '@' << owner(target(e, g))
              << "] = ";
    for (std::size_t i = 0; i < edata.M.size(); ++i) {
      std::cerr << local(edata.M[i]) << '@' << owner(edata.M[i]) << ' ';
    }
    std::cerr << std::endl;
#endif
  }

  // See if we're done.
  if (!has_more_children_to_name)
    // Final stage
    phase = 5;
}

template<typename Graph>
void
hohberg_vertex_processor<Graph>::echo_phase(Vertex alpha, const Graph& g)
{
  using namespace hohberg_detail;

  typename property_map<Graph, vertex_owner_t>::const_type
    owner = get(vertex_owner, g);

  /* We're entering the echo phase. */
  phase = 3;

  if (parent != graph_traits<Graph>::null_vertex()) {
    Edge edge_to_parent;

#if defined(PBGL_HOHBERG_DEBUG) && PBGL_HOHBERG_DEBUG > 1
     std::cerr << local(alpha) << '@' << owner(alpha) << " echo: parent = "
               << local(parent) << '@' << owner(parent) << ", eta = "
               << local(eta) << '@' << owner(eta) << ", Gamma = ";
#endif

    std::vector<Vertex> bicomp;
    std::size_t e_index = 0;
    BGL_FORALL_OUTEDGES_T(alpha, e, g, Graph) {
      if (target(e, g) == parent && parent == eta) {
        edge_to_parent = e;
        if (find(bicomp.begin(), bicomp.end(), alpha) == bicomp.end()) {
#if defined(PBGL_HOHBERG_DEBUG) && PBGL_HOHBERG_DEBUG > 1
          std::cerr << local(alpha) << '@' << owner(alpha) << ' ';
#endif
          bicomp.push_back(alpha);
        }
      } else {
        if (target(e, g) == parent) edge_to_parent = e;

        per_edge_data& edata = edge_data[e_index];

        if (edata.msg.is_path()) {
          path_iterator pos = std::find(edata.msg.path_or_bicomp.begin(),
                                        edata.msg.path_or_bicomp.end(),
                                        eta);
          if (pos != edata.msg.path_or_bicomp.end()) {
            ++pos;
            if (pos != edata.msg.path_or_bicomp.end()
                && find(bicomp.begin(), bicomp.end(), *pos) == bicomp.end()) {
#if defined(PBGL_HOHBERG_DEBUG) && PBGL_HOHBERG_DEBUG > 1
              std::cerr << local(*pos) << '@' << owner(*pos) << ' ';
#endif
              bicomp.push_back(*pos);
            }
          }
        } else if (edata.msg.is_tree() && edata.msg.gamma == eta) {
          for (path_iterator i = edata.msg.path_or_bicomp.begin();
               i != edata.msg.path_or_bicomp.end(); ++i) {
            if (find(bicomp.begin(), bicomp.end(), *i) == bicomp.end()) {
#if defined(PBGL_HOHBERG_DEBUG) && PBGL_HOHBERG_DEBUG > 1
              std::cerr << local(*i) << '@' << owner(*i) << ' ';
#endif
              bicomp.push_back(*i);
            }
          }
        }
      }
      ++e_index;
    }
#ifdef PBGL_HOHBERG_DEBUG
    std::cerr << std::endl;
#endif

    // Send tree(eta, bicomp) to parent
    tree_header<Vertex, Edge> header;
    header.edge = edge_to_parent;
    header.gamma = eta;
    header.bicomp_length = bicomp.size();
    ProcessGroup pg = process_group(g);
    send(pg, get(owner, parent), msg_tree_header, header);
    send(pg, get(owner, parent), msg_tree_vertices, &bicomp[0],
         header.bicomp_length);
  }

  // Compute the partition of edges such that iff two edges e1 and e2
  // are in different subsets then M(e1) is disjoint from M(e2).

  // Start by putting each edge in a different partition
  std::vector<degree_size_type> parent_vec(edge_data.size());
  degree_size_type idx = 0;
  for (idx = 0; idx < edge_data.size(); ++idx)
    parent_vec[idx] = idx;

  // Go through each edge e, performing a union() on the edges
  // incident on all vertices in M[e].
  idx = 0;
  BGL_FORALL_OUTEDGES_T(alpha, e, g, Graph) {
    per_edge_data& edata = edge_data[idx++];

    // Compute union of vertices in M
    if (!edata.M.empty()) {
      degree_size_type e1 = get_incident_edge_index(alpha, edata.M.front(), g);
      while (parent_vec[e1] != e1) e1 = parent_vec[e1];

      for (std::size_t i = 1; i < edata.M.size(); ++i) {
        degree_size_type e2 = get_incident_edge_index(alpha, edata.M[i], g);
        while (parent_vec[e2] != e2) e2 = parent_vec[e2];
        parent_vec[e2] = e1;
      }
    }
  }

  edges_size_type not_mapped = (std::numeric_limits<edges_size_type>::max)();

  // Determine the number of partitions
  for (idx = 0; idx < parent_vec.size(); ++idx) {
    if (parent_vec[idx] == idx) {
      edge_data[idx].partition = local_to_global_partitions.size();
      local_to_global_partitions.push_back(not_mapped);
    }
  }

  // Assign partition numbers to each edge
  for (idx = 0; idx < parent_vec.size(); ++idx) {
    degree_size_type rep = parent_vec[idx];
    while (rep != parent_vec[rep]) rep = parent_vec[rep];
    edge_data[idx].partition = edge_data[rep].partition;
  }

  // Enter the naming phase (but don't send anything yet).
  phase = 4;
}

template<typename Graph>
std::size_t
hohberg_vertex_processor<Graph>::get_edge_index(Edge e, const Graph& g)
{
  std::size_t result = 0;
  BGL_FORALL_OUTEDGES_T(target(e, g), oe, g, Graph) {
    if (source(e, g) == target(oe, g)) return result;
    ++result;
  }
  BOOST_ASSERT(false);
}

template<typename Graph>
std::size_t
hohberg_vertex_processor<Graph>::get_incident_edge_index(Vertex u, Vertex v,
                                                         const Graph& g)
{
  std::size_t result = 0;
  BGL_FORALL_OUTEDGES_T(u, e, g, Graph) {
    if (target(e, g) == v) return result;
    ++result;
  }
  BOOST_ASSERT(false);
}

template<typename Graph, typename InputIterator, typename ComponentMap,
         typename VertexProcessorMap>
typename graph_traits<Graph>::edges_size_type
hohberg_biconnected_components
  (const Graph& g,
   ComponentMap component,
   InputIterator first, InputIterator last,
   VertexProcessorMap vertex_processor)
{
  using namespace boost::graph::parallel;
  using namespace hohberg_detail;
  using boost::parallel::all_reduce;

  typename property_map<Graph, vertex_owner_t>::const_type
    owner = get(vertex_owner, g);

  // The graph must be undirected
  BOOST_STATIC_ASSERT(
    (is_convertible<typename graph_traits<Graph>::directed_category,
                    undirected_tag>::value));

  // The graph must model Incidence Graph
  BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> ));

  typedef typename graph_traits<Graph>::edges_size_type edges_size_type;
  typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
  typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;

  // Retrieve the process group we will use for communication
  typedef typename process_group_type<Graph>::type process_group_type;
  process_group_type pg = process_group(g);

  // Keeps track of the edges that we know to be tree edges.
  std::vector<edge_descriptor> tree_edges;

  // The leaders send out a path message to initiate the algorithm
  while (first != last) {
    vertex_descriptor leader = *first;
    if (process_id(pg) == get(owner, leader))
      vertex_processor[leader].initialize_leader(leader, g);
    ++first;
  }
  synchronize(pg);

  // Will hold the number of bicomponents in the graph.
  edges_size_type num_bicomponents = 0;

  // Keep track of the path length that we should expect, based on the
  // level in the breadth-first search tree. At present, this is only
  // used as a sanity check. TBD: This could be used to decrease the
  // amount of communication required per-edge (by about 4 bytes).
  std::size_t path_length = 1;

  typedef std::vector<vertex_descriptor> path_t;

  unsigned char minimum_phase = 5;
  do {
    while (optional<std::pair<int, int> > msg = probe(pg)) {
      switch (msg->second) {
      case msg_path_header:
        {
          // Receive the path header
          path_header<edge_descriptor> header;
          receive(pg, msg->first, msg->second, header);
          BOOST_ASSERT(path_length == header.path_length);

          // Receive the path itself
          path_t path(path_length);
          receive(pg, msg->first, msg_path_vertices, &path[0], path_length);

          edge_descriptor e = header.edge;
          vertex_processor[target(e, g)](e, path, g);
        }
        break;

      case msg_path_vertices:
        // Should be handled in msg_path_header case, unless we're going
        // stateless.
        BOOST_ASSERT(false);
        break;

      case msg_tree_header:
        {
          // Receive the tree header
          tree_header<vertex_descriptor, edge_descriptor> header;
          receive(pg, msg->first, msg->second, header);

          // Receive the tree itself
          path_t in_same_bicomponent(header.bicomp_length);
          receive(pg, msg->first, msg_tree_vertices, &in_same_bicomponent[0],
                  header.bicomp_length);

          edge_descriptor e = header.edge;
          vertex_processor[target(e, g)](e, header.gamma, in_same_bicomponent,
                                         g);
        }
        break;

      case msg_tree_vertices:
        // Should be handled in msg_tree_header case, unless we're
        // going stateless.
        BOOST_ASSERT(false);
        break;

      case msg_name:
        {
          name_header<edge_descriptor> header;
          receive(pg, msg->first, msg->second, header);
          edge_descriptor e = header.edge;
          vertex_processor[target(e, g)](e, header.name, g);
        }
        break;

      default:
        BOOST_ASSERT(false);
      }
    }
    ++path_length;

    // Compute minimum phase locally
    minimum_phase = 5;
    unsigned char maximum_phase = 1;
    BGL_FORALL_VERTICES_T(v, g, Graph) {
      minimum_phase = (std::min)(minimum_phase, vertex_processor[v].get_phase());
      maximum_phase = (std::max)(maximum_phase, vertex_processor[v].get_phase());
    }

#ifdef PBGL_HOHBERG_DEBUG
    if (process_id(pg) == 0)
      std::cerr << "<---------End of stage------------->" << std::endl;
#endif
    // Compute minimum phase globally
    minimum_phase = all_reduce(pg, minimum_phase, boost::mpi::minimum<char>());

#ifdef PBGL_HOHBERG_DEBUG
    if (process_id(pg) == 0)
      std::cerr << "Minimum phase = " << (int)minimum_phase << std::endl;
#endif

    if (minimum_phase == 4
        && all_reduce(pg, maximum_phase, boost::mpi::maximum<char>()) == 4) {

#ifdef PBGL_HOHBERG_DEBUG
      if (process_id(pg) == 0)
        std::cerr << "<---------Naming phase------------->" << std::endl;
#endif
      // Compute the biconnected component number offsets for each
      // vertex.
      std::vector<edges_size_type> local_offsets;
      local_offsets.reserve(num_vertices(g));
      edges_size_type num_local_bicomponents = 0;
      BGL_FORALL_VERTICES_T(v, g, Graph) {
        local_offsets.push_back(num_local_bicomponents);
        num_local_bicomponents +=
          vertex_processor[v].num_starting_bicomponents(v, g);
      }

      synchronize(pg);

      // Find our the number of bicomponent names that will originate
      // from each process. This tells us how many bicomponents are in
      // the entire graph and what our global offset is for computing
      // our own biconnected component names.
      std::vector<edges_size_type> all_bicomponents(num_processes(pg));
      all_gather(pg, &num_local_bicomponents, &num_local_bicomponents + 1,
                 all_bicomponents);
      num_bicomponents = 0;
      edges_size_type my_global_offset = 0;
      for (std::size_t i = 0; i < all_bicomponents.size(); ++i) {
        if (i == (std::size_t)process_id(pg)) 
          my_global_offset = num_bicomponents;
        num_bicomponents += all_bicomponents[i];
      }

      std::size_t index = 0;
      BGL_FORALL_VERTICES_T(v, g, Graph) {
        edges_size_type offset = my_global_offset + local_offsets[index++];
        vertex_processor[v].start_naming_phase(v, g, offset);
      }
    }

    synchronize(pg);
  } while (minimum_phase < 5);

  // Number the edges appropriately.
  BGL_FORALL_VERTICES_T(v, g, Graph)
    vertex_processor[v].fill_edge_map(v, g, component);

  return num_bicomponents;
}

template<typename Graph, typename ComponentMap, typename InputIterator>
typename graph_traits<Graph>::edges_size_type
hohberg_biconnected_components
  (const Graph& g, ComponentMap component,
   InputIterator first, InputIterator last)

{
  std::vector<hohberg_vertex_processor<Graph> >
    vertex_processors(num_vertices(g));
  return hohberg_biconnected_components
           (g, component, first, last,
            make_iterator_property_map(vertex_processors.begin(),
                                       get(vertex_index, g)));
}

template<typename Graph, typename ComponentMap, typename ParentMap>
typename graph_traits<Graph>::edges_size_type
hohberg_biconnected_components(const Graph& g, ComponentMap component,
                               ParentMap parent)
{
  // We need the connected components of the graph, but we don't care
  // about component numbers.
  connected_components(g, dummy_property_map(), parent);

  // Each root in the parent map is a leader
  typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
  std::vector<vertex_descriptor> leaders;
  BGL_FORALL_VERTICES_T(v, g, Graph)
    if (get(parent, v) == v) leaders.push_back(v);

  return hohberg_biconnected_components(g, component,
                                        leaders.begin(), leaders.end());
}

template<typename Graph, typename ComponentMap>
typename graph_traits<Graph>::edges_size_type
hohberg_biconnected_components(const Graph& g, ComponentMap component)
{
  typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
  std::vector<vertex_descriptor> parents(num_vertices(g));
  return hohberg_biconnected_components
           (g, component, make_iterator_property_map(parents.begin(),
                                                     get(vertex_index, g)));
}

} } } // end namespace boost::graph::distributed

#endif // BOOST_GRAPH_DISTRIBUTED_HOHBERG_BICONNECTED_COMPONENTS_HPP