summaryrefslogtreecommitdiff
path: root/boost/graph/distributed/connected_components_parallel_search.hpp
blob: f3ebf05688dc52543b22e303054d2c5c8372c527 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
// Copyright (C) 2004-2006 The Trustees of Indiana University.

// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Brian Barrett
//           Douglas Gregor
//           Andrew Lumsdaine
#ifndef BOOST_GRAPH_PARALLEL_CC_PS_HPP
#define BOOST_GRAPH_PARALLEL_CC_PS_HPP

#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif

#include <boost/assert.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/graph/parallel/algorithm.hpp>
#include <boost/pending/indirect_cmp.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/overloading.hpp>
#include <boost/graph/distributed/concepts.hpp>
#include <boost/graph/parallel/properties.hpp>
#include <boost/graph/parallel/process_group.hpp>
#include <boost/optional.hpp>
#include <algorithm>
#include <vector>
#include <queue>
#include <limits>
#include <map>
#include <boost/graph/parallel/container_traits.hpp>
#include <boost/graph/iteration_macros.hpp>


// Connected components algorithm based on a parallel search.
//
// Every N nodes starts a parallel search from the first vertex in
// their local vertex list during the first superstep (the other nodes
// remain idle during the first superstep to reduce the number of
// conflicts in numbering the components).  At each superstep, all new
// component mappings from remote nodes are handled.  If there is no
// work from remote updates, a new vertex is removed from the local
// list and added to the work queue.
//
// Components are allocated from the component_value_allocator object,
// which ensures that a given component number is unique in the
// system, currently by using the rank and number of processes to
// stride allocations.
//
// When two components are discovered to actually be the same
// component, a mapping is created in the collisions object.  The
// lower component number is prefered in the resolution, so component
// numbering resolution is consistent.  After the search has exhausted
// all vertices in the graph, the mapping is shared with all
// processes, and they independently resolve the comonent mapping (so
// O((N * NP) + (V * NP)) work, in O(N + V) time, where N is the
// number of mappings and V is the number of local vertices).  This
// phase can likely be significantly sped up if a clever algorithm for
// the reduction can be found.
namespace boost { namespace graph { namespace distributed {
  namespace cc_ps_detail {
    // Local object for allocating component numbers.  There are two
    // places this happens in the code, and I was getting sick of them
    // getting out of sync.  Components are not tightly packed in
    // numbering, but are numbered to ensure each rank has its own
    // independent sets of numberings.
    template<typename component_value_type>
    class component_value_allocator {
    public:
      component_value_allocator(int num, int size) :
        last(0), num(num), size(size)
      {
      }

      component_value_type allocate(void)
      {
        component_value_type ret = num + (last * size);
        last++;
        return ret;
      }

    private:
      component_value_type last;
      int num;
      int size;
    };


    // Map of the "collisions" between component names in the global
    // component mapping.  TO make cleanup easier, component numbers
    // are added, pointing to themselves, when a new component is
    // found.  In order to make the results deterministic, the lower
    // component number is always taken.  The resolver will drill
    // through the map until it finds a component entry that points to
    // itself as the next value, allowing some cleanup to happen at
    // update() time.  Attempts are also made to update the mapping
    // when new entries are created.
    //
    // Note that there's an assumption that the entire mapping is
    // shared during the end of the algorithm, but before component
    // name resolution.
    template<typename component_value_type>
    class collision_map {
    public:
      collision_map() : num_unique(0)
      {
      }

      // add new component mapping first time component is used.  Own
      // function only so that we can sanity check there isn't already
      // a mapping for that component number (which would be bad)
      void add(const component_value_type &a) 
      {
        BOOST_ASSERT(collisions.count(a) == 0);
        collisions[a] = a;
      }

      // add a mapping between component values saying they're the
      // same component
      void add(const component_value_type &a, const component_value_type &b)
      {
        component_value_type high, low, tmp;
        if (a > b) {
          high = a;
          low = b;
        } else {
          high = b;
          low = a;
        }

        if (collisions.count(high) != 0 && collisions[high] != low) {
          tmp = collisions[high];
          if (tmp > low) {
            collisions[tmp] = low;
            collisions[high] = low;
          } else {
            collisions[low] = tmp;
            collisions[high] = tmp;
          }
        } else {
          collisions[high] = low;
        }

      }

      // get the "real" component number for the given component.
      // Used to resolve mapping at end of run.
      component_value_type update(component_value_type a)
      {
        BOOST_ASSERT(num_unique > 0);
        BOOST_ASSERT(collisions.count(a) != 0);
        return collisions[a];
      }

      // collapse the collisions tree, so that update is a one lookup
      // operation.  Count unique components at the same time.
      void uniqify(void)
      {
        typename std::map<component_value_type, component_value_type>::iterator i, end;

        end = collisions.end();
        for (i = collisions.begin() ; i != end ; ++i) {
          if (i->first == i->second) {
            num_unique++;
          } else {
            i->second = collisions[i->second];
          }
        }
      }

      // get the number of component entries that have an associated
      // component number of themselves, which are the real components
      // used in the final mapping.  This is the number of unique
      // components in the graph.
      int unique(void)
      {
        BOOST_ASSERT(num_unique > 0);
        return num_unique;
      }

      // "serialize" into a vector for communication.
      std::vector<component_value_type> serialize(void)
      {
        std::vector<component_value_type> ret;
        typename std::map<component_value_type, component_value_type>::iterator i, end;

        end = collisions.end();
        for (i = collisions.begin() ; i != end ; ++i) {
          ret.push_back(i->first);
          ret.push_back(i->second);
        }

        return ret;
      }

    private:
      std::map<component_value_type, component_value_type> collisions;
      int num_unique;
    };


    // resolver to handle remote updates.  The resolver will add
    // entries into the collisions map if required, and if it is the
    // first time the vertex has been touched, it will add the vertex
    // to the remote queue.  Note that local updates are handled
    // differently, in the main loop (below).

      // BWB - FIX ME - don't need graph anymore - can pull from key value of Component Map.
    template<typename ComponentMap, typename work_queue>
    struct update_reducer {
      BOOST_STATIC_CONSTANT(bool, non_default_resolver = false);

      typedef typename property_traits<ComponentMap>::value_type component_value_type;
      typedef typename property_traits<ComponentMap>::key_type vertex_descriptor;

      update_reducer(work_queue *q,
                     cc_ps_detail::collision_map<component_value_type> *collisions, 
                     processor_id_type pg_id) :
        q(q), collisions(collisions), pg_id(pg_id)
      {
      }

      // ghost cell initialization routine.  This should never be
      // called in this imlementation.
      template<typename K>
      component_value_type operator()(const K&) const
      { 
        return component_value_type(0); 
      }

      // resolver for remote updates.  I'm not entirely sure why, but
      // I decided to not change the value of the vertex if it's
      // already non-infinite.  It doesn't matter in the end, as we'll
      // touch every vertex in the cleanup phase anyway.  If the
      // component is currently infinite, set to the new component
      // number and add the vertex to the work queue.  If it's not
      // infinite, we've touched it already so don't add it to the
      // work queue.  Do add a collision entry so that we know the two
      // components are the same.
      component_value_type operator()(const vertex_descriptor &v,
                                      const component_value_type& current,
                                      const component_value_type& update) const
      {
        const component_value_type max = (std::numeric_limits<component_value_type>::max)();
        component_value_type ret = current;

        if (max == current) {
          q->push(v);
          ret = update;
        } else if (current != update) {
          collisions->add(current, update);
        }

        return ret;
      }                                    

      // So for whatever reason, the property map can in theory call
      // the resolver with a local descriptor in addition to the
      // standard global descriptor.  As far as I can tell, this code
      // path is never taken in this implementation, but I need to
      // have this code here to make it compile.  We just make a
      // global descriptor and call the "real" operator().
      template<typename K>
      component_value_type operator()(const K& v, 
                                      const component_value_type& current, 
                                      const component_value_type& update) const
      {
          return (*this)(vertex_descriptor(pg_id, v), current, update);
      }

    private:
      work_queue *q;
      collision_map<component_value_type> *collisions;
      boost::processor_id_type pg_id;
    };

  } // namespace cc_ps_detail


  template<typename Graph, typename ComponentMap>
  typename property_traits<ComponentMap>::value_type
  connected_components_ps(const Graph& g, ComponentMap c)
  {
    using boost::graph::parallel::process_group;

    typedef typename property_traits<ComponentMap>::value_type component_value_type;
    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
    typedef typename boost::graph::parallel::process_group_type<Graph>
      ::type process_group_type;
    typedef typename process_group_type::process_id_type process_id_type;
    typedef std::queue<vertex_descriptor> work_queue;

    static const component_value_type max_component = 
      (std::numeric_limits<component_value_type>::max)();
    typename property_map<Graph, vertex_owner_t>::const_type
      owner = get(vertex_owner, g);

    // standard who am i? stuff
    process_group_type pg = process_group(g);
    process_id_type id = process_id(pg);

    // Initialize every vertex to have infinite component number
    BGL_FORALL_VERTICES_T(v, g, Graph) put(c, v, max_component);

    vertex_iterator current, end;
    boost::tie(current, end) = vertices(g);

    cc_ps_detail::component_value_allocator<component_value_type> cva(process_id(pg), num_processes(pg));
    cc_ps_detail::collision_map<component_value_type> collisions;
    work_queue q;  // this is intentionally a local data structure
    c.set_reduce(cc_ps_detail::update_reducer<ComponentMap, work_queue>(&q, &collisions, id));

    // add starting work
    while (true) {
        bool useful_found = false;
        component_value_type val = cva.allocate();
        put(c, *current, val);
        collisions.add(val);
        q.push(*current);
        if (0 != out_degree(*current, g)) useful_found = true;
        ++current;
        if (useful_found) break;
    }

    // Run the loop until everyone in the system is done
    bool global_done = false;
    while (!global_done) {

      // drain queue of work for this superstep
      while (!q.empty()) {
        vertex_descriptor v = q.front();
        q.pop();
        // iterate through outedges of the vertex currently being
        // examined, setting their component to our component.  There
        // is no way to end up in the queue without having a component
        // number already.

        BGL_FORALL_ADJ_T(v, peer, g, Graph) {
          component_value_type my_component = get(c, v);

          // update other vertex with our component information.
          // Resolver will handle remote collisions as well as whether
          // to put the vertex on the work queue or not.  We have to
          // handle local collisions and work queue management
          if (id == get(owner, peer)) {
            if (max_component == get(c, peer)) {
              put(c, peer, my_component);
              q.push(peer);
            } else if (my_component != get(c, peer)) {
              collisions.add(my_component, get(c, peer));
            }
          } else {
            put(c, peer, my_component);
          }
        }
      }

      // synchronize / start a new superstep.
      synchronize(pg);
      global_done = all_reduce(pg, (q.empty() && (current == end)), boost::parallel::minimum<bool>());

      // If the queue is currently empty, add something to do to start
      // the current superstep (supersteps start at the sync, not at
      // the top of the while loop as one might expect).  Down at the
      // bottom of the while loop so that not everyone starts the
      // algorithm with something to do, to try to reduce component
      // name conflicts
      if (q.empty()) {
        bool useful_found = false;
        for ( ; current != end && !useful_found ; ++current) {
          if (max_component == get(c, *current)) {
            component_value_type val = cva.allocate();
            put(c, *current, val);
            collisions.add(val);
            q.push(*current);
            if (0 != out_degree(*current, g)) useful_found = true;
          }
        }
      }
    }

    // share component mappings
    std::vector<component_value_type> global;
    std::vector<component_value_type> mine = collisions.serialize();
    all_gather(pg, mine.begin(), mine.end(), global);
    for (size_t i = 0 ; i < global.size() ; i += 2) {
      collisions.add(global[i], global[i + 1]);
    }
    collisions.uniqify();

    // update the component mappings
    BGL_FORALL_VERTICES_T(v, g, Graph) {
      put(c, v, collisions.update(get(c, v)));
    }

    return collisions.unique();
  }

} // end namespace distributed

} // end namespace graph

} // end namespace boost

#endif // BOOST_GRAPH_PARALLEL_CC_HPP