summaryrefslogtreecommitdiff
path: root/boost/graph/distributed/adjacency_list.hpp
blob: 264ede512e06421da51045cef2c8db7590ebaf34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
// Copyright (C) 2004-2006 The Trustees of Indiana University.
// Copyright (C) 2007 Douglas Gregor 

// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Douglas Gregor
//           Andrew Lumsdaine

#ifndef BOOST_GRAPH_DISTRIBUTED_ADJACENCY_LIST_HPP
#define BOOST_GRAPH_DISTRIBUTED_ADJACENCY_LIST_HPP

#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/iteration_macros.hpp>
#include <boost/graph/distributed/concepts.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/graph/adjacency_iterator.hpp>
#include <boost/property_map/parallel/distributed_property_map.hpp>
#include <boost/property_map/parallel/local_property_map.hpp>
#include <boost/graph/parallel/detail/property_holders.hpp>
#include <boost/mpl/if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/assert.hpp>
#include <list>
#include <algorithm>
#include <boost/limits.hpp>
#include <boost/graph/parallel/properties.hpp>
#include <boost/graph/parallel/distribution.hpp>
#include <boost/graph/parallel/algorithm.hpp>
#include <boost/graph/distributed/selector.hpp>
#include <boost/graph/parallel/process_group.hpp>

// Callbacks
#include <boost/function/function2.hpp>

// Serialization
#include <boost/serialization/base_object.hpp>
#include <boost/mpi/datatype.hpp>
#include <boost/pending/property_serialize.hpp>
#include <boost/graph/distributed/unsafe_serialize.hpp>

// Named vertices
#include <boost/graph/distributed/named_graph.hpp>

#include <boost/graph/distributed/shuffled_distribution.hpp>

namespace boost {

  /// The type used to store an identifier that uniquely names a processor.
  // NGE: I doubt we'll be running on more than 32768 procs for the time being
  typedef /*int*/ short processor_id_type;

  // Tell which processor the target of an edge resides on (for
  // directed graphs) or which processor the other end point of the
  // edge resides on (for undirected graphs).
  enum edge_target_processor_id_t { edge_target_processor_id };
  BOOST_INSTALL_PROPERTY(edge, target_processor_id);

  // For undirected graphs, tells whether the edge is locally owned.
  enum edge_locally_owned_t { edge_locally_owned };
  BOOST_INSTALL_PROPERTY(edge, locally_owned);

  // For bidirectional graphs, stores the incoming edges.
  enum vertex_in_edges_t { vertex_in_edges };
  BOOST_INSTALL_PROPERTY(vertex, in_edges);

  /// Tag class for directed, distributed adjacency list
  struct directed_distributed_adj_list_tag
    : public virtual distributed_graph_tag,
      public virtual distributed_vertex_list_graph_tag,
      public virtual distributed_edge_list_graph_tag,
      public virtual incidence_graph_tag,
      public virtual adjacency_graph_tag {};

  /// Tag class for bidirectional, distributed adjacency list
  struct bidirectional_distributed_adj_list_tag
    : public virtual distributed_graph_tag,
      public virtual distributed_vertex_list_graph_tag,
      public virtual distributed_edge_list_graph_tag,
      public virtual incidence_graph_tag,
      public virtual adjacency_graph_tag,
      public virtual bidirectional_graph_tag {};

  /// Tag class for undirected, distributed adjacency list
  struct undirected_distributed_adj_list_tag
    : public virtual distributed_graph_tag,
      public virtual distributed_vertex_list_graph_tag,
      public virtual distributed_edge_list_graph_tag,
      public virtual incidence_graph_tag,
      public virtual adjacency_graph_tag,
      public virtual bidirectional_graph_tag {};

  namespace detail {
    template<typename Archiver, typename Directed, typename Vertex>
    void
    serialize(Archiver& ar, edge_base<Directed, Vertex>& e,
              const unsigned int /*version*/)
    {
      ar & unsafe_serialize(e.m_source)
         & unsafe_serialize(e.m_target);
    }

    template<typename Archiver, typename Directed, typename Vertex>
    void
    serialize(Archiver& ar, edge_desc_impl<Directed, Vertex>& e,
              const unsigned int /*version*/)
    {
      ar & boost::serialization::base_object<edge_base<Directed, Vertex> >(e)
         & unsafe_serialize(e.m_eproperty);
    }
  }

  namespace detail { namespace parallel {
  
    /**
     * A distributed vertex descriptor. These descriptors contain both
     * the ID of the processor that owns the vertex and a local vertex
     * descriptor that identifies the particular vertex for that
     * processor.
     */
    template<typename LocalDescriptor>
    struct global_descriptor
    {
      typedef LocalDescriptor local_descriptor_type;

      global_descriptor() : owner(), local() { }

      global_descriptor(processor_id_type owner, LocalDescriptor local)
        : owner(owner), local(local) { }

      processor_id_type owner;
      LocalDescriptor local;

      /**
       * A function object that, given a processor ID, generates
       * distributed vertex descriptors from local vertex
       * descriptors. This function object is used by the
       * vertex_iterator of the distributed adjacency list.
       */
      struct generator
      {
        typedef global_descriptor<LocalDescriptor> result_type;
        typedef LocalDescriptor argument_type;

        generator() {}
        generator(processor_id_type owner) : owner(owner) {}

        result_type operator()(argument_type v) const
        { return result_type(owner, v); }

      private:
        processor_id_type owner;
      };

      template<typename Archiver>
      void serialize(Archiver& ar, const unsigned int /*version*/)
      {
        ar & owner & unsafe_serialize(local);
      }
    };

    /// Determine the process that owns the given descriptor
    template<typename LocalDescriptor>
    inline processor_id_type owner(const global_descriptor<LocalDescriptor>& v)
    { return v.owner; }

    /// Determine the local portion of the given descriptor
    template<typename LocalDescriptor>
    inline LocalDescriptor local(const global_descriptor<LocalDescriptor>& v)
    { return v.local; }

    /// Compare distributed vertex descriptors for equality
    template<typename LocalDescriptor>
    inline bool
    operator==(const global_descriptor<LocalDescriptor>& u,
               const global_descriptor<LocalDescriptor>& v)
    {
      return u.owner == v.owner && u.local == v.local;
    }

    /// Compare distributed vertex descriptors for inequality
    template<typename LocalDescriptor>
    inline bool
    operator!=(const global_descriptor<LocalDescriptor>& u,
               const global_descriptor<LocalDescriptor>& v)
    { return !(u == v); }

    template<typename LocalDescriptor>
    inline bool
    operator<(const global_descriptor<LocalDescriptor>& u,
              const global_descriptor<LocalDescriptor>& v)
    {
      return (u.owner) < v.owner || (u.owner == v.owner && (u.local) < v.local);
    }

    template<typename LocalDescriptor>
    inline bool
    operator<=(const global_descriptor<LocalDescriptor>& u,
               const global_descriptor<LocalDescriptor>& v)
    {
      return u.owner <= v.owner || (u.owner == v.owner && u.local <= v.local);
    }

    template<typename LocalDescriptor>
    inline bool
    operator>(const global_descriptor<LocalDescriptor>& u,
              const global_descriptor<LocalDescriptor>& v)
    {
      return v < u;
    }

    template<typename LocalDescriptor>
    inline bool
    operator>=(const global_descriptor<LocalDescriptor>& u,
               const global_descriptor<LocalDescriptor>& v)
    {
      return v <= u;
    }

    // DPG TBD: Add <, <=, >=, > for global descriptors

    /**
     * A Readable Property Map that extracts a global descriptor pair
     * from a global_descriptor.
     */
    template<typename LocalDescriptor>
    struct global_descriptor_property_map
    {
      typedef std::pair<processor_id_type, LocalDescriptor> value_type;
      typedef value_type reference;
      typedef global_descriptor<LocalDescriptor> key_type;
      typedef readable_property_map_tag category;
    };

    template<typename LocalDescriptor>
    inline std::pair<processor_id_type, LocalDescriptor>
    get(global_descriptor_property_map<LocalDescriptor>,
        global_descriptor<LocalDescriptor> x)
    {
      return std::pair<processor_id_type, LocalDescriptor>(x.owner, x.local);
    }

    /**
     * A Readable Property Map that extracts the owner of a global
     * descriptor.
     */
    template<typename LocalDescriptor>
    struct owner_property_map
    {
      typedef processor_id_type value_type;
      typedef value_type reference;
      typedef global_descriptor<LocalDescriptor> key_type;
      typedef readable_property_map_tag category;
    };

    template<typename LocalDescriptor>
    inline processor_id_type
    get(owner_property_map<LocalDescriptor>,
        global_descriptor<LocalDescriptor> x)
    {
      return x.owner;
    }

    /**
     * A Readable Property Map that extracts the local descriptor from
     * a global descriptor.
     */
    template<typename LocalDescriptor>
    struct local_descriptor_property_map
    {
      typedef LocalDescriptor value_type;
      typedef value_type reference;
      typedef global_descriptor<LocalDescriptor> key_type;
      typedef readable_property_map_tag category;
    };

    template<typename LocalDescriptor>
    inline LocalDescriptor
    get(local_descriptor_property_map<LocalDescriptor>,
        global_descriptor<LocalDescriptor> x)
    {
      return x.local;
    }

    /**
     * Stores an incoming edge for a bidirectional distributed
     * adjacency list. The user does not see this type directly,
     * because it is just an implementation detail.
     */
    template<typename Edge>
    struct stored_in_edge
    {
      stored_in_edge(processor_id_type sp, Edge e)
        : source_processor(sp), e(e) {}

      processor_id_type source_processor;
      Edge e;
    };

    /**
     * A distributed edge descriptor. These descriptors contain the
     * underlying edge descriptor, the processor IDs for both the
     * source and the target of the edge, and a boolean flag that
     * indicates which of the processors actually owns the edge.
     */
    template<typename Edge>
    struct edge_descriptor
    {
      edge_descriptor(processor_id_type sp = processor_id_type(),
                      processor_id_type tp = processor_id_type(),
                      bool owns = false, Edge ld = Edge())
        : source_processor(sp), target_processor(tp),
          source_owns_edge(owns), local(ld) {}

      processor_id_type owner() const
      {
        return source_owns_edge? source_processor : target_processor;
      }

      /// The processor that the source vertex resides on
      processor_id_type source_processor;

      /// The processor that the target vertex resides on
      processor_id_type target_processor;

      /// True when the source processor owns the edge, false when the
      /// target processor owns the edge.
      bool source_owns_edge;

      /// The local edge descriptor.
      Edge local;

      /**
       * Function object that generates edge descriptors for the
       * out_edge_iterator of the given distributed adjacency list
       * from the edge descriptors of the underlying adjacency list.
       */
      template<typename Graph>
      class out_generator
      {
        typedef typename Graph::directed_selector directed_selector;

      public:
        typedef edge_descriptor<Edge> result_type;
        typedef Edge argument_type;

        out_generator() : g(0) {}
        explicit out_generator(const Graph& g) : g(&g) {}

        result_type operator()(argument_type e) const
        { return map(e, directed_selector()); }

      private:
        result_type map(argument_type e, directedS) const
        {
          return result_type(g->processor(),
                             get(edge_target_processor_id, g->base(), e),
                             true, e);
        }

        result_type map(argument_type e, bidirectionalS) const
        {
          return result_type(g->processor(),
                             get(edge_target_processor_id, g->base(), e),
                             true, e);
        }

        result_type map(argument_type e, undirectedS) const
        {
          return result_type(g->processor(),
                             get(edge_target_processor_id, g->base(), e),
                             get(edge_locally_owned, g->base(), e),
                             e);
        }

        const Graph* g;
      };

      /**
       * Function object that generates edge descriptors for the
       * in_edge_iterator of the given distributed adjacency list
       * from the edge descriptors of the underlying adjacency list.
       */
      template<typename Graph>
      class in_generator
      {
        typedef typename Graph::directed_selector DirectedS;

      public:
        typedef typename boost::mpl::if_<is_same<DirectedS, bidirectionalS>,
                                         stored_in_edge<Edge>,
                                         Edge>::type argument_type;
        typedef edge_descriptor<Edge> result_type;

        in_generator() : g(0) {}
        explicit in_generator(const Graph& g) : g(&g) {}

        result_type operator()(argument_type e) const
        { return map(e, DirectedS()); }

      private:
        /**
         * For a bidirectional graph, we just generate the appropriate
         * edge. No tricks.
         */
        result_type map(argument_type e, bidirectionalS) const
        {
          return result_type(e.source_processor,
                             g->processor(),
                             true,
                             e.e);
        }

        /**
         * For an undirected graph, we generate descriptors for the
         * incoming edges by swapping the source/target of the
         * underlying edge descriptor (a hack). The target processor
         * ID on the edge is actually the source processor for this
         * edge, and our processor is the target processor. If the
         * edge is locally owned, then it is owned by the target (us);
         * otherwise it is owned by the source.
         */
        result_type map(argument_type e, undirectedS) const
        {
          typename Graph::local_edge_descriptor local_edge(e);
          // TBD: This is a very, VERY lame hack that takes advantage
          // of our knowledge of the internals of the BGL
          // adjacency_list. There should be a cleaner way to handle
          // this...
          using std::swap;
          swap(local_edge.m_source, local_edge.m_target);
          return result_type(get(edge_target_processor_id, g->base(), e),
                             g->processor(),
                             !get(edge_locally_owned, g->base(), e),
                             local_edge);
        }

        const Graph* g;
      };

    private:
      friend class boost::serialization::access;

      template<typename Archiver>
      void serialize(Archiver& ar, const unsigned int /*version*/)
      {
        ar
          & source_processor
          & target_processor
          & source_owns_edge
          & local;
      }
    };

    /// Determine the process that owns this edge
    template<typename Edge>
    inline processor_id_type
    owner(const edge_descriptor<Edge>& e)
    { return e.source_owns_edge? e.source_processor : e.target_processor; }

    /// Determine the local descriptor for this edge.
    template<typename Edge>
    inline Edge
    local(const edge_descriptor<Edge>& e)
    { return e.local; }

    /**
     * A Readable Property Map that extracts the owner and local
     * descriptor of an edge descriptor.
     */
    template<typename Edge>
    struct edge_global_property_map
    {
      typedef std::pair<processor_id_type, Edge> value_type;
      typedef value_type reference;
      typedef edge_descriptor<Edge> key_type;
      typedef readable_property_map_tag category;
    };

    template<typename Edge>
    inline std::pair<processor_id_type, Edge>
    get(edge_global_property_map<Edge>, const edge_descriptor<Edge>& e)
    {
      typedef std::pair<processor_id_type, Edge> result_type;
      return result_type(e.source_owns_edge? e.source_processor
                         /* target owns edge*/: e.target_processor,
                         e.local);
    }

    /**
     * A Readable Property Map that extracts the owner of an edge
     * descriptor.
     */
    template<typename Edge>
    struct edge_owner_property_map
    {
      typedef processor_id_type value_type;
      typedef value_type reference;
      typedef edge_descriptor<Edge> key_type;
      typedef readable_property_map_tag category;
    };

    template<typename Edge>
    inline processor_id_type
    get(edge_owner_property_map<Edge>, const edge_descriptor<Edge>& e)
    {
      return e.source_owns_edge? e.source_processor : e.target_processor;
    }

    /**
     * A Readable Property Map that extracts the local descriptor from
     * an edge descriptor.
     */
    template<typename Edge>
    struct edge_local_property_map
    {
      typedef Edge value_type;
      typedef value_type reference;
      typedef edge_descriptor<Edge> key_type;
      typedef readable_property_map_tag category;
    };

    template<typename Edge>
    inline Edge
    get(edge_local_property_map<Edge>,
        const edge_descriptor<Edge>& e)
    {
      return e.local;
    }

    /** Compare distributed edge descriptors for equality.
     *
     * \todo need edge_descriptor to know if it is undirected so we
     * can compare both ways.
     */
    template<typename Edge>
    inline bool
    operator==(const edge_descriptor<Edge>& e1,
               const edge_descriptor<Edge>& e2)
    {
      return (e1.source_processor == e2.source_processor
              && e1.target_processor == e2.target_processor
              && e1.local == e2.local);
    }

    /// Compare distributed edge descriptors for inequality.
    template<typename Edge>
    inline bool
    operator!=(const edge_descriptor<Edge>& e1,
               const edge_descriptor<Edge>& e2)
    { return !(e1 == e2); }

    /**
     * Configuration for the distributed adjacency list. We use this
     * parameter to store all of the configuration details for the
     * implementation of the distributed adjacency list, which allows us to
     * get at the distribution type in the maybe_named_graph.
     */
    template<typename OutEdgeListS, typename ProcessGroup,
             typename InVertexListS, typename InDistribution,
             typename DirectedS, typename VertexProperty, 
             typename EdgeProperty, typename GraphProperty, 
             typename EdgeListS>
    struct adjacency_list_config
    {
      typedef typename mpl::if_<is_same<InVertexListS, defaultS>, 
                                vecS, InVertexListS>::type 
        VertexListS;

      /// Introduce the target processor ID property for each edge
      typedef property<edge_target_processor_id_t, processor_id_type,
                       EdgeProperty> edge_property_with_id;

      /// For undirected graphs, introduce the locally-owned property for edges
      typedef typename boost::mpl::if_<is_same<DirectedS, undirectedS>,
                                       property<edge_locally_owned_t, bool,
                                                edge_property_with_id>,
                                       edge_property_with_id>::type
        base_edge_property_type;

      /// The edge descriptor type for the local subgraph
      typedef typename adjacency_list_traits<OutEdgeListS,
                                             VertexListS,
                                             directedS>::edge_descriptor
        local_edge_descriptor;

      /// For bidirectional graphs, the type of an incoming stored edge
      typedef stored_in_edge<local_edge_descriptor> bidir_stored_edge;

      /// The container type that will store incoming edges for a
      /// bidirectional graph.
      typedef typename container_gen<EdgeListS, bidir_stored_edge>::type
        in_edge_list_type;

      // Bidirectional graphs have an extra vertex property to store
      // the incoming edges.
      typedef typename boost::mpl::if_<is_same<DirectedS, bidirectionalS>,
                                       property<vertex_in_edges_t, in_edge_list_type,
                                                VertexProperty>,
                                       VertexProperty>::type 
        base_vertex_property_type;

      // The type of the distributed adjacency list
      typedef adjacency_list<OutEdgeListS,
                             distributedS<ProcessGroup, 
                                          VertexListS, 
                                          InDistribution>,
                             DirectedS, VertexProperty, EdgeProperty,
                             GraphProperty, EdgeListS> 
        graph_type;

      // The type of the underlying adjacency list implementation
      typedef adjacency_list<OutEdgeListS, VertexListS, directedS,
                             base_vertex_property_type,
                             base_edge_property_type,
                             GraphProperty,
                             EdgeListS> 
        inherited;
      
      typedef InDistribution in_distribution_type;
      typedef typename inherited::vertices_size_type vertices_size_type;

          typedef typename ::boost::graph::distributed::select_distribution<
              in_distribution_type, VertexProperty, vertices_size_type, 
              ProcessGroup>::type 
        base_distribution_type;

          typedef ::boost::graph::distributed::shuffled_distribution<
          base_distribution_type> distribution_type;

      typedef VertexProperty vertex_property_type;
      typedef EdgeProperty edge_property_type;
      typedef ProcessGroup process_group_type;

      typedef VertexListS vertex_list_selector;
      typedef OutEdgeListS out_edge_list_selector;
      typedef DirectedS directed_selector;
      typedef GraphProperty graph_property_type;
      typedef EdgeListS edge_list_selector;
    };

    // Maybe initialize the indices of each vertex
    template<typename IteratorPair, typename VertexIndexMap>
    void
    maybe_initialize_vertex_indices(IteratorPair p, VertexIndexMap to_index,
                                    read_write_property_map_tag)
    {
      typedef typename property_traits<VertexIndexMap>::value_type index_t;
      index_t next_index = 0;
      while (p.first != p.second)
        put(to_index, *p.first++, next_index++);
    }

    template<typename IteratorPair, typename VertexIndexMap>
    inline void
    maybe_initialize_vertex_indices(IteratorPair p, VertexIndexMap to_index,
                                    readable_property_map_tag)
    {
      // Do nothing
    }

    template<typename IteratorPair, typename VertexIndexMap>
    inline void
    maybe_initialize_vertex_indices(IteratorPair p, VertexIndexMap to_index)
    {
      typedef typename property_traits<VertexIndexMap>::category category;
      maybe_initialize_vertex_indices(p, to_index, category());
    }

    template<typename IteratorPair>
    inline void
    maybe_initialize_vertex_indices(IteratorPair p,
                                    ::boost::detail::error_property_not_found)
    { }

    /***********************************************************************
     * Message Payloads                                                    *
     ***********************************************************************/

    /**
     * Data stored with a msg_add_edge message, which requests the
     * remote addition of an edge.
     */
    template<typename Vertex, typename LocalVertex>
    struct msg_add_edge_data
    {
      msg_add_edge_data() { }

      msg_add_edge_data(Vertex source, Vertex target)
        : source(source.local), target(target) { }

      /// The source of the edge; the processor will be the
      /// receiving processor.
      LocalVertex source;
        
      /// The target of the edge.
      Vertex target;
        
      template<typename Archiver>
      void serialize(Archiver& ar, const unsigned int /*version*/)
      {
        ar & unsafe_serialize(source) & target;
      }
    };

    /**
     * Like @c msg_add_edge_data, but also includes a user-specified
     * property value to be attached to the edge.
     */
    template<typename Vertex, typename LocalVertex, typename EdgeProperty>
    struct msg_add_edge_with_property_data
      : msg_add_edge_data<Vertex, LocalVertex>, 
        maybe_store_property<EdgeProperty>
    {
    private:
      typedef msg_add_edge_data<Vertex, LocalVertex> inherited_data;
      typedef maybe_store_property<EdgeProperty> inherited_property;

    public:
      msg_add_edge_with_property_data() { }

      msg_add_edge_with_property_data(Vertex source, 
                                      Vertex target,
                                      const EdgeProperty& property)
        : inherited_data(source, target),
          inherited_property(property) { }
      
      template<typename Archiver>
      void serialize(Archiver& ar, const unsigned int /*version*/)
      {
        ar & boost::serialization::base_object<inherited_data>(*this) 
           & boost::serialization::base_object<inherited_property>(*this);
      }
    };

    //------------------------------------------------------------------------
    // Distributed adjacency list property map details
    /**
     * Metafunction that extracts the given property from the given
     * distributed adjacency list type. This could be implemented much
     * more cleanly, but even newer versions of GCC (e.g., 3.2.3)
     * cannot properly handle partial specializations involving
     * enumerator types.
     */
    template<typename Property>
    struct get_adj_list_pmap
    {
      template<typename Graph>
      struct apply
      {
        typedef Graph graph_type;
        typedef typename graph_type::process_group_type process_group_type;
        typedef typename graph_type::inherited base_graph_type;
        typedef typename property_map<base_graph_type, Property>::type
          local_pmap;
        typedef typename property_map<base_graph_type, Property>::const_type
          local_const_pmap;

        typedef graph_traits<graph_type> traits;
        typedef typename graph_type::local_vertex_descriptor local_vertex;
        typedef typename property_traits<local_pmap>::key_type local_key_type;

        typedef typename property_traits<local_pmap>::value_type value_type;

        typedef typename property_map<Graph, vertex_global_t>::const_type
          vertex_global_map;
        typedef typename property_map<Graph, edge_global_t>::const_type
          edge_global_map;

        typedef typename mpl::if_c<(is_same<local_key_type,
                                            local_vertex>::value),
                                   vertex_global_map, edge_global_map>::type
          global_map;

      public:
        typedef ::boost::parallel::distributed_property_map<
                  process_group_type, global_map, local_pmap> type;

        typedef ::boost::parallel::distributed_property_map<
                  process_group_type, global_map, local_const_pmap> const_type;
      };
    };

    /**
     * The local vertex index property map is actually a mapping from
     * the local vertex descriptors to vertex indices.
     */
    template<>
    struct get_adj_list_pmap<vertex_local_index_t>
    {
      template<typename Graph>
      struct apply
        : ::boost::property_map<typename Graph::inherited, vertex_index_t>
      { };
    };

    /**
     * The vertex index property map maps from global descriptors
     * (e.g., the vertex descriptor of a distributed adjacency list)
     * to the underlying local index. It is not valid to use this
     * property map with nonlocal descriptors.
     */
    template<>
    struct get_adj_list_pmap<vertex_index_t>
    {
      template<typename Graph>
      struct apply
      {
      private:
        typedef typename property_map<Graph, vertex_global_t>::const_type
          global_map;

        typedef property_map<typename Graph::inherited, vertex_index_t> local;

      public:
        typedef local_property_map<typename Graph::process_group_type,
                                   global_map,
                                   typename local::type> type;
        typedef local_property_map<typename Graph::process_group_type,
                                   global_map,
                                   typename local::const_type> const_type;
      };
    };

    /**
     * The vertex owner property map maps from vertex descriptors to
     * the processor that owns the vertex.
     */
    template<>
    struct get_adj_list_pmap<vertex_global_t>
    {
      template<typename Graph>
      struct apply
      {
      private:
        typedef typename Graph::local_vertex_descriptor
          local_vertex_descriptor;
      public:
        typedef global_descriptor_property_map<local_vertex_descriptor> type;
        typedef type const_type;
      };
    };

    /**
     * The vertex owner property map maps from vertex descriptors to
     * the processor that owns the vertex.
     */
    template<>
    struct get_adj_list_pmap<vertex_owner_t>
    {
      template<typename Graph>
      struct apply
      {
      private:
        typedef typename Graph::local_vertex_descriptor
          local_vertex_descriptor;
      public:
        typedef owner_property_map<local_vertex_descriptor> type;
        typedef type const_type;
      };
    };

    /**
     * The vertex local property map maps from vertex descriptors to
     * the local descriptor for that vertex.
     */
    template<>
    struct get_adj_list_pmap<vertex_local_t>
    {
      template<typename Graph>
      struct apply
      {
      private:
        typedef typename Graph::local_vertex_descriptor
          local_vertex_descriptor;
      public:
        typedef local_descriptor_property_map<local_vertex_descriptor> type;
        typedef type const_type;
      };
    };

    /**
     * The edge global property map maps from edge descriptors to
     * a pair of the owning processor and local descriptor.
     */
    template<>
    struct get_adj_list_pmap<edge_global_t>
    {
      template<typename Graph>
      struct apply
      {
      private:
        typedef typename Graph::local_edge_descriptor
          local_edge_descriptor;
      public:
        typedef edge_global_property_map<local_edge_descriptor> type;
        typedef type const_type;
      };
    };

    /**
     * The edge owner property map maps from edge descriptors to
     * the processor that owns the edge.
     */
    template<>
    struct get_adj_list_pmap<edge_owner_t>
    {
      template<typename Graph>
      struct apply
      {
      private:
        typedef typename Graph::local_edge_descriptor
          local_edge_descriptor;
      public:
        typedef edge_owner_property_map<local_edge_descriptor> type;
        typedef type const_type;
      };
    };

    /**
     * The edge local property map maps from edge descriptors to
     * the local descriptor for that edge.
     */
    template<>
    struct get_adj_list_pmap<edge_local_t>
    {
      template<typename Graph>
      struct apply
      {
      private:
        typedef typename Graph::local_edge_descriptor
          local_edge_descriptor;
      public:
        typedef edge_local_property_map<local_edge_descriptor> type;
        typedef type const_type;
      };
    };
    //------------------------------------------------------------------------

    // Directed graphs do not have in edges, so this is a no-op
    template<typename Graph>
    inline void
    remove_in_edge(typename Graph::edge_descriptor, Graph&, directedS)
    { }

    // Bidirectional graphs have in edges stored in the
    // vertex_in_edges property.
    template<typename Graph>
    inline void
    remove_in_edge(typename Graph::edge_descriptor e, Graph& g, bidirectionalS)
    {
      typedef typename Graph::in_edge_list_type in_edge_list_type;
      in_edge_list_type& in_edges =
        get(vertex_in_edges, g.base())[target(e, g).local];
      typename in_edge_list_type::iterator i = in_edges.begin();
      while (i != in_edges.end()
             && !(i->source_processor == source(e, g).owner)
             && i->e == e.local)
        ++i;

      BOOST_ASSERT(i != in_edges.end());
      in_edges.erase(i);
    }

    // Undirected graphs have in edges stored as normal edges.
    template<typename Graph>
    inline void
    remove_in_edge(typename Graph::edge_descriptor e, Graph& g, undirectedS)
    {
      typedef typename Graph::inherited base_type;
      typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;

      // TBD: can we make this more efficient?
      // Removing edge (v, u). v is local
      base_type& bg = g.base();
      vertex_descriptor u = source(e, g);
      vertex_descriptor v = target(e, g);
      if (v.owner != process_id(g.process_group())) {
        using std::swap;
        swap(u, v);
      }

      typename graph_traits<base_type>::out_edge_iterator ei, ei_end;
      for (boost::tie(ei, ei_end) = out_edges(v.local, bg); ei != ei_end; ++ei)
      {
        if (target(*ei, g.base()) == u.local
            // TBD: deal with parallel edges properly && *ei == e
            && get(edge_target_processor_id, bg, *ei) == u.owner) {
          remove_edge(ei, bg);
          return;
        }
      }

      if (v.owner == process_id(g.process_group())) {

      }
    }

    //------------------------------------------------------------------------
    // Lazy addition of edges

    // Work around the fact that an adjacency_list with vecS vertex
    // storage automatically adds edges when the descriptor is
    // out-of-range.
    template <class Graph, class Config, class Base>
    inline std::pair<typename Config::edge_descriptor, bool>
    add_local_edge(typename Config::vertex_descriptor u,
                   typename Config::vertex_descriptor v,
                   const typename Config::edge_property_type& p,
                   vec_adj_list_impl<Graph, Config, Base>& g_)
    {
      adj_list_helper<Config, Base>& g = g_;
      return add_edge(u, v, p, g);
    }

    template <class Graph, class Config, class Base>
    inline std::pair<typename Config::edge_descriptor, bool>
    add_local_edge(typename Config::vertex_descriptor u,
                   typename Config::vertex_descriptor v,
                   const typename Config::edge_property_type& p,
                   boost::adj_list_impl<Graph, Config, Base>& g)
    {
      return add_edge(u, v, p, g);
    }

    template <class EdgeProperty,class EdgeDescriptor>
    struct msg_nonlocal_edge_data
      : public detail::parallel::maybe_store_property<EdgeProperty>
    {
      typedef EdgeProperty edge_property_type;
      typedef EdgeDescriptor local_edge_descriptor;
      typedef detail::parallel::maybe_store_property<edge_property_type> 
        inherited;

      msg_nonlocal_edge_data() {}
      msg_nonlocal_edge_data(local_edge_descriptor e,
                             const edge_property_type& p)
        : inherited(p), e(e) { }

      local_edge_descriptor e;

      template<typename Archiver>
      void serialize(Archiver& ar, const unsigned int /*version*/)
      {
        ar & boost::serialization::base_object<inherited>(*this) & e;
      }
    };

    template <class EdgeDescriptor>
    struct msg_remove_edge_data
    {
      typedef EdgeDescriptor edge_descriptor;
      msg_remove_edge_data() {}
      explicit msg_remove_edge_data(edge_descriptor e) : e(e) {}

      edge_descriptor e;

      template<typename Archiver>
      void serialize(Archiver& ar, const unsigned int /*version*/)
      {
        ar & e;
      }
    };

  } } // end namespace detail::parallel

  /**
   * Adjacency list traits for a distributed adjacency list. Contains
   * the vertex and edge descriptors, the directed-ness, and the
   * parallel edges typedefs.
   */
  template<typename OutEdgeListS, typename ProcessGroup,
           typename InVertexListS, typename InDistribution, typename DirectedS>
  struct adjacency_list_traits<OutEdgeListS,
                               distributedS<ProcessGroup, 
                                            InVertexListS,
                                            InDistribution>,
                               DirectedS>
  {
  private:
    typedef typename mpl::if_<is_same<InVertexListS, defaultS>,
                              vecS,
                              InVertexListS>::type VertexListS;

    typedef adjacency_list_traits<OutEdgeListS, VertexListS, directedS>
      base_type;

  public:
    typedef typename base_type::vertex_descriptor local_vertex_descriptor;
    typedef typename base_type::edge_descriptor   local_edge_descriptor;

    typedef typename boost::mpl::if_<typename DirectedS::is_bidir_t,
      bidirectional_tag,
      typename boost::mpl::if_<typename DirectedS::is_directed_t,
        directed_tag, undirected_tag
      >::type
    >::type directed_category;

    typedef typename parallel_edge_traits<OutEdgeListS>::type
      edge_parallel_category;

    typedef detail::parallel::global_descriptor<local_vertex_descriptor>
      vertex_descriptor;

    typedef detail::parallel::edge_descriptor<local_edge_descriptor>
      edge_descriptor;
  };

#define PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS                                    \
  typename OutEdgeListS, typename ProcessGroup, typename InVertexListS,        \
  typename InDistribution, typename DirectedS, typename VertexProperty,        \
  typename EdgeProperty,  typename GraphProperty, typename EdgeListS

#define PBGL_DISTRIB_ADJLIST_TYPE                                              \
  adjacency_list<OutEdgeListS,                                                 \
                 distributedS<ProcessGroup, InVertexListS, InDistribution>,    \
                 DirectedS, VertexProperty, EdgeProperty, GraphProperty,       \
                 EdgeListS>

#define PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG                             \
  typename OutEdgeListS, typename ProcessGroup, typename InVertexListS,        \
  typename InDistribution, typename VertexProperty,                            \
  typename EdgeProperty,  typename GraphProperty, typename EdgeListS
  
#define PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directed)                             \
  adjacency_list<OutEdgeListS,                                                 \
                 distributedS<ProcessGroup, InVertexListS, InDistribution>,    \
                 directed, VertexProperty, EdgeProperty, GraphProperty,        \
                 EdgeListS>
                 
  /** A distributed adjacency list.
   *
   * This class template partial specialization defines a distributed
   * (or "partitioned") adjacency list graph. The distributed
   * adjacency list is similar to the standard Boost Graph Library
   * adjacency list, which stores a list of vertices and for each
   * verted the list of edges outgoing from the vertex (and, in some
   * cases, also the edges incoming to the vertex). The distributed
   * adjacency list differs in that it partitions the graph into
   * several subgraphs that are then divided among different
   * processors (or nodes within a cluster). The distributed adjacency
   * list attempts to maintain a high degree of compatibility with the
   * standard, non-distributed adjacency list.
   *
   * The graph is partitioned by vertex, with each processor storing
   * all of the required information for a particular subset of the
   * vertices, including vertex properties, outgoing edges, and (for
   * bidirectional graphs) incoming edges. This information is
   * accessible only on the processor that owns the vertex: for
   * instance, if processor 0 owns vertex @c v, no other processor can
   * directly access the properties of @c v or enumerate its outgoing
   * edges.
   *
   * Edges in a graph may be entirely local (connecting two local
   * vertices), but more often it is the case that edges are
   * non-local, meaning that the two vertices they connect reside in
   * different processes. Edge properties are stored with the
   * originating vertex for directed and bidirectional graphs, and are
   * therefore only accessible from the processor that owns the
   * originating vertex. Other processors may query the source and
   * target of the edge, but cannot access its properties. This is
   * particularly interesting when accessing the incoming edges of a
   * bidirectional graph, which are not guaranteed to be stored on the
   * processor that is able to perform the iteration. For undirected
   * graphs the situation is more complicated, since no vertex clearly
   * owns the edges: the list of edges incident to a vertex may
   * contain a mix of local and non-local edges.
   *
   * The distributed adjacency list is able to model several of the
   * existing Graph concepts. It models the Graph concept because it
   * exposes vertex and edge descriptors in the normal way; these
   * descriptors model the GlobalDescriptor concept (because they have
   * an owner and a local descriptor), and as such the distributed
   * adjacency list models the DistributedGraph concept. The adjacency
   * list also models the IncidenceGraph and AdjacencyGraph concepts,
   * although this is only true so long as the domain of the valid
   * expression arguments are restricted to vertices and edges stored
   * locally. Likewise, bidirectional and undirected distributed
   * adjacency lists model the BidirectionalGraph concept (vertex and
   * edge domains must be respectived) and the distributed adjacency
   * list models the MutableGraph concept (vertices and edges can only
   * be added or removed locally). T he distributed adjacency list
   * does not, however, model the VertexListGraph or EdgeListGraph
   * concepts, because we can not efficiently enumerate all vertices
   * or edges in the graph. Instead, the local subsets of vertices and
   * edges can be enumerated (with the same syntax): the distributed
   * adjacency list therefore models the DistributedVertexListGraph
   * and DistributedEdgeListGraph concepts, because concurrent
   * iteration over all of the vertices or edges stored on each
   * processor will visit each vertex or edge.
   *
   * The distributed adjacency list is distinguished from the
   * non-distributed version by the vertex list descriptor, which will
   * be @c distributedS<ProcessGroup,VertexListS>. Here,
   * the VertexListS type plays the same role as the VertexListS type
   * in the non-distributed adjacency list: it allows one to select
   * the data structure that will be used to store the local
   * vertices. The ProcessGroup type, on the other hand, is unique to
   * distributed data structures: it is the type that abstracts a
   * group of cooperating processes, and it used for process
   * identification, communication, and synchronization, among other
   * things. Different process group types represent different
   * communication mediums (e.g., MPI, PVM, TCP) or different models
   * of communication (LogP, CGM, BSP, synchronous, etc.). This
   * distributed adjacency list assumes a model based on non-blocking
   * sends.
   *
   * Distribution of vertices across different processors is
   * accomplished in two different ways. When initially constructing
   * the graph, the user may provide a distribution object (that
   * models the Distribution concept), which will determine the
   * distribution of vertices to each process. Additionally, the @c
   * add_vertex and @c add_edge operations add vertices or edges
   * stored on the local processor. For @c add_edge, this is
   * accomplished by requiring that the source vertex of the new edge
   * be local to the process executing @c add_edge.
   *
   * Internal properties of a distributed adjacency list are
   * accessible in the same manner as internal properties for a
   * non-distributed adjacency list for local vertices or
   * edges. Access to properties for remote vertices or edges occurs
   * with the same syntax, but involve communication with the owner of
   * the information: for more information, refer to class template
   * @ref distributed_property_map, which manages distributed
   * property maps. Note that the distributed property maps created
   * for internal properties determine their reduction operation via
   * the metafunction @ref property_reduce, which for the vast
   * majority of uses is correct behavior.
   *
   * Communication among the processes coordinating on a particular
   * distributed graph relies on non-blocking message passing along
   * with synchronization. Local portions of the distributed graph may
   * be modified concurrently, including the introduction of non-local
   * edges, but prior to accessing the graph it is recommended that
   * the @c synchronize free function be invoked on the graph to clear
   * up any pending interprocess communication and modifications. All
   * processes will then be released from the synchronization barrier
   * concurrently.
   *
   * \todo Determine precisely what we should do with nonlocal edges
   * in undirected graphs. Our parallelization of certain algorithms
   * relies on the ability to access edge property maps immediately
   * (e.g., edge_weight_t), so it may be necessary to duplicate the
   * edge properties in both processes (but then we need some form of
   * coherence protocol).
   *
   * \todo What does the user do if @c property_reduce doesn't do the
   * right thing?
   */
  template<typename OutEdgeListS, typename ProcessGroup,
           typename InVertexListS, typename InDistribution, typename DirectedS,
           typename VertexProperty, typename EdgeProperty, 
           typename GraphProperty, typename EdgeListS>
  class adjacency_list<OutEdgeListS,
                       distributedS<ProcessGroup, 
                                    InVertexListS, 
                                    InDistribution>,
                       DirectedS, VertexProperty,
                       EdgeProperty, GraphProperty, EdgeListS>
    : // Support for named vertices
      public graph::distributed::maybe_named_graph<   
        adjacency_list<OutEdgeListS,
                       distributedS<ProcessGroup,
                                    InVertexListS,
                                    InDistribution>,
                       DirectedS, VertexProperty,
                       EdgeProperty, GraphProperty, EdgeListS>,
        typename adjacency_list_traits<OutEdgeListS, 
                                       distributedS<ProcessGroup,
                                                    InVertexListS,
                                                    InDistribution>,
                                       DirectedS>::vertex_descriptor,
        typename adjacency_list_traits<OutEdgeListS, 
                                       distributedS<ProcessGroup,
                                                    InVertexListS,
                                                    InDistribution>,
                                       DirectedS>::edge_descriptor,
        detail::parallel::adjacency_list_config<OutEdgeListS, ProcessGroup, 
                                                InVertexListS, InDistribution,
                                                DirectedS, VertexProperty, 
                                                EdgeProperty, GraphProperty, 
                                                EdgeListS> >
  {
    typedef detail::parallel::adjacency_list_config<OutEdgeListS, ProcessGroup, 
                                                InVertexListS, InDistribution,
                                                DirectedS, VertexProperty, 
                                                EdgeProperty, GraphProperty, 
                                                EdgeListS>
      config_type;
      
    typedef adjacency_list_traits<OutEdgeListS,
                                  distributedS<ProcessGroup, 
                                               InVertexListS, 
                                               InDistribution>,
                                  DirectedS> 
      traits_type;

    typedef typename DirectedS::is_directed_t is_directed;

    typedef EdgeListS edge_list_selector;

  public:
    /// The container type that will store incoming edges for a
    /// bidirectional graph.
    typedef typename config_type::in_edge_list_type in_edge_list_type;
//    typedef typename inherited::edge_descriptor   edge_descriptor;

    /// The type of the underlying adjacency list implementation
    typedef typename config_type::inherited inherited;

    /// The type of properties stored in the local subgraph
    /// Bidirectional graphs have an extra vertex property to store
    /// the incoming edges.
    typedef typename inherited::vertex_property_type
      base_vertex_property_type;

    /// The type of the distributed adjacency list (this type)
    typedef typename config_type::graph_type graph_type;

    /// Expose graph components and graph category
    typedef typename traits_type::local_vertex_descriptor
      local_vertex_descriptor;
    typedef typename traits_type::local_edge_descriptor
      local_edge_descriptor;
    typedef typename traits_type::vertex_descriptor vertex_descriptor;
    typedef typename traits_type::edge_descriptor edge_descriptor;

    typedef typename traits_type::directed_category directed_category;
    typedef typename inherited::edge_parallel_category
      edge_parallel_category;
    typedef typename inherited::graph_tag graph_tag;

    // Current implementation requires the ability to have parallel
    // edges in the underlying adjacency_list. Which processor each
    // edge refers to is attached as an internal property. TBD:
    // remove this restriction, which may require some rewriting.
    BOOST_STATIC_ASSERT((is_same<edge_parallel_category,
                                 allow_parallel_edge_tag>::value));

    /** Determine the graph traversal category.
     *
     * A directed distributed adjacency list models the Distributed
     * Graph, Incidence Graph, and Adjacency Graph
     * concepts. Bidirectional and undirected graphs also model the
     * Bidirectional Graph concept. Note that when modeling these
     * concepts the domains of certain operations (e.g., in_edges)
     * are restricted; see the distributed adjacency_list
     * documentation.
     */
    typedef typename boost::mpl::if_<
              is_same<DirectedS, directedS>,
              directed_distributed_adj_list_tag,
              typename boost::mpl::if_<is_same<DirectedS, bidirectionalS>,
                                       bidirectional_distributed_adj_list_tag,
                                       undirected_distributed_adj_list_tag>::type>
      ::type traversal_category;

    typedef typename inherited::degree_size_type degree_size_type;
    typedef typename inherited::vertices_size_type vertices_size_type;
    typedef typename inherited::edges_size_type edges_size_type;
    typedef VertexProperty vertex_property_type;
    typedef EdgeProperty edge_property_type;
    typedef typename inherited::graph_property_type graph_property_type;
    typedef typename inherited::vertex_bundled vertex_bundled;
    typedef typename inherited::edge_bundled edge_bundled;
    typedef typename inherited::graph_bundled graph_bundled;

    typedef typename container_gen<edge_list_selector, edge_descriptor>::type
      local_edge_list_type;

  private:
    typedef typename boost::mpl::if_<is_same<DirectedS, bidirectionalS>,
                                     typename in_edge_list_type::const_iterator,
                                     typename inherited::out_edge_iterator>::type
      base_in_edge_iterator;

    typedef typename inherited::out_edge_iterator base_out_edge_iterator;
    typedef typename graph_traits<inherited>::edge_iterator
      base_edge_iterator;
    typedef typename inherited::edge_property_type base_edge_property_type;

    typedef typename local_edge_list_type::const_iterator
      undirected_edge_iterator;

    typedef InDistribution in_distribution_type;

    typedef parallel::trigger_receive_context trigger_receive_context;

  public:
    /// Iterator over the (local) vertices of the graph
    typedef transform_iterator<typename vertex_descriptor::generator,
                               typename inherited::vertex_iterator>
      vertex_iterator;

    /// Helper for out_edge_iterator
    typedef typename edge_descriptor::template out_generator<adjacency_list>
      out_edge_generator;

    /// Iterator over the outgoing edges of a vertex
    typedef transform_iterator<out_edge_generator,
                               typename inherited::out_edge_iterator>
      out_edge_iterator;

    /// Helper for in_edge_iterator
    typedef typename edge_descriptor::template in_generator<adjacency_list>
      in_edge_generator;

    /// Iterator over the incoming edges of a vertex
    typedef transform_iterator<in_edge_generator, base_in_edge_iterator>
      in_edge_iterator;

    /// Iterator over the neighbors of a vertex
    typedef boost::adjacency_iterator<
              adjacency_list, vertex_descriptor, out_edge_iterator,
              typename detail::iterator_traits<base_out_edge_iterator>
                         ::difference_type>
      adjacency_iterator;

    /// Iterator over the (local) edges in a graph
    typedef typename boost::mpl::if_<is_same<DirectedS, undirectedS>,
                                     undirected_edge_iterator,
                                     transform_iterator<out_edge_generator,
                                                        base_edge_iterator>
                                     >::type 
      edge_iterator;

  public:
    /// The type of the mixin for named vertices
    typedef graph::distributed::maybe_named_graph<graph_type, 
                                                  vertex_descriptor, 
                                                  edge_descriptor, 
                                                  config_type> 
      named_graph_mixin;
        
    /// Process group used for communication
    typedef ProcessGroup process_group_type;

    /// How to refer to a process
    typedef typename process_group_type::process_id_type process_id_type;

    /// Whether this graph is directed, undirected, or bidirectional
    typedef DirectedS directed_selector;

    // Structure used for the lazy addition of vertices
    struct lazy_add_vertex_with_property;
    friend struct lazy_add_vertex_with_property;

    // Structure used for the lazy addition of edges
    struct lazy_add_edge;
    friend struct lazy_add_edge;

    // Structure used for the lazy addition of edges with properties
    struct lazy_add_edge_with_property;
    friend struct lazy_add_edge_with_property;

    /// default_distribution_type is the type of the distribution used if the
    /// user didn't specify an explicit one
    typedef typename graph::distributed::select_distribution<
              InDistribution, VertexProperty, vertices_size_type, 
              ProcessGroup>::default_type 
      default_distribution_type;
    
    /// distribution_type is the type of the distribution instance stored in
    /// the maybe_named_graph base class
    typedef typename graph::distributed::select_distribution<
              InDistribution, VertexProperty, vertices_size_type,
              ProcessGroup>::type 
      base_distribution_type;

      typedef graph::distributed::shuffled_distribution<
          base_distribution_type> distribution_type;

  private:
    // FIXME: the original adjacency_list contained this comment:
    //    Default copy constructor and copy assignment operators OK??? TBD
    // but the adj_list_impl contained these declarations:
    adjacency_list(const adjacency_list& other);
    adjacency_list& operator=(const adjacency_list& other);

  public:
    adjacency_list(const ProcessGroup& pg = ProcessGroup())
      : named_graph_mixin(pg, default_distribution_type(pg, 0)),
        m_local_graph(GraphProperty()), 
        process_group_(pg, graph::parallel::attach_distributed_object())
    {
      setup_triggers();
    }

    adjacency_list(const ProcessGroup& pg, 
                   const base_distribution_type& distribution)
      : named_graph_mixin(pg, distribution),
        m_local_graph(GraphProperty()), 
        process_group_(pg, graph::parallel::attach_distributed_object())
    {
      setup_triggers();
    }

    adjacency_list(const GraphProperty& g,
                   const ProcessGroup& pg = ProcessGroup())
      : named_graph_mixin(pg, default_distribution_type(pg, 0)),
        m_local_graph(g), 
        process_group_(pg, graph::parallel::attach_distributed_object())
    {
      setup_triggers();
    }

    adjacency_list(vertices_size_type n,
                   const GraphProperty& p,
                   const ProcessGroup& pg,
                   const base_distribution_type& distribution)
      : named_graph_mixin(pg, distribution),
        m_local_graph(distribution.block_size(process_id(pg), n), p),
        process_group_(pg, graph::parallel::attach_distributed_object())
    {
      setup_triggers();

      detail::parallel::maybe_initialize_vertex_indices(vertices(base()),
                                      get(vertex_index, base()));
    }

    adjacency_list(vertices_size_type n,
                   const ProcessGroup& pg,
                   const base_distribution_type& distribution)
      : named_graph_mixin(pg, distribution),
        m_local_graph(distribution.block_size(process_id(pg), n), GraphProperty()),
        process_group_(pg, graph::parallel::attach_distributed_object()) 
    {
      setup_triggers();

      detail::parallel::maybe_initialize_vertex_indices(vertices(base()),
                                      get(vertex_index, base()));
    }

    adjacency_list(vertices_size_type n,
                   const GraphProperty& p,
                   const ProcessGroup& pg = ProcessGroup())
      : named_graph_mixin(pg, default_distribution_type(pg, n)),
        m_local_graph(this->distribution().block_size(process_id(pg), n), p),
        process_group_(pg, graph::parallel::attach_distributed_object())
    {
      setup_triggers();

      detail::parallel::maybe_initialize_vertex_indices(vertices(base()),
                                      get(vertex_index, base()));
    }

    adjacency_list(vertices_size_type n,
                   const ProcessGroup& pg = ProcessGroup())
      : named_graph_mixin(pg, default_distribution_type(pg, n)),
        m_local_graph(this->distribution().block_size(process_id(pg), n), 
                      GraphProperty()),
        process_group_(pg, graph::parallel::attach_distributed_object())
    {
      setup_triggers();

      detail::parallel::maybe_initialize_vertex_indices(vertices(base()),
                                      get(vertex_index, base()));
    }

    /*
     * We assume that every processor sees the same list of edges, so
     * they skip over any that don't originate from themselves. This
     * means that programs switching between a local and a distributed
     * graph will keep the same semantics.
     */
    template <class EdgeIterator>
    adjacency_list(EdgeIterator first, EdgeIterator last,
                   vertices_size_type n,
                   const ProcessGroup& pg = ProcessGroup(),
                   const GraphProperty& p = GraphProperty())
      : named_graph_mixin(pg, default_distribution_type(pg, n)),
        m_local_graph(this->distribution().block_size(process_id(pg), n), p),
        process_group_(pg, graph::parallel::attach_distributed_object())
    {
      setup_triggers();

      typedef typename config_type::VertexListS vertex_list_selector;
      initialize(first, last, n, this->distribution(), vertex_list_selector());
      detail::parallel::maybe_initialize_vertex_indices(vertices(base()),
                                      get(vertex_index, base()));

    }

    template <class EdgeIterator, class EdgePropertyIterator>
    adjacency_list(EdgeIterator first, EdgeIterator last,
                   EdgePropertyIterator ep_iter,
                   vertices_size_type n,
                   const ProcessGroup& pg = ProcessGroup(),
                   const GraphProperty& p = GraphProperty())
      : named_graph_mixin(pg, default_distribution_type(pg, n)),
        m_local_graph(this->distribution().block_size(process_id(pg), n), p),
        process_group_(pg, graph::parallel::attach_distributed_object())
    {
      setup_triggers();

      typedef typename config_type::VertexListS vertex_list_selector;
      initialize(first, last, ep_iter, n, this->distribution(),
                 vertex_list_selector());
      detail::parallel::maybe_initialize_vertex_indices(vertices(base()),
                                      get(vertex_index, base()));

    }

    template <class EdgeIterator>
    adjacency_list(EdgeIterator first, EdgeIterator last,
                   vertices_size_type n,
                   const ProcessGroup& pg,
                   const base_distribution_type& distribution,
                   const GraphProperty& p = GraphProperty())
      : named_graph_mixin(pg, distribution),
        m_local_graph(distribution.block_size(process_id(pg), n), p),
        process_group_(pg, graph::parallel::attach_distributed_object())
    {
      setup_triggers();

      typedef typename config_type::VertexListS vertex_list_selector;
      initialize(first, last, n, this->distribution(), vertex_list_selector());
      detail::parallel::maybe_initialize_vertex_indices(vertices(base()),
                                      get(vertex_index, base()));

    }

    template <class EdgeIterator, class EdgePropertyIterator>
    adjacency_list(EdgeIterator first, EdgeIterator last,
                   EdgePropertyIterator ep_iter,
                   vertices_size_type n,
                   const ProcessGroup& pg,
                   const base_distribution_type& distribution,
                   const GraphProperty& p = GraphProperty())
      : named_graph_mixin(pg, distribution),
        m_local_graph(this->distribution().block_size(process_id(pg), n), p),
        process_group_(pg, graph::parallel::attach_distributed_object())
    {
      setup_triggers();

      typedef typename config_type::VertexListS vertex_list_selector;
      initialize(first, last, ep_iter, n, distribution,
                 vertex_list_selector());
      detail::parallel::maybe_initialize_vertex_indices(vertices(base()),
                                      get(vertex_index, base()));

    }

    ~adjacency_list()
    {
      synchronize(process_group_);
    }

    void clear()
    {
      base().clear();
      local_edges_.clear();
      named_graph_mixin::clearing_graph();
    }

    void swap(adjacency_list& other)
    {
      using std::swap;

      base().swap(other);
      swap(process_group_, other.process_group_);
    }

    static vertex_descriptor null_vertex()
    {
      return vertex_descriptor(processor_id_type(0),
                               inherited::null_vertex());
    }

    inherited&       base()       { return m_local_graph; }
    const inherited& base() const { return m_local_graph; }

    processor_id_type processor() const { return process_id(process_group_); }
    process_group_type process_group() const { return process_group_.base(); }

    local_edge_list_type&       local_edges()       { return local_edges_; }
    const local_edge_list_type& local_edges() const { return local_edges_; }

    // Redistribute the vertices of the graph by placing each vertex
    // v on the processor get(vertex_to_processor, v).
    template<typename VertexProcessorMap>
    void redistribute(VertexProcessorMap vertex_to_processor);

    // Directly access a vertex or edge bundle
    vertex_bundled& operator[](vertex_descriptor v)
    {
      BOOST_ASSERT(v.owner == processor());
      return base()[v.local];
    }
    
    const vertex_bundled& operator[](vertex_descriptor v) const
    {
      BOOST_ASSERT(v.owner == processor());
      return base()[v.local];
    }
    
    edge_bundled& operator[](edge_descriptor e)
    {
      BOOST_ASSERT(e.owner() == processor());
      return base()[e.local];
    }
    
    const edge_bundled& operator[](edge_descriptor e) const
    {
      BOOST_ASSERT(e.owner() == processor());
      return base()[e.local];
    }

    graph_bundled& operator[](graph_bundle_t)
    { return get_property(*this); }

    graph_bundled const& operator[](graph_bundle_t) const
    { return get_property(*this); }

    template<typename OStreamConstructibleArchive>
    void save(std::string const& filename) const;

    template<typename IStreamConstructibleArchive>
    void load(std::string const& filename);

    // Callback that will be invoked whenever a new vertex is added locally
    boost::function<void(vertex_descriptor, adjacency_list&)> on_add_vertex;

    // Callback that will be invoked whenever a new edge is added locally
    boost::function<void(edge_descriptor, adjacency_list&)> on_add_edge;

  private:
    // Request vertex->processor mapping for neighbors <does nothing>
    template<typename VertexProcessorMap>
    void
    request_in_neighbors(vertex_descriptor,
                         VertexProcessorMap,
                         directedS) { }

    // Request vertex->processor mapping for neighbors <does nothing>
    template<typename VertexProcessorMap>
    void
    request_in_neighbors(vertex_descriptor,
                         VertexProcessorMap,
                         undirectedS) { }

    // Request vertex->processor mapping for neighbors
    template<typename VertexProcessorMap>
    void
    request_in_neighbors(vertex_descriptor v,
                         VertexProcessorMap vertex_to_processor,
                         bidirectionalS);

    // Clear the list of in-edges, but don't tell the remote processor
    void clear_in_edges_local(vertex_descriptor v, directedS) {}
    void clear_in_edges_local(vertex_descriptor v, undirectedS) {}

    void clear_in_edges_local(vertex_descriptor v, bidirectionalS)
    { get(vertex_in_edges, base())[v.local].clear(); }

    // Remove in-edges that have migrated <does nothing>
    template<typename VertexProcessorMap>
    void
    remove_migrated_in_edges(vertex_descriptor,
                             VertexProcessorMap,
                             directedS) { }

    // Remove in-edges that have migrated <does nothing>
    template<typename VertexProcessorMap>
    void
    remove_migrated_in_edges(vertex_descriptor,
                             VertexProcessorMap,
                             undirectedS) { }

    // Remove in-edges that have migrated
    template<typename VertexProcessorMap>
    void
    remove_migrated_in_edges(vertex_descriptor v,
                             VertexProcessorMap vertex_to_processor,
                             bidirectionalS);

    // Initialize the graph with the given edge list and vertex
    // distribution. This variation works only when
    // VertexListS=vecS, and we know how to create remote vertex
    // descriptors based solely on the distribution.
    template<typename EdgeIterator>
    void
    initialize(EdgeIterator first, EdgeIterator last,
               vertices_size_type, const base_distribution_type& distribution, 
               vecS);

    // Initialize the graph with the given edge list, edge
    // properties, and vertex distribution. This variation works
    // only when VertexListS=vecS, and we know how to create remote
    // vertex descriptors based solely on the distribution.
    template<typename EdgeIterator, typename EdgePropertyIterator>
    void
    initialize(EdgeIterator first, EdgeIterator last,
               EdgePropertyIterator ep_iter,
               vertices_size_type, const base_distribution_type& distribution, 
               vecS);

    // Initialize the graph with the given edge list, edge
    // properties, and vertex distribution.
    template<typename EdgeIterator, typename EdgePropertyIterator,
             typename VertexListS>
    void
    initialize(EdgeIterator first, EdgeIterator last,
               EdgePropertyIterator ep_iter,
               vertices_size_type n, 
               const base_distribution_type& distribution,
               VertexListS);

    // Initialize the graph with the given edge list and vertex
    // distribution. This is nearly identical to the one below it,
    // for which I should be flogged. However, this version does use
    // slightly less memory than the version that accepts an edge
    // property iterator.
    template<typename EdgeIterator, typename VertexListS>
    void
    initialize(EdgeIterator first, EdgeIterator last,
               vertices_size_type n, 
               const base_distribution_type& distribution,
               VertexListS);

  public:
    //---------------------------------------------------------------------
    // Build a vertex property instance for the underlying adjacency
    // list from the given property instance of the type exposed to
    // the user.
    base_vertex_property_type 
    build_vertex_property(const vertex_property_type& p)
    { return build_vertex_property(p, directed_selector()); }

    base_vertex_property_type
    build_vertex_property(const vertex_property_type& p, directedS)
    {
      return base_vertex_property_type(p);
    }

    base_vertex_property_type
    build_vertex_property(const vertex_property_type& p, bidirectionalS)
    {
      return base_vertex_property_type(in_edge_list_type(), p);
    }

    base_vertex_property_type
    build_vertex_property(const vertex_property_type& p, undirectedS)
    {
      return base_vertex_property_type(p);
    }
    //---------------------------------------------------------------------

    //---------------------------------------------------------------------
    // Build an edge property instance for the underlying adjacency
    // list from the given property instance of the type exposed to
    // the user.
    base_edge_property_type build_edge_property(const edge_property_type& p)
    { return build_edge_property(p, directed_selector()); }

    base_edge_property_type
    build_edge_property(const edge_property_type& p, directedS)
    {
      return base_edge_property_type(0, p);
    }

    base_edge_property_type
    build_edge_property(const edge_property_type& p, bidirectionalS)
    {
      return base_edge_property_type(0, p);
    }

    base_edge_property_type
    build_edge_property(const edge_property_type& p, undirectedS)
    {
      typedef typename base_edge_property_type::next_type
        edge_property_with_id;
      return base_edge_property_type(true, edge_property_with_id(0, p));
    }
    //---------------------------------------------------------------------

    //---------------------------------------------------------------------
    // Opposite of above.
    edge_property_type split_edge_property(const base_edge_property_type& p)
    { return split_edge_property(p, directed_selector()); }

    edge_property_type
    split_edge_property(const base_edge_property_type& p, directedS)
    {
      return p.m_base;
    }

    edge_property_type
    split_edge_property(const base_edge_property_type& p, bidirectionalS)
    {
      return p.m_base;
    }

    edge_property_type
    split_edge_property(const base_edge_property_type& p, undirectedS)
    {
      return p.m_base.m_base;
    }
    //---------------------------------------------------------------------

    /** The set of messages that can be transmitted and received by
     *  a distributed adjacency list. This list will eventually be
     *  exhaustive, but is currently quite limited.
     */
    enum {
      /**
       * Request to add or find a vertex with the given vertex
       * property. The data will be a vertex_property_type
       * structure.
       */
      msg_add_vertex_with_property = 0,

      /**
       * Request to add or find a vertex with the given vertex
       * property, and request that the remote processor return the
       * descriptor for the added/found edge. The data will be a
       * vertex_property_type structure.
       */
      msg_add_vertex_with_property_and_reply,

      /**
       * Reply to a msg_add_vertex_* message, containing the local
       * vertex descriptor that was added or found.
       */
      msg_add_vertex_reply,

      /**
       * Request to add an edge remotely. The data will be a
       * msg_add_edge_data structure. 
       */
      msg_add_edge,

      /**
       * Request to add an edge remotely. The data will be a
       * msg_add_edge_with_property_data structure. 
       */
      msg_add_edge_with_property,

      /**
       * Request to add an edge remotely and reply back with the
       * edge descriptor. The data will be a
       * msg_add_edge_data structure. 
       */
      msg_add_edge_with_reply,

      /**
       * Request to add an edge remotely and reply back with the
       * edge descriptor. The data will be a
       * msg_add_edge_with_property_data structure.
       */
      msg_add_edge_with_property_and_reply,

      /**
       * Reply message responding to an @c msg_add_edge_with_reply
       * or @c msg_add_edge_with_property_and_reply messages. The
       * data will be a std::pair<edge_descriptor, bool>.
       */
      msg_add_edge_reply,

      /**
       * Indicates that a nonlocal edge has been created that should
       * be added locally. Only valid for bidirectional and
       * undirected graphs. The message carries a
       * msg_nonlocal_edge_data structure.
       */
      msg_nonlocal_edge,

      /**
       * Indicates that a remote edge should be removed. This
       * message does not exist for directedS graphs but may refer
       * to either in-edges or out-edges for undirectedS graphs.
       */
      msg_remove_edge,

      /**
       * Indicates the number of vertices and edges that will be
       * relocated from the source processor to the target
       * processor. The data will be a pair<vertices_size_type,
       * edges_size_type>.
       */
      msg_num_relocated
    };

    typedef detail::parallel::msg_add_edge_data<vertex_descriptor,
                                                local_vertex_descriptor>
      msg_add_edge_data;

    typedef detail::parallel::msg_add_edge_with_property_data
              <vertex_descriptor, local_vertex_descriptor, 
               edge_property_type> msg_add_edge_with_property_data;

    typedef  boost::detail::parallel::msg_nonlocal_edge_data<
      edge_property_type,local_edge_descriptor> msg_nonlocal_edge_data;

    typedef boost::detail::parallel::msg_remove_edge_data<edge_descriptor>
      msg_remove_edge_data;

    void send_remove_edge_request(edge_descriptor e)
    {
      process_id_type dest = e.target_processor;
      if (e.target_processor == process_id(process_group_))
        dest = e.source_processor;
      send(process_group_, dest, msg_remove_edge, msg_remove_edge_data(e));
    }

    /// Process incoming messages.
    void setup_triggers();

    void 
    handle_add_vertex_with_property(int source, int tag,
                                    const vertex_property_type&,
                                    trigger_receive_context);

    local_vertex_descriptor
    handle_add_vertex_with_property_and_reply(int source, int tag,
                                        const vertex_property_type&,
                                        trigger_receive_context);

    void 
    handle_add_edge(int source, int tag, const msg_add_edge_data& data,
                    trigger_receive_context);

    boost::parallel::detail::untracked_pair<edge_descriptor, bool>
    handle_add_edge_with_reply(int source, int tag, 
                         const msg_add_edge_data& data,
                         trigger_receive_context);

    void 
    handle_add_edge_with_property(int source, int tag,
                                  const msg_add_edge_with_property_data&,
                                  trigger_receive_context);
              
    boost::parallel::detail::untracked_pair<edge_descriptor, bool>
    handle_add_edge_with_property_and_reply
      (int source, int tag, const msg_add_edge_with_property_data&,
       trigger_receive_context);

    void 
    handle_nonlocal_edge(int source, int tag, 
                         const msg_nonlocal_edge_data& data,
                         trigger_receive_context);

    void 
    handle_remove_edge(int source, int tag, 
                       const msg_remove_edge_data& data,
                       trigger_receive_context);
         
  protected:
    /** Add an edge (locally) that was received from another
     * processor. This operation is a no-op for directed graphs,
     * because all edges reside on the local processor. For
     * bidirectional graphs, this routine places the edge onto the
     * list of incoming edges for the target vertex. For undirected
     * graphs, the edge is placed along with all of the other edges
     * for the target vertex, but it is marked as a non-local edge
     * descriptor.
     *
     * \todo There is a potential problem here, where we could
     * unintentionally allow duplicate edges in undirected graphs
     * because the same edge is added on two different processors
     * simultaneously. It's not an issue now, because we require
     * that the graph allow parallel edges. Once we do support
     * containers such as setS or hash_setS that disallow parallel
     * edges we will need to deal with this.
     */
    void
    add_remote_edge(const msg_nonlocal_edge_data&,
                    processor_id_type, directedS)
    { }


    /**
     * \overload
     */
    void
    add_remote_edge(const msg_nonlocal_edge_data& data,
                    processor_id_type other_proc, bidirectionalS)
    {
      typedef detail::parallel::stored_in_edge<local_edge_descriptor> stored_edge;

      stored_edge edge(other_proc, data.e);
      local_vertex_descriptor v = target(data.e, base());
      boost::graph_detail::push(get(vertex_in_edges, base())[v], edge);
    }

    /**
     * \overload
     */
    void
    add_remote_edge(const msg_nonlocal_edge_data& data,
                    processor_id_type other_proc, undirectedS)
    {
      std::pair<local_edge_descriptor, bool> edge =
        detail::parallel::add_local_edge(target(data.e, base()), 
                       source(data.e, base()),
                       build_edge_property(data.get_property()), base());
      BOOST_ASSERT(edge.second);
      put(edge_target_processor_id, base(), edge.first, other_proc);

      if (edge.second && on_add_edge)
        on_add_edge(edge_descriptor(processor(), other_proc, false, 
                                    edge.first),
                    *this);
    }

    void
    remove_local_edge(const msg_remove_edge_data&, processor_id_type,
                      directedS)
    { }

    void
    remove_local_edge(const msg_remove_edge_data& data,
                      processor_id_type other_proc, bidirectionalS)
    {
      /* When the source is local, we first check if the edge still
       * exists (it may have been deleted locally) and, if so,
       * remove it locally.
       */
      vertex_descriptor src = source(data.e, *this);
      vertex_descriptor tgt = target(data.e, *this);

      if (src.owner == process_id(process_group_)) {
        base_out_edge_iterator ei, ei_end;
        for (boost::tie(ei, ei_end) = out_edges(src.local, base());
             ei != ei_end; ++ei) {
          // TBD: can't check the descriptor here, because it could
          // have changed if we're allowing the removal of
          // edges. Egads!
          if (tgt.local == target(*ei, base())
              && get(edge_target_processor_id, base(), *ei) == other_proc)
            break;
        }

        if (ei != ei_end) boost::remove_edge(ei, base());

        remove_local_edge_from_list(src, tgt, undirectedS());
      } else {
        BOOST_ASSERT(tgt.owner == process_id(process_group_));
        in_edge_list_type& in_edges =
          get(vertex_in_edges, base())[tgt.local];
        typename in_edge_list_type::iterator ei;
        for (ei = in_edges.begin(); ei != in_edges.end(); ++ei) {
          if (src.local == source(ei->e, base())
              && src.owner == ei->source_processor)
            break;
        }

        if (ei != in_edges.end()) in_edges.erase(ei);
      }
    }

    void
    remove_local_edge(const msg_remove_edge_data& data,
                      processor_id_type other_proc, undirectedS)
    {
      vertex_descriptor local_vertex = source(data.e, *this);
      vertex_descriptor remote_vertex = target(data.e, *this);
      if (remote_vertex.owner == process_id(process_group_)) {
        using std::swap;
        swap(local_vertex, remote_vertex);
      }

      // Remove the edge from the out-edge list, if it is there
      {
        base_out_edge_iterator ei, ei_end;
        for (boost::tie(ei, ei_end) = out_edges(local_vertex.local, base());
             ei != ei_end; ++ei) {
          // TBD: can't check the descriptor here, because it could
          // have changed if we're allowing the removal of
          // edges. Egads!
          if (remote_vertex.local == target(*ei, base())
              && get(edge_target_processor_id, base(), *ei) == other_proc)
            break;
        }

        if (ei != ei_end) boost::remove_edge(ei, base());
      }

      remove_local_edge_from_list(local_vertex, remote_vertex, undirectedS());
    }

  public:
    void
    remove_local_edge_from_list(vertex_descriptor, vertex_descriptor,
                                directedS)
    {
    }

    void
    remove_local_edge_from_list(vertex_descriptor, vertex_descriptor,
                                bidirectionalS)
    {
    }

    void
    remove_local_edge_from_list(vertex_descriptor src, vertex_descriptor tgt,
                                undirectedS)
    {
      // TBD: At some point we'll be able to improve the speed here
      // because we'll know when the edge can't be in the local
      // list.
      {
        typename local_edge_list_type::iterator ei;
        for (ei = local_edges_.begin(); ei != local_edges_.end(); ++ei) {
          if ((source(*ei, *this) == src
               && target(*ei, *this) == tgt)
              || (source(*ei, *this) == tgt
                  && target(*ei, *this) == src))
            break;
        }

        if (ei != local_edges_.end()) local_edges_.erase(ei);
      }

    }

  private:
    /// The local subgraph
    inherited m_local_graph;

    /// The process group through which this distributed graph
    /// communicates.
    process_group_type process_group_;

    // TBD: should only be available for undirected graphs, but for
    // now it'll just be empty for directed and bidirectional
    // graphs.
    local_edge_list_type local_edges_;
  };

  //------------------------------------------------------------------------
  // Lazy addition of vertices
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  struct PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_vertex_with_property
  {
    /// Construct a lazy request to add a vertex
    lazy_add_vertex_with_property(adjacency_list& self, 
                                  const vertex_property_type& property)
      : self(self), property(property), committed(false) { }

    /// Copying a lazy_add_vertex_with_property transfers the
    /// responsibility for adding the vertex to the newly-constructed
    /// object.
    lazy_add_vertex_with_property(const lazy_add_vertex_with_property& other)
      : self(other.self), property(other.property),
        committed(other.committed)
    {
      other.committed = true;
    }

    /// If the vertex has not yet been added, add the vertex but don't
    /// wait for a reply.
    ~lazy_add_vertex_with_property();

    /// Returns commit().
    operator vertex_descriptor() const { return commit(); }

    // Add the vertex. This operation will block if the vertex is
    // being added remotely.
    vertex_descriptor commit() const;

  protected:
    adjacency_list& self;
    vertex_property_type property;
    mutable bool committed;

  private:
    // No copy-assignment semantics
    void operator=(lazy_add_vertex_with_property&);
  };

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_vertex_with_property::
  ~lazy_add_vertex_with_property()
  {
    /// If this vertex has already been created or will be created by
    /// someone else, or if someone threw an exception, we will not
    /// create the vertex now.
    if (committed || std::uncaught_exception())
      return;

    committed = true;

    process_id_type owner 
      = static_cast<graph_type&>(self).owner_by_property(property);
    if (owner == self.processor()) {
      /// Add the vertex locally.
      vertex_descriptor v(owner, 
                          add_vertex(self.build_vertex_property(property), 
                                     self.base()));
      if (self.on_add_vertex)
        self.on_add_vertex(v, self);
    }
    else
      /// Ask the owner of this new vertex to add the vertex. We
      /// don't need a reply.
      send(self.process_group_, owner, msg_add_vertex_with_property,
           property);
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor 
  PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_vertex_with_property::
  commit() const
  {
    BOOST_ASSERT(!this->committed);
    this->committed = true;

    process_id_type owner 
      = static_cast<graph_type&>(self).owner_by_property(property);
    local_vertex_descriptor local_v;
    if (owner == self.processor())
      /// Add the vertex locally.
      local_v = add_vertex(self.build_vertex_property(property), 
                           self.base());
    else {
      // Request that the remote process add the vertex immediately
      send_oob_with_reply(self.process_group_, owner,
               msg_add_vertex_with_property_and_reply, property,
               local_v);
    }

    vertex_descriptor v(owner, local_v);
    if (self.on_add_vertex)
      self.on_add_vertex(v, self);

    // Build the full vertex descriptor to return
    return v;
  }
  

  /** 
   * Data structure returned from add_edge that will "lazily" add
   * the edge, either when it is converted to a
   * @c pair<edge_descriptor, bool> or when the most recent copy has
   * been destroyed.
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  struct PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge
  {
    /// Construct a lazy request to add an edge
    lazy_add_edge(adjacency_list& self, 
                  vertex_descriptor source, vertex_descriptor target)
      : self(self), source(source), target(target), committed(false) { }

    /// Copying a lazy_add_edge transfers the responsibility for
    /// adding the edge to the newly-constructed object.
    lazy_add_edge(const lazy_add_edge& other)
      : self(other.self), source(other.source), target(other.target), 
        committed(other.committed)
    {
      other.committed = true;
    }

    /// If the edge has not yet been added, add the edge but don't
    /// wait for a reply.
    ~lazy_add_edge();

    /// Returns commit().
    operator std::pair<edge_descriptor, bool>() const { return commit(); }

    // Add the edge. This operation will block if a remote edge is
    // being added.
    std::pair<edge_descriptor, bool> commit() const;

  protected:
    std::pair<edge_descriptor, bool> 
    add_local_edge(const edge_property_type& property, directedS) const;

    std::pair<edge_descriptor, bool> 
    add_local_edge(const edge_property_type& property, bidirectionalS) const;

    std::pair<edge_descriptor, bool> 
    add_local_edge(const edge_property_type& property, undirectedS) const;

    adjacency_list& self;
    vertex_descriptor source;
    vertex_descriptor target;
    mutable bool committed;

  private:
    // No copy-assignment semantics
    void operator=(lazy_add_edge&);
  };

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge::~lazy_add_edge()
  {
    /// If this edge has already been created or will be created by
    /// someone else, or if someone threw an exception, we will not
    /// create the edge now.
    if (committed || std::uncaught_exception())
      return;

    committed = true;

    if (source.owner == self.processor())
      this->add_local_edge(edge_property_type(), DirectedS());
    else
      // Request that the remote processor add an edge and, but
      // don't wait for a reply.
      send(self.process_group_, source.owner, msg_add_edge,
           msg_add_edge_data(source, target));
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  std::pair<typename PBGL_DISTRIB_ADJLIST_TYPE::edge_descriptor, bool>
  PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge::commit() const
  {
    BOOST_ASSERT(!committed);
    committed = true;

    if (source.owner == self.processor())
      return this->add_local_edge(edge_property_type(), DirectedS());
    else {
      // Request that the remote processor add an edge
      boost::parallel::detail::untracked_pair<edge_descriptor, bool> result;
      send_oob_with_reply(self.process_group_, source.owner, 
                          msg_add_edge_with_reply,
                          msg_add_edge_data(source, target), result);
      return result;
    }
  }

  // Add a local edge into a directed graph
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  std::pair<typename PBGL_DISTRIB_ADJLIST_TYPE::edge_descriptor, bool>
  PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge::
  add_local_edge(const edge_property_type& property, directedS) const
  {
    // Add the edge to the local part of the graph
    std::pair<local_edge_descriptor, bool> inserted =
      detail::parallel::add_local_edge(source.local, target.local,
                                       self.build_edge_property(property), 
                                       self.base());

    if (inserted.second)
      // Keep track of the owner of the target
      put(edge_target_processor_id, self.base(), inserted.first, 
          target.owner);

    // Compose the edge descriptor and return the result
    edge_descriptor e(source.owner, target.owner, true, inserted.first);

    // Trigger the on_add_edge event
    if (inserted.second && self.on_add_edge)
      self.on_add_edge(e, self);

    return std::pair<edge_descriptor, bool>(e, inserted.second);
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  std::pair<typename PBGL_DISTRIB_ADJLIST_TYPE::edge_descriptor, bool>
  PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge::
  add_local_edge(const edge_property_type& property, bidirectionalS) const
  {
    // Add the directed edge.
    std::pair<edge_descriptor, bool> result 
      = this->add_local_edge(property, directedS());

    if (result.second) {
      if (target.owner == self.processor()) {
        // Edge is local, so add the stored edge to the in_edges list
        typedef detail::parallel::stored_in_edge<local_edge_descriptor>
          stored_edge;

        stored_edge e(self.processor(), result.first.local);
        boost::graph_detail::push(get(vertex_in_edges, 
                                      self.base())[target.local], e);
      } 
      else {
        // Edge is remote, so notify the target's owner that an edge
        // has been added.
        if (self.process_group_.trigger_context() == graph::parallel::trc_out_of_band)
          send_oob(self.process_group_, target.owner, msg_nonlocal_edge,
                   msg_nonlocal_edge_data(result.first.local, property));
        else
          send(self.process_group_, target.owner, msg_nonlocal_edge,
               msg_nonlocal_edge_data(result.first.local, property));
      }
    }

    return result;
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  std::pair<typename PBGL_DISTRIB_ADJLIST_TYPE::edge_descriptor, bool>
  PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge::
  add_local_edge(const edge_property_type& property, undirectedS) const
  {
    // Add the directed edge
    std::pair<edge_descriptor, bool> result
      = this->add_local_edge(property, directedS());

    typedef detail::parallel::stored_in_edge<local_edge_descriptor>
      stored_edge;

    if (result.second) {
      if (target.owner == self.processor()) {
        // Edge is local, so add the new edge to the list

        // TODO: This is not what we want to do for an undirected
        // edge, because we haven't linked the source and target's
        // representations of those edges.
        local_edge_descriptor return_edge =
          detail::parallel::add_local_edge(target.local, source.local,
                                           self.build_edge_property(property),
                                           self.base()).first;

        put(edge_target_processor_id, self.base(), return_edge, 
            source.owner);
      }
      else {
        // Edge is remote, so notify the target's owner that an edge
        // has been added.
        if (self.process_group_.trigger_context() == graph::parallel::trc_out_of_band)
          send_oob(self.process_group_, target.owner, msg_nonlocal_edge,
                   msg_nonlocal_edge_data(result.first.local, property));
        else
          send(self.process_group_, target.owner, msg_nonlocal_edge,
               msg_nonlocal_edge_data(result.first.local, property));
          
      }

      // Add this edge to the list of local edges
      graph_detail::push(self.local_edges(), result.first);
    }

    return result;
  }


  /** 
   * Data structure returned from add_edge that will "lazily" add
   * the edge with its property, either when it is converted to a
   * pair<edge_descriptor, bool> or when the most recent copy has
   * been destroyed.
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  struct PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge_with_property
    : lazy_add_edge
  {
    /// Construct a lazy request to add an edge
    lazy_add_edge_with_property(adjacency_list& self, 
                                vertex_descriptor source, 
                                vertex_descriptor target,
                                const edge_property_type& property)
      : lazy_add_edge(self, source, target), property(property) { }

    /// Copying a lazy_add_edge transfers the responsibility for
    /// adding the edge to the newly-constructed object.
    lazy_add_edge_with_property(const lazy_add_edge& other)
      : lazy_add_edge(other), property(other.property) { }

    /// If the edge has not yet been added, add the edge but don't
    /// wait for a reply.
    ~lazy_add_edge_with_property();

    /// Returns commit().
    operator std::pair<edge_descriptor, bool>() const { return commit(); }

    // Add the edge. This operation will block if a remote edge is
    // being added.
    std::pair<edge_descriptor, bool> commit() const;

  private:
    // No copy-assignment semantics
    void operator=(lazy_add_edge_with_property&);

    edge_property_type property;
  };

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge_with_property::
  ~lazy_add_edge_with_property()
  {
    /// If this edge has already been created or will be created by
    /// someone else, or if someone threw an exception, we will not
    /// create the edge now.
    if (this->committed || std::uncaught_exception())
      return;

    this->committed = true;

    if (this->source.owner == this->self.processor())
      // Add a local edge
      this->add_local_edge(property, DirectedS());
    else
      // Request that the remote processor add an edge and, but
      // don't wait for a reply.
      send(this->self.process_group_, this->source.owner, 
           msg_add_edge_with_property,
           msg_add_edge_with_property_data(this->source, this->target, 
                                           property));
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  std::pair<typename PBGL_DISTRIB_ADJLIST_TYPE::edge_descriptor, bool>
  PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge_with_property::
  commit() const
  {
    BOOST_ASSERT(!this->committed);
    this->committed = true;

    if (this->source.owner == this->self.processor())
      // Add a local edge
      return this->add_local_edge(property, DirectedS());
    else {
      // Request that the remote processor add an edge
      boost::parallel::detail::untracked_pair<edge_descriptor, bool> result;
      send_oob_with_reply(this->self.process_group_, this->source.owner, 
                          msg_add_edge_with_property_and_reply,
                          msg_add_edge_with_property_data(this->source, 
                                                          this->target, 
                                                          property),
                          result);
      return result;
    }
  }


  /**
   * Returns the set of vertices local to this processor. Note that
   * although this routine matches a valid expression of a
   * VertexListGraph, it does not meet the semantic requirements of
   * VertexListGraph because it returns only local vertices (not all
   * vertices).
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  std::pair<typename PBGL_DISTRIB_ADJLIST_TYPE
                       ::vertex_iterator,
            typename PBGL_DISTRIB_ADJLIST_TYPE
                       ::vertex_iterator>
  vertices(const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE
      ::vertex_descriptor Vertex;

    typedef typename Vertex::generator generator;

    return std::make_pair(make_transform_iterator(vertices(g.base()).first,
                                                  generator(g.processor())),
                          make_transform_iterator(vertices(g.base()).second,
                                                  generator(g.processor())));
  }

  /**
   * Returns the number of vertices local to this processor. Note that
   * although this routine matches a valid expression of a
   * VertexListGraph, it does not meet the semantic requirements of
   * VertexListGraph because it returns only a count of local vertices
   * (not all vertices).
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename PBGL_DISTRIB_ADJLIST_TYPE
             ::vertices_size_type
  num_vertices(const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    return num_vertices(g.base());
  }

  /***************************************************************************
   * Implementation of Incidence Graph concept
   ***************************************************************************/
  /**
   * Returns the source of edge @param e in @param g.
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS, typename Edge>
  typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor
  source(const detail::parallel::edge_descriptor<Edge>& e,
         const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE
      ::vertex_descriptor Vertex;
    return Vertex(e.source_processor, source(e.local, g.base()));
  }

  /**
   * Returns the target of edge @param e in @param g.
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS, typename Edge>
  typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor
  target(const detail::parallel::edge_descriptor<Edge>& e,
         const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE
      ::vertex_descriptor Vertex;
    return Vertex(e.target_processor, target(e.local, g.base()));
  }

  /**
   * Return the set of edges outgoing from a particular vertex. The
   * vertex @param v must be local to the processor executing this
   * routine.
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  std::pair<typename PBGL_DISTRIB_ADJLIST_TYPE::out_edge_iterator,
            typename PBGL_DISTRIB_ADJLIST_TYPE::out_edge_iterator>
  out_edges(typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v,
            const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    BOOST_ASSERT(v.owner == g.processor());

    typedef PBGL_DISTRIB_ADJLIST_TYPE impl;
    typedef typename impl::out_edge_generator generator;

    return std::make_pair(
             make_transform_iterator(out_edges(v.local, g.base()).first,
                                     generator(g)),
             make_transform_iterator(out_edges(v.local, g.base()).second,
                                     generator(g)));
  }

  /**
   * Return the number of edges outgoing from a particular vertex. The
   * vertex @param v must be local to the processor executing this
   * routine.
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename PBGL_DISTRIB_ADJLIST_TYPE::degree_size_type
  out_degree(typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v,
             const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    BOOST_ASSERT(v.owner == g.processor());

    return out_degree(v.local, g.base());
  }

  /***************************************************************************
   * Implementation of Bidirectional Graph concept
   ***************************************************************************/
  /**
   * Returns the set of edges incoming to a particular vertex. The
   * vertex @param v must be local to the processor executing this
   * routine.
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  std::pair<typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)
                       ::in_edge_iterator,
            typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)
                       ::in_edge_iterator>
  in_edges(typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)
                         ::vertex_descriptor v,
           const PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)& g)
  {
    BOOST_ASSERT(v.owner == g.processor());

    typedef PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS) impl;
    typedef typename impl::inherited base_graph_type;
    typedef typename impl::in_edge_generator generator;


    typename property_map<base_graph_type, vertex_in_edges_t>::const_type
      in_edges = get(vertex_in_edges, g.base());

    return std::make_pair(make_transform_iterator(in_edges[v.local].begin(),
                                                  generator(g)),
                          make_transform_iterator(in_edges[v.local].end(),
                                                  generator(g)));
  }

  /**
   * \overload
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  std::pair<typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)
                       ::in_edge_iterator,
            typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)
                       ::in_edge_iterator>
  in_edges(typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)
                         ::vertex_descriptor v,
           const PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)& g)
  {
    BOOST_ASSERT(v.owner == g.processor());

    typedef PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS) impl;
    typedef typename impl::in_edge_generator generator;

    return std::make_pair(
              make_transform_iterator(out_edges(v.local, g.base()).first,
                                     generator(g)),
             make_transform_iterator(out_edges(v.local, g.base()).second,
                                     generator(g)));
  }

  /**
   * Returns the number of edges incoming to a particular vertex. The
   * vertex @param v must be local to the processor executing this
   * routine.
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)::degree_size_type
  in_degree(typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)
                           ::vertex_descriptor v,
            const PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)& g)
  {
    BOOST_ASSERT(v.owner == g.processor());

    return get(vertex_in_edges, g.base())[v.local].size();
  }

  /**
   * \overload
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)::degree_size_type
  in_degree(typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)
                           ::vertex_descriptor v,
            const PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)& g)
  {
    BOOST_ASSERT(v.owner == g.processor());

    return out_degree(v.local, g.base());
  }

  /**
   * Returns the number of edges incident on the given vertex. The
   * vertex @param v must be local to the processor executing this
   * routine.
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)
                       ::degree_size_type
  degree(typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)
                         ::vertex_descriptor v,
         const PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)& g)
  {
    BOOST_ASSERT(v.owner == g.processor());
    return out_degree(v.local, g.base());
  }

  /**
   * \overload
   */
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)
                       ::degree_size_type
  degree(typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)
                         ::vertex_descriptor v,
         const PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)& g)
  {
    BOOST_ASSERT(v.owner == g.processor());
    return out_degree(v, g) + in_degree(v, g);
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename PBGL_DISTRIB_ADJLIST_TYPE::edges_size_type
  num_edges(const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    return num_edges(g.base());
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)::edges_size_type
  num_edges(const PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)& g)
  {
    return g.local_edges().size();
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  std::pair<
    typename PBGL_DISTRIB_ADJLIST_TYPE::edge_iterator,
    typename PBGL_DISTRIB_ADJLIST_TYPE::edge_iterator>
  edges(const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE impl;
    typedef typename impl::out_edge_generator generator;

    return std::make_pair(make_transform_iterator(edges(g.base()).first,
                                                  generator(g)),
                          make_transform_iterator(edges(g.base()).second,
                                                  generator(g)));
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  std::pair<
    typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)::edge_iterator,
    typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)::edge_iterator>
  edges(const PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)& g)
  {
    return std::make_pair(g.local_edges().begin(), g.local_edges().end());
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  inline
  typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor
  vertex(typename PBGL_DISTRIB_ADJLIST_TYPE::vertices_size_type n,
         const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor 
      vertex_descriptor;

    return vertex_descriptor(g.distribution()(n), g.distribution().local(n));
  }

  /***************************************************************************
   * Access to particular edges
   ***************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  std::pair<
    typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)::edge_descriptor,
    bool
  >
  edge(typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)::vertex_descriptor u,
       typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)::vertex_descriptor v,
       const PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)
                       ::edge_descriptor edge_descriptor;

    // For directed graphs, u must be local
    BOOST_ASSERT(u.owner == process_id(g.process_group()));

    typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)
        ::out_edge_iterator ei, ei_end;
    for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ++ei) {
      if (target(*ei, g) == v) return std::make_pair(*ei, true);
    }
    return std::make_pair(edge_descriptor(), false);
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  std::pair<
    typename PBGL_DISTRIB_ADJLIST_TYPE::edge_descriptor,
    bool
  >
  edge(typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor u,
       typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v,
       const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE
                       ::edge_descriptor edge_descriptor;

    // For bidirectional and undirected graphs, u must be local or v
    // must be local
    if (u.owner == process_id(g.process_group())) {
      typename PBGL_DISTRIB_ADJLIST_TYPE::out_edge_iterator ei, ei_end;
      for (boost::tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ++ei) {
        if (target(*ei, g) == v) return std::make_pair(*ei, true);
      }
      return std::make_pair(edge_descriptor(), false);
    } else if (v.owner == process_id(g.process_group())) {
      typename PBGL_DISTRIB_ADJLIST_TYPE::in_edge_iterator ei, ei_end;
      for (boost::tie(ei, ei_end) = in_edges(v, g); ei != ei_end; ++ei) {
        if (source(*ei, g) == u) return std::make_pair(*ei, true);
      }
      return std::make_pair(edge_descriptor(), false);
    } else {
      BOOST_ASSERT(false);
      abort();
    }
  }

#if 0
  // TBD: not yet supported
  std::pair<out_edge_iterator, out_edge_iterator>
  edge_range(vertex_descriptor u, vertex_descriptor v,
             const adjacency_list& g);
#endif

  /***************************************************************************
   * Implementation of Adjacency Graph concept
   ***************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  std::pair<typename PBGL_DISTRIB_ADJLIST_TYPE::adjacency_iterator,
            typename PBGL_DISTRIB_ADJLIST_TYPE::adjacency_iterator>
  adjacent_vertices(typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v,
                    const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE::adjacency_iterator iter;
    return std::make_pair(iter(out_edges(v, g).first, &g),
                          iter(out_edges(v, g).second, &g));
  }

  /***************************************************************************
   * Implementation of Mutable Graph concept
   ***************************************************************************/

  /************************************************************************
   * add_edge
   ************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge
  add_edge(typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor u,
           typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v,
           PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_edge lazy_add_edge;

    return lazy_add_edge(g, u, v);
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename PBGL_DISTRIB_ADJLIST_TYPE
    ::lazy_add_edge_with_property
  add_edge(typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor u,
           typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v,
           typename PBGL_DISTRIB_ADJLIST_TYPE::edge_property_type const& p,
           PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE
      ::lazy_add_edge_with_property lazy_add_edge_with_property;
    return lazy_add_edge_with_property(g, u, v, p);
  }

  /************************************************************************
   *
   * remove_edge
   *
   ************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  void
  remove_edge(typename PBGL_DISTRIB_ADJLIST_TYPE::edge_descriptor e,
              PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    BOOST_ASSERT(source(e, g).owner == g.processor()
                 || target(e, g).owner == g.processor());

    if (target(e, g).owner == g.processor())
      detail::parallel::remove_in_edge(e, g, DirectedS());
    if (source(e, g).owner == g.processor())
      remove_edge(e.local, g.base());

    g.remove_local_edge_from_list(source(e, g), target(e, g), DirectedS());

    if (source(e, g).owner != g.processor()
        || (target(e, g).owner != g.processor()
            && !(is_same<DirectedS, directedS>::value))) {
      g.send_remove_edge_request(e);
    }
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  void
  remove_edge(typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor u,
              typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v,
              PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE
                       ::vertex_descriptor vertex_descriptor;
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE
                       ::edge_descriptor edge_descriptor;
    std::pair<edge_descriptor, bool> the_edge = edge(u, v, g);
    if (the_edge.second) remove_edge(the_edge.first, g);
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  inline void
  remove_edge(typename PBGL_DISTRIB_ADJLIST_TYPE::out_edge_iterator ei,
              PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    remove_edge(*ei, g);
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  inline void
  remove_edge(typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)
                ::out_edge_iterator ei,
              PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)& g)
  {
    BOOST_ASSERT(source(*ei, g).owner == g.processor());
    remove_edge(ei->local, g.base());
  }

  /************************************************************************
   *
   * remove_out_edge_if
   *
   ************************************************************************/
  namespace parallel { namespace detail {
    /**
     * Function object that applies the underlying predicate to
     * determine if an out-edge should be removed. If so, either
     * removes the incoming edge (if it is stored locally) or sends a
     * message to the owner of the target requesting that it remove
     * the edge.
     */
    template<typename Graph, typename Predicate>
    struct remove_out_edge_predicate
    {
      typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
      typedef typename Graph::local_edge_descriptor         argument_type;
      typedef typename Graph::directed_selector             directed_selector;
      typedef bool result_type;

      remove_out_edge_predicate(Graph& g, Predicate& predicate)
        : g(g), predicate(predicate) { }

      bool operator()(const argument_type& le)
      {
        typedef typename edge_descriptor::template out_generator<Graph>
          generator;

        edge_descriptor e = generator(g)(le);

        if (predicate(e)) {
          if (source(e, g).owner != target(e, g).owner
              && !(is_same<directed_selector, directedS>::value))
            g.send_remove_edge_request(e);
          else
            ::boost::detail::parallel::remove_in_edge(e, g,
                                                      directed_selector());

           g.remove_local_edge_from_list(source(e, g), target(e, g),
                                         directed_selector());
          return true;
        } else return false;
      }

    private:
      Graph& g;
      Predicate predicate;
    };
  } } // end namespace parallel::detail

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS, typename Predicate>
  inline void
  remove_out_edge_if
     (typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor u,
      Predicate predicate,
      PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE Graph;
    typedef parallel::detail::remove_out_edge_predicate<Graph, Predicate>
      Pred;

    BOOST_ASSERT(u.owner == g.processor());
    remove_out_edge_if(u.local, Pred(g, predicate), g.base());
  }

  /************************************************************************
   *
   * remove_in_edge_if
   *
   ************************************************************************/
  namespace parallel { namespace detail {
    /**
     * Function object that applies the underlying predicate to
     * determine if an in-edge should be removed. If so, either
     * removes the outgoing edge (if it is stored locally) or sends a
     * message to the owner of the target requesting that it remove
     * the edge. Only required for bidirectional graphs.
     */
    template<typename Graph, typename Predicate>
    struct remove_in_edge_predicate
    {
      typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
      typedef bool result_type;

      remove_in_edge_predicate(Graph& g, const Predicate& predicate)
        : g(g), predicate(predicate) { }

      template<typename StoredEdge>
      bool operator()(const StoredEdge& le)
      {
        typedef typename edge_descriptor::template in_generator<Graph>
          generator;

        edge_descriptor e = generator(g)(le);

        if (predicate(e)) {
          if (source(e, g).owner != target(e, g).owner)
            g.send_remove_edge_request(e);
          else
            remove_edge(source(e, g).local, target(e, g).local, g.base());
          return true;
        } else return false;
      }

    private:
      Graph& g;
      Predicate predicate;
    };
  } } // end namespace parallel::detail

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG, typename Predicate>
  inline void
  remove_in_edge_if
     (typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)
                 ::vertex_descriptor u,
      Predicate predicate,
      PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS) Graph;
    typedef parallel::detail::remove_in_edge_predicate<Graph, Predicate>
      Pred;

    BOOST_ASSERT(u.owner == g.processor());
    graph_detail::erase_if(get(vertex_in_edges, g.base())[u.local],
                           Pred(g, predicate));
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG, typename Predicate>
  inline void
  remove_in_edge_if
     (typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)
                 ::vertex_descriptor u,
      Predicate predicate,
      PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)& g)
  {
    remove_out_edge_if(u, predicate, g);
  }

  /************************************************************************
   *
   * remove_edge_if
   *
   ************************************************************************/
  namespace parallel { namespace detail {
    /**
     * Function object that applies the underlying predicate to
     * determine if a directed edge can be removed. This only applies
     * to directed graphs.
     */
    template<typename Graph, typename Predicate>
    struct remove_directed_edge_predicate
    {
      typedef typename Graph::local_edge_descriptor argument_type;
      typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
      typedef bool result_type;

      remove_directed_edge_predicate(Graph& g, const Predicate& predicate)
        : g(g), predicate(predicate) { }

      bool operator()(const argument_type& le)
      {
        typedef typename edge_descriptor::template out_generator<Graph>
          generator;

        edge_descriptor e = generator(g)(le);
        return predicate(e);
      }

    private:
      Graph& g;
      Predicate predicate;
    };
  } } // end namespace parallel::detail

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG, typename Predicate>
  inline void
  remove_edge_if(Predicate predicate, 
                 PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS) Graph;
    typedef parallel::detail::remove_directed_edge_predicate<Graph,
                                                             Predicate> Pred;
    remove_edge_if(Pred(g, predicate), g.base());
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG, typename Predicate>
  inline void
  remove_edge_if(Predicate predicate,
                 PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS) Graph;
    typedef parallel::detail::remove_out_edge_predicate<Graph,
                                                        Predicate> Pred;
    remove_edge_if(Pred(g, predicate), g.base());
  }

  namespace parallel { namespace detail {
    /**
     * Function object that applies the underlying predicate to
     * determine if an undirected edge should be removed. If so,
     * removes the local edges associated with the edge and
     * (potentially) sends a message to the remote processor that also
     * is removing this edge.
     */
    template<typename Graph, typename Predicate>
    struct remove_undirected_edge_predicate
    {
      typedef typename graph_traits<Graph>::edge_descriptor argument_type;
      typedef bool result_type;

      remove_undirected_edge_predicate(Graph& g, Predicate& predicate)
        : g(g), predicate(predicate) { }

      bool operator()(const argument_type& e)
      {
        if (predicate(e)) {
          if (source(e, g).owner != target(e, g).owner)
            g.send_remove_edge_request(e);
          if (target(e, g).owner == g.processor())
            ::boost::detail::parallel::remove_in_edge(e, g, undirectedS());
          if (source(e, g).owner == g.processor())
            remove_edge(e.local, g.base());
          return true;
        } else return false;
      }

    private:
      Graph& g;
      Predicate predicate;
    };
  } } // end namespace parallel::detail

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG, typename Predicate>
  inline void
  remove_edge_if(Predicate predicate,
                 PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS) Graph;
    typedef parallel::detail::remove_undirected_edge_predicate<Graph,
                                                               Predicate> Pred;
    graph_detail::erase_if(g.local_edges(), Pred(g, predicate));
  }

  /************************************************************************
   *
   * clear_vertex
   *
   ************************************************************************/
  namespace parallel { namespace detail {
    struct always_true
    {
      typedef bool result_type;

      template<typename T> bool operator()(const T&) const { return true; }
    };
  } } // end namespace parallel::detail

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  void
  clear_vertex
    (typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)
          ::vertex_descriptor u,
      PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)& g)
  {
    clear_out_edges(u, g);
    clear_in_edges(u, g);
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  void
  clear_vertex
    (typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)
                ::vertex_descriptor u,
      PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(undirectedS)& g)
  {
    remove_out_edge_if(u, parallel::detail::always_true(), g);
  }

  /************************************************************************
   *
   * clear_out_edges
   *
   ************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  void
  clear_out_edges
    (typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)::vertex_descriptor u,
      PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(directedS)& g)
  {
    BOOST_ASSERT(u.owner == g.processor());
    clear_out_edges(u.local, g.base());
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  void
  clear_out_edges
    (typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)
                ::vertex_descriptor u,
      PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)& g)
  {
    remove_out_edge_if(u, parallel::detail::always_true(), g);
  }

  /************************************************************************
   *
   * clear_in_edges
   *
   ************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS_CONFIG>
  void
  clear_in_edges
    (typename PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)
                ::vertex_descriptor u,
      PBGL_DISTRIB_ADJLIST_TYPE_CONFIG(bidirectionalS)& g)
  {
    remove_in_edge_if(u, parallel::detail::always_true(), g);
  }

  /************************************************************************
   *
   * add_vertex
   *
   ************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor
  add_vertex(PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE graph_type;
    typename graph_type::vertex_property_type p;
    return add_vertex(p, g);
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename PBGL_DISTRIB_ADJLIST_TYPE::lazy_add_vertex_with_property
  add_vertex(typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_property_type const& p,
             PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE
                       ::lazy_add_vertex_with_property lazy_add_vertex;
    return lazy_add_vertex(g, p);
  }

  /************************************************************************
   *
   * remove_vertex
   *
   ************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  void
  remove_vertex(typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor u,
                PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename PBGL_DISTRIB_ADJLIST_TYPE::graph_type graph_type;
    typedef typename graph_type::named_graph_mixin named_graph_mixin;
    BOOST_ASSERT(u.owner == g.processor());
    static_cast<named_graph_mixin&>(static_cast<graph_type&>(g))
      .removing_vertex(u);
    g.distribution().clear();
    remove_vertex(u.local, g.base());
  }

  /***************************************************************************
   * Implementation of Property Graph concept
   ***************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS, typename Property>
  struct property_map<PBGL_DISTRIB_ADJLIST_TYPE, Property>
  : detail::parallel::get_adj_list_pmap<Property>
      ::template apply<PBGL_DISTRIB_ADJLIST_TYPE>
  { };

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS, typename Property>
  struct property_map<PBGL_DISTRIB_ADJLIST_TYPE const, Property>
          : boost::detail::parallel::get_adj_list_pmap<Property>
// FIXME: in the original code the following was not const
      ::template apply<PBGL_DISTRIB_ADJLIST_TYPE const>
  { };

  template<typename Property, PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, Property>::type
  get(Property p, PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE Graph;
    typedef typename property_map<Graph, Property>::type result_type;
    typedef typename property_traits<result_type>::value_type value_type;
    typedef typename property_reduce<Property>::template apply<value_type>
      reduce;

    typedef typename property_traits<result_type>::key_type descriptor;
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
    typedef typename mpl::if_<is_same<descriptor, vertex_descriptor>,
                              vertex_global_t, edge_global_t>::type
      global_map_t;

    return result_type(g.process_group(), get(global_map_t(), g),
                       get(p, g.base()), reduce());
  }

  template<typename Property, PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, Property>::const_type
  get(Property p, const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE Graph;
    typedef typename property_map<Graph, Property>::const_type result_type;
    typedef typename property_traits<result_type>::value_type value_type;
    typedef typename property_reduce<Property>::template apply<value_type>
      reduce;

    typedef typename property_traits<result_type>::key_type descriptor;
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
    typedef typename mpl::if_<is_same<descriptor, vertex_descriptor>,
                              vertex_global_t, edge_global_t>::type
      global_map_t;

    return result_type(g.process_group(), get(global_map_t(), g),
                       get(p, g.base()), reduce());
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, vertex_local_index_t>::type
  get(vertex_local_index_t, PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    return get(vertex_local_index, g.base());
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE,
                        vertex_local_index_t>::const_type
  get(vertex_local_index_t, const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    return get(vertex_local_index, g.base());
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, vertex_global_t>::const_type
  get(vertex_global_t, const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       vertex_global_t>::const_type result_type;
    return result_type();
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, vertex_global_t>::const_type
  get(vertex_global_t, PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       vertex_global_t>::const_type result_type;
    return result_type();
  }

  /// Retrieve a property map mapping from a vertex descriptor to its
  /// owner.
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, vertex_owner_t>::type
  get(vertex_owner_t, PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       vertex_owner_t>::type result_type;
    return result_type();
  }

  /// Retrieve a property map mapping from a vertex descriptor to its
  /// owner.
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, vertex_owner_t>::const_type
  get(vertex_owner_t, const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       vertex_owner_t>::const_type result_type;
    return result_type();
  }

  /// Retrieve the owner of a vertex
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  inline processor_id_type
  get(vertex_owner_t, PBGL_DISTRIB_ADJLIST_TYPE&,
      typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v)
  {
    return v.owner;
  }

  /// Retrieve the owner of a vertex
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  inline processor_id_type
  get(vertex_owner_t, const PBGL_DISTRIB_ADJLIST_TYPE&,
      typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v)
  {
    return v.owner;
  }

  /// Retrieve a property map that maps from a vertex descriptor to
  /// its local descriptor.
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, vertex_local_t>::type
  get(vertex_local_t, PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       vertex_local_t>::type result_type;
    return result_type();
  }

  /// Retrieve a property map that maps from a vertex descriptor to
  /// its local descriptor.
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, vertex_local_t>::const_type
  get(vertex_local_t, const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       vertex_local_t>::const_type result_type;
    return result_type();
  }

  /// Retrieve the local descriptor of a vertex
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  inline typename PBGL_DISTRIB_ADJLIST_TYPE::local_vertex_descriptor
  get(vertex_local_t, PBGL_DISTRIB_ADJLIST_TYPE&,
      typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v)
  {
    return v.local;
  }

  /// Retrieve the local descriptor of a vertex
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  inline typename PBGL_DISTRIB_ADJLIST_TYPE::local_vertex_descriptor
  get(vertex_local_t, const PBGL_DISTRIB_ADJLIST_TYPE&,
      typename PBGL_DISTRIB_ADJLIST_TYPE::vertex_descriptor v)
  {
    return v.local;
  }


  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, edge_global_t>::const_type
  get(edge_global_t, const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       edge_global_t>::const_type result_type;
    return result_type();
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, edge_global_t>::const_type
  get(edge_global_t, PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       edge_global_t>::const_type result_type;
    return result_type();
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, edge_owner_t>::type
  get(edge_owner_t, PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       edge_owner_t>::type result_type;
    return result_type();
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, edge_owner_t>::const_type
  get(edge_owner_t, const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       edge_owner_t>::const_type result_type;
    return result_type();
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, edge_local_t>::type
  get(edge_local_t, PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       edge_local_t>::type result_type;
    return result_type();
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, edge_local_t>::const_type
  get(edge_local_t, const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef typename property_map<
                       PBGL_DISTRIB_ADJLIST_TYPE,
                       edge_local_t>::const_type result_type;
    return result_type();
  }

  template<typename Property, PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS,
           typename Key>
  inline
  typename property_traits<typename property_map<
                PBGL_DISTRIB_ADJLIST_TYPE, Property>::const_type
           >::value_type
  get(Property p, const PBGL_DISTRIB_ADJLIST_TYPE& g, const Key& key)
  {
    if (owner(key) == process_id(g.process_group()))
      return get(p, g.base(), local(key));
    else
      BOOST_ASSERT(false);
  }

  template<typename Property, PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS,
           typename Key, typename Value>
  void
  put(Property p, PBGL_DISTRIB_ADJLIST_TYPE& g, const Key& key, const Value& v)
  {
    if (owner(key) == process_id(g.process_group()))
      put(p, g.base(), local(key), v);
    else
      BOOST_ASSERT(false);
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, vertex_index_t>::type
  get(vertex_index_t vi, PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE graph_type;
    typedef typename property_map<graph_type, vertex_index_t>::type
      result_type;
    return result_type(g.process_group(), get(vertex_global, g),
                       get(vi, g.base()));
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, vertex_index_t>::const_type
  get(vertex_index_t vi, const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE graph_type;
    typedef typename property_map<graph_type, vertex_index_t>::const_type
      result_type;
    return result_type(g.process_group(), get(vertex_global, g),
                       get(vi, g.base()));
  }

  /***************************************************************************
   * Implementation of bundled properties
   ***************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS, typename T, typename Bundle>
  struct property_map<PBGL_DISTRIB_ADJLIST_TYPE, T Bundle::*>
    : detail::parallel::get_adj_list_pmap<T Bundle::*>
      ::template apply<PBGL_DISTRIB_ADJLIST_TYPE>
  { };

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS, typename T, typename Bundle>
  struct property_map<PBGL_DISTRIB_ADJLIST_TYPE const, T Bundle::*>
    : detail::parallel::get_adj_list_pmap<T Bundle::*>
      ::template apply<PBGL_DISTRIB_ADJLIST_TYPE const>
  { };

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS, typename T, typename Bundle>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, T Bundle::*>::type
  get(T Bundle::* p, PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE Graph;
    typedef typename property_map<Graph, T Bundle::*>::type result_type;
    typedef typename property_traits<result_type>::value_type value_type;
    typedef typename property_reduce<T Bundle::*>::template apply<value_type>
      reduce;

    typedef typename property_traits<result_type>::key_type descriptor;
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
    typedef typename mpl::if_<is_same<descriptor, vertex_descriptor>,
                              vertex_global_t, edge_global_t>::type
      global_map_t;

    return result_type(g.process_group(), get(global_map_t(), g),
                       get(p, g.base()), reduce());
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS, typename T, typename Bundle>
  typename property_map<PBGL_DISTRIB_ADJLIST_TYPE, T Bundle::*>::const_type
  get(T Bundle::* p, const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE Graph;
    typedef typename property_map<Graph, T Bundle::*>::const_type result_type;
    typedef typename property_traits<result_type>::value_type value_type;
    typedef typename property_reduce<T Bundle::*>::template apply<value_type>
      reduce;

    typedef typename property_traits<result_type>::key_type descriptor;
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
    typedef typename mpl::if_<is_same<descriptor, vertex_descriptor>,
                              vertex_global_t, edge_global_t>::type
      global_map_t;

    return result_type(g.process_group(), get(global_map_t(), g),
                       get(p, g.base()), reduce());
  }

  /***************************************************************************
   * Implementation of DistributedGraph concept
   ***************************************************************************/
  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  void synchronize(const PBGL_DISTRIB_ADJLIST_TYPE& g)
  {
    typedef PBGL_DISTRIB_ADJLIST_TYPE graph_type;
    synchronize(g.process_group());
  }

  template<PBGL_DISTRIB_ADJLIST_TEMPLATE_PARMS>
  ProcessGroup
  process_group(const PBGL_DISTRIB_ADJLIST_TYPE& g)
  { return g.process_group(); }

  /***************************************************************************
   * Specializations of is_mpi_datatype for Serializable entities
   ***************************************************************************/
  namespace mpi {
    template<typename Directed, typename Vertex>
    struct is_mpi_datatype<boost::detail::edge_base<Directed, Vertex> >
      : is_mpi_datatype<Vertex> { };

    template<typename Directed, typename Vertex>
    struct is_mpi_datatype<boost::detail::edge_desc_impl<Directed, Vertex> >
      : is_mpi_datatype<boost::detail::edge_base<Directed, Vertex> > { };

    template<typename LocalDescriptor>
    struct is_mpi_datatype<boost::detail::parallel::global_descriptor<LocalDescriptor> >
      : is_mpi_datatype<LocalDescriptor> { };

    template<typename Edge>
    struct is_mpi_datatype<boost::detail::parallel::edge_descriptor<Edge> >
      : is_mpi_datatype<Edge> { };

    template<typename Vertex, typename LocalVertex>
    struct is_mpi_datatype<boost::detail::parallel::
                             msg_add_edge_data<Vertex, LocalVertex> >
      : is_mpi_datatype<Vertex> { };

    template<typename Vertex, typename LocalVertex, typename EdgeProperty>
    struct is_mpi_datatype<boost::detail::parallel::
                             msg_add_edge_with_property_data<Vertex, 
                                                             LocalVertex,
                                                             EdgeProperty> >
      : mpl::and_<is_mpi_datatype<Vertex>, is_mpi_datatype<EdgeProperty> > { };


   template<typename EdgeProperty, typename EdgeDescriptor>
   struct is_mpi_datatype<boost::detail::parallel::msg_nonlocal_edge_data<
                          EdgeProperty,EdgeDescriptor> >
           : mpl::and_<
               is_mpi_datatype<boost::detail::parallel::maybe_store_property<
                           EdgeProperty> >,
           is_mpi_datatype<EdgeDescriptor> >
  {};
   
   template<typename EdgeDescriptor>
   struct is_mpi_datatype<
            boost::detail::parallel::msg_remove_edge_data<EdgeDescriptor> >
           : is_mpi_datatype<EdgeDescriptor> {};
  }

  /***************************************************************************
   * Specializations of is_bitwise_serializable for Serializable entities
   ***************************************************************************/
  namespace serialization {
    template<typename Directed, typename Vertex>
    struct is_bitwise_serializable<boost::detail::edge_base<Directed, Vertex> >
      : is_bitwise_serializable<Vertex> { };

    template<typename Directed, typename Vertex>
    struct is_bitwise_serializable<boost::detail::edge_desc_impl<Directed, Vertex> >
      : is_bitwise_serializable<boost::detail::edge_base<Directed, Vertex> > { };

    template<typename LocalDescriptor>
    struct is_bitwise_serializable<boost::detail::parallel::global_descriptor<LocalDescriptor> >
      : is_bitwise_serializable<LocalDescriptor> { };

    template<typename Edge>
    struct is_bitwise_serializable<boost::detail::parallel::edge_descriptor<Edge> >
      : is_bitwise_serializable<Edge> { };

    template<typename Vertex, typename LocalVertex>
    struct is_bitwise_serializable<boost::detail::parallel::
                             msg_add_edge_data<Vertex, LocalVertex> >
      : is_bitwise_serializable<Vertex> { };

    template<typename Vertex, typename LocalVertex, typename EdgeProperty>
    struct is_bitwise_serializable<boost::detail::parallel::
                             msg_add_edge_with_property_data<Vertex, 
                                                             LocalVertex,
                                                             EdgeProperty> >
      : mpl::and_<is_bitwise_serializable<Vertex>, 
                  is_bitwise_serializable<EdgeProperty> > { };

   template<typename EdgeProperty, typename EdgeDescriptor>
   struct is_bitwise_serializable<boost::detail::parallel::msg_nonlocal_edge_data<
                                  EdgeProperty,EdgeDescriptor> >
           : mpl::and_<
               is_bitwise_serializable<
                boost::detail::parallel::maybe_store_property<EdgeProperty> >,
           is_bitwise_serializable<EdgeDescriptor> >
  {};
   
   template<typename EdgeDescriptor>
   struct is_bitwise_serializable<
            boost::detail::parallel::msg_remove_edge_data<EdgeDescriptor> >
           : is_bitwise_serializable<EdgeDescriptor> {};
   
    template<typename Directed, typename Vertex>
    struct implementation_level<boost::detail::edge_base<Directed, Vertex> >
      : mpl::int_<object_serializable> {};

    template<typename Directed, typename Vertex>
    struct implementation_level<boost::detail::edge_desc_impl<Directed, Vertex> >
      : mpl::int_<object_serializable> {};

    template<typename LocalDescriptor>
    struct implementation_level<boost::detail::parallel::global_descriptor<LocalDescriptor> >
      : mpl::int_<object_serializable> {};

    template<typename Edge>
    struct implementation_level<boost::detail::parallel::edge_descriptor<Edge> >
      : mpl::int_<object_serializable> {};

    template<typename Vertex, typename LocalVertex>
    struct implementation_level<boost::detail::parallel::
                             msg_add_edge_data<Vertex, LocalVertex> >
      : mpl::int_<object_serializable> {};

    template<typename Vertex, typename LocalVertex, typename EdgeProperty>
    struct implementation_level<boost::detail::parallel::
                             msg_add_edge_with_property_data<Vertex, 
                                                             LocalVertex,
                                                             EdgeProperty> >
      : mpl::int_<object_serializable> {};

   template<typename EdgeProperty, typename EdgeDescriptor>
   struct implementation_level<boost::detail::parallel::msg_nonlocal_edge_data<
                               EdgeProperty,EdgeDescriptor> >
           : mpl::int_<object_serializable> {};
   
   template<typename EdgeDescriptor>
   struct implementation_level<
            boost::detail::parallel::msg_remove_edge_data<EdgeDescriptor> >
          : mpl::int_<object_serializable> {};
   
    template<typename Directed, typename Vertex>
    struct tracking_level<boost::detail::edge_base<Directed, Vertex> >
      : mpl::int_<track_never> {};

    template<typename Directed, typename Vertex>
    struct tracking_level<boost::detail::edge_desc_impl<Directed, Vertex> >
      : mpl::int_<track_never> {};

    template<typename LocalDescriptor>
    struct tracking_level<boost::detail::parallel::global_descriptor<LocalDescriptor> >
      : mpl::int_<track_never> {};

    template<typename Edge>
    struct tracking_level<boost::detail::parallel::edge_descriptor<Edge> >
      : mpl::int_<track_never> {};

    template<typename Vertex, typename LocalVertex>
    struct tracking_level<boost::detail::parallel::
                             msg_add_edge_data<Vertex, LocalVertex> >
      : mpl::int_<track_never> {};

    template<typename Vertex, typename LocalVertex, typename EdgeProperty>
    struct tracking_level<boost::detail::parallel::
                             msg_add_edge_with_property_data<Vertex, 
                                                             LocalVertex,
                                                             EdgeProperty> >
      : mpl::int_<track_never> {};

   template<typename EdgeProperty, typename EdgeDescriptor>
   struct tracking_level<boost::detail::parallel::msg_nonlocal_edge_data<
                         EdgeProperty,EdgeDescriptor> >
           : mpl::int_<track_never> {};
   
   template<typename EdgeDescriptor>
   struct tracking_level<
            boost::detail::parallel::msg_remove_edge_data<EdgeDescriptor> >
          : mpl::int_<track_never> {};
  }

  // Hash function for global descriptors
  template<typename LocalDescriptor>
  struct hash<detail::parallel::global_descriptor<LocalDescriptor> >
  {
    typedef detail::parallel::global_descriptor<LocalDescriptor> argument_type;
    std::size_t operator()(argument_type const& x) const
    {
      std::size_t hash = hash_value(x.owner);
      hash_combine(hash, x.local);
      return hash;
    }
  };

  // Hash function for parallel edge descriptors
  template<typename Edge>
  struct hash<detail::parallel::edge_descriptor<Edge> >
  {
    typedef detail::parallel::edge_descriptor<Edge> argument_type;

    std::size_t operator()(argument_type const& x) const
    {
      std::size_t hash = hash_value(x.owner());
      hash_combine(hash, x.local);
      return hash;
    }
  };

} // end namespace boost

#include <boost/graph/distributed/adjlist/handlers.hpp>
#include <boost/graph/distributed/adjlist/initialize.hpp>
#include <boost/graph/distributed/adjlist/redistribute.hpp>
#include <boost/graph/distributed/adjlist/serialization.hpp>

#endif // BOOST_GRAPH_DISTRIBUTED_ADJACENCY_LIST_HPP