summaryrefslogtreecommitdiff
path: root/boost/graph/cuthill_mckee_ordering.hpp
blob: e16595c6ce040df23bb8db8870e3ffe0da18464b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Copyright 2004, 2005 Trustees of Indiana University
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek,
//          Doug Gregor, D. Kevin McGrath
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_GRAPH_CUTHILL_MCKEE_HPP
#define BOOST_GRAPH_CUTHILL_MCKEE_HPP

#include <boost/config.hpp>
#include <boost/graph/detail/sparse_ordering.hpp>
#include <boost/graph/graph_utility.hpp>
#include <algorithm>


/*
  (Reverse) Cuthill-McKee Algorithm for matrix reordering
*/

namespace boost {

  namespace detail {



    template < typename OutputIterator, typename Buffer, typename DegreeMap > 
    class bfs_rcm_visitor:public default_bfs_visitor
    {
    public:
      bfs_rcm_visitor(OutputIterator *iter, Buffer *b, DegreeMap deg): 
        permutation(iter), Qptr(b), degree(deg) { }
      template <class Vertex, class Graph>
      void examine_vertex(Vertex u, Graph&) {
        *(*permutation)++ = u;
        index_begin = Qptr->size();
      }
      template <class Vertex, class Graph>
      void finish_vertex(Vertex, Graph&) {
        using std::sort;

        typedef typename property_traits<DegreeMap>::value_type ds_type;

        typedef indirect_cmp<DegreeMap, std::less<ds_type> > Compare;
        Compare comp(degree);
                
        sort(Qptr->begin()+index_begin, Qptr->end(), comp);
      }
    protected:
      OutputIterator *permutation;
      int index_begin;
      Buffer *Qptr;
      DegreeMap degree;
    };

  } // namespace detail  


  // Reverse Cuthill-McKee algorithm with a given starting Vertex.
  //
  // If user provides a reverse iterator, this will be a reverse-cuthill-mckee
  // algorithm, otherwise it will be a standard CM algorithm

  template <class Graph, class OutputIterator,
            class ColorMap, class DegreeMap>
  OutputIterator
  cuthill_mckee_ordering(const Graph& g,
                         std::deque< typename
                         graph_traits<Graph>::vertex_descriptor > vertex_queue,
                         OutputIterator permutation, 
                         ColorMap color, DegreeMap degree)
  {

    //create queue, visitor...don't forget namespaces!
    typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
    typedef typename boost::sparse::sparse_ordering_queue<Vertex> queue;
    typedef typename detail::bfs_rcm_visitor<OutputIterator, queue, DegreeMap> Visitor;
    typedef typename property_traits<ColorMap>::value_type ColorValue;
    typedef color_traits<ColorValue> Color;


    queue Q;

    //create a bfs_rcm_visitor as defined above
    Visitor     vis(&permutation, &Q, degree);

    typename graph_traits<Graph>::vertex_iterator ui, ui_end;    

    // Copy degree to pseudo_degree
    // initialize the color map
    for (boost::tie(ui, ui_end) = vertices(g); ui != ui_end; ++ui){
      put(color, *ui, Color::white());
    }


    while( !vertex_queue.empty() ) {
      Vertex s = vertex_queue.front();
      vertex_queue.pop_front();
      
      //call BFS with visitor
      breadth_first_visit(g, s, Q, vis, color);
    }
    return permutation;
  }
    

  // This is the case where only a single starting vertex is supplied.
  template <class Graph, class OutputIterator,
            class ColorMap, class DegreeMap>
  OutputIterator
  cuthill_mckee_ordering(const Graph& g,
                         typename graph_traits<Graph>::vertex_descriptor s,
                         OutputIterator permutation, 
                         ColorMap color, DegreeMap degree)
  {

    std::deque< typename graph_traits<Graph>::vertex_descriptor > vertex_queue;
    vertex_queue.push_front( s );

    return cuthill_mckee_ordering(g, vertex_queue, permutation, color, degree);
  
  }
  

  // This is the version of CM which selects its own starting vertex
  template < class Graph, class OutputIterator, 
             class ColorMap, class DegreeMap>
  OutputIterator 
  cuthill_mckee_ordering(const Graph& G, OutputIterator permutation, 
                         ColorMap color, DegreeMap degree)
  {
    if (boost::graph::has_no_vertices(G))
      return permutation;

    typedef typename boost::graph_traits<Graph>::vertex_descriptor Vertex;
    typedef typename property_traits<ColorMap>::value_type ColorValue;
    typedef color_traits<ColorValue> Color;

    std::deque<Vertex>      vertex_queue;

    // Mark everything white
    BGL_FORALL_VERTICES_T(v, G, Graph) put(color, v, Color::white());

    // Find one vertex from each connected component 
    BGL_FORALL_VERTICES_T(v, G, Graph) {
      if (get(color, v) == Color::white()) {
        depth_first_visit(G, v, dfs_visitor<>(), color);
        vertex_queue.push_back(v);
      }
    }

    // Find starting nodes for all vertices
    // TBD: How to do this with a directed graph?
    for (typename std::deque<Vertex>::iterator i = vertex_queue.begin();
         i != vertex_queue.end(); ++i)
      *i = find_starting_node(G, *i, color, degree);
    
    return cuthill_mckee_ordering(G, vertex_queue, permutation,
                                  color, degree);
  }

  template<typename Graph, typename OutputIterator, typename VertexIndexMap>
  OutputIterator 
  cuthill_mckee_ordering(const Graph& G, OutputIterator permutation, 
                         VertexIndexMap index_map)
  {
    if (boost::graph::has_no_vertices(G))
      return permutation;
    
    std::vector<default_color_type> colors(num_vertices(G));
    return cuthill_mckee_ordering(G, permutation, 
                                  make_iterator_property_map(&colors[0], 
                                                             index_map,
                                                             colors[0]),
                                  make_out_degree_map(G));
  }

  template<typename Graph, typename OutputIterator>
  inline OutputIterator 
  cuthill_mckee_ordering(const Graph& G, OutputIterator permutation)
  { return cuthill_mckee_ordering(G, permutation, get(vertex_index, G)); }
} // namespace boost


#endif // BOOST_GRAPH_CUTHILL_MCKEE_HPP