summaryrefslogtreecommitdiff
path: root/boost/graph/boykov_kolmogorov_max_flow.hpp
blob: 1edc1323ef27c6077d5c648fd99fe8035ca61810 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
//  Copyright (c) 2006, Stephan Diederich
//
//  This code may be used under either of the following two licences:
//
//    Permission is hereby granted, free of charge, to any person
//    obtaining a copy of this software and associated documentation
//    files (the "Software"), to deal in the Software without
//    restriction, including without limitation the rights to use,
//    copy, modify, merge, publish, distribute, sublicense, and/or
//    sell copies of the Software, and to permit persons to whom the
//    Software is furnished to do so, subject to the following
//    conditions:
//
//    The above copyright notice and this permission notice shall be
//    included in all copies or substantial portions of the Software.
//
//    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
//    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
//    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
//    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
//    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
//    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
//    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
//    OTHER DEALINGS IN THE SOFTWARE. OF SUCH DAMAGE.
//
//  Or:
//
//    Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//    http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_BOYKOV_KOLMOGOROV_MAX_FLOW_HPP
#define BOOST_BOYKOV_KOLMOGOROV_MAX_FLOW_HPP

#include <boost/config.hpp>
#include <boost/assert.hpp>
#include <vector>
#include <list>
#include <utility>
#include <iosfwd>
#include <algorithm> // for std::min and std::max

#include <boost/pending/queue.hpp>
#include <boost/limits.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/none_t.hpp>
#include <boost/graph/graph_concepts.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/graph/lookup_edge.hpp>
#include <boost/concept/assert.hpp>

// The algorithm impelemented here is described in:
//
// Boykov, Y., Kolmogorov, V. "An Experimental Comparison of Min-Cut/Max-Flow
// Algorithms for Energy Minimization in Vision", In IEEE Transactions on
// Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124-1137,
// Sep 2004.
//
// For further reading, also see:
//
// Kolmogorov, V. "Graph Based Algorithms for Scene Reconstruction from Two or
// More Views". PhD thesis, Cornell University, Sep 2003.

namespace boost {

namespace detail {

template <class Graph,
          class EdgeCapacityMap,
          class ResidualCapacityEdgeMap,
          class ReverseEdgeMap,
          class PredecessorMap,
          class ColorMap,
          class DistanceMap,
          class IndexMap>
class bk_max_flow {
  typedef typename property_traits<EdgeCapacityMap>::value_type tEdgeVal;
  typedef graph_traits<Graph> tGraphTraits;
  typedef typename tGraphTraits::vertex_iterator vertex_iterator;
  typedef typename tGraphTraits::vertex_descriptor vertex_descriptor;
  typedef typename tGraphTraits::edge_descriptor edge_descriptor;
  typedef typename tGraphTraits::edge_iterator edge_iterator;
  typedef typename tGraphTraits::out_edge_iterator out_edge_iterator;
  typedef boost::queue<vertex_descriptor> tQueue;                               //queue of vertices, used in adoption-stage
  typedef typename property_traits<ColorMap>::value_type tColorValue;
  typedef color_traits<tColorValue> tColorTraits;
  typedef typename property_traits<DistanceMap>::value_type tDistanceVal;

    public:
      bk_max_flow(Graph& g,
                  EdgeCapacityMap cap,
                  ResidualCapacityEdgeMap res,
                  ReverseEdgeMap rev,
                  PredecessorMap pre,
                  ColorMap color,
                  DistanceMap dist,
                  IndexMap idx,
                  vertex_descriptor src,
                  vertex_descriptor sink):
      m_g(g),
      m_index_map(idx),
      m_cap_map(cap),
      m_res_cap_map(res),
      m_rev_edge_map(rev),
      m_pre_map(pre),
      m_tree_map(color),
      m_dist_map(dist),
      m_source(src),
      m_sink(sink),
      m_active_nodes(),
      m_in_active_list_vec(num_vertices(g), false),
      m_in_active_list_map(make_iterator_property_map(m_in_active_list_vec.begin(), m_index_map)),
      m_has_parent_vec(num_vertices(g), false),
      m_has_parent_map(make_iterator_property_map(m_has_parent_vec.begin(), m_index_map)),
      m_time_vec(num_vertices(g), 0),
      m_time_map(make_iterator_property_map(m_time_vec.begin(), m_index_map)),
      m_flow(0),
      m_time(1),
      m_last_grow_vertex(graph_traits<Graph>::null_vertex()){
        // initialize the color-map with gray-values
        vertex_iterator vi, v_end;
        for(boost::tie(vi, v_end) = vertices(m_g); vi != v_end; ++vi){
          set_tree(*vi, tColorTraits::gray());
        }
        // Initialize flow to zero which means initializing
        // the residual capacity equal to the capacity
        edge_iterator ei, e_end;
        for(boost::tie(ei, e_end) = edges(m_g); ei != e_end; ++ei) {
          put(m_res_cap_map, *ei, get(m_cap_map, *ei));
          BOOST_ASSERT(get(m_rev_edge_map, get(m_rev_edge_map, *ei)) == *ei); //check if the reverse edge map is build up properly
        }
        //init the search trees with the two terminals
        set_tree(m_source, tColorTraits::black());
        set_tree(m_sink, tColorTraits::white());
        put(m_time_map, m_source, 1);
        put(m_time_map, m_sink, 1);
      }

      tEdgeVal max_flow(){
        //augment direct paths from SOURCE->SINK and SOURCE->VERTEX->SINK
        augment_direct_paths();
        //start the main-loop
        while(true){
          bool path_found;
          edge_descriptor connecting_edge;
          boost::tie(connecting_edge, path_found) = grow(); //find a path from source to sink
          if(!path_found){
            //we're finished, no more paths were found
            break;
          }
          ++m_time;
          augment(connecting_edge); //augment that path
          adopt(); //rebuild search tree structure
        }
        return m_flow;
      }

      // the complete class is protected, as we want access to members in
      // derived test-class (see test/boykov_kolmogorov_max_flow_test.cpp)
    protected:
      void augment_direct_paths(){
        // in a first step, we augment all direct paths from source->NODE->sink
        // and additionally paths from source->sink. This improves especially
        // graphcuts for segmentation, as most of the nodes have source/sink
        // connects but shouldn't have an impact on other maxflow problems
        // (this is done in grow() anyway)
        out_edge_iterator ei, e_end;
        for(boost::tie(ei, e_end) = out_edges(m_source, m_g); ei != e_end; ++ei){
          edge_descriptor from_source = *ei;
          vertex_descriptor current_node = target(from_source, m_g);
          if(current_node == m_sink){
            tEdgeVal cap = get(m_res_cap_map, from_source);
            put(m_res_cap_map, from_source, 0);
            m_flow += cap;
            continue;
          }
          edge_descriptor to_sink;
          bool is_there;
          boost::tie(to_sink, is_there) = lookup_edge(current_node, m_sink, m_g);
          if(is_there){
            tEdgeVal cap_from_source = get(m_res_cap_map, from_source);
            tEdgeVal cap_to_sink = get(m_res_cap_map, to_sink);
            if(cap_from_source > cap_to_sink){
              set_tree(current_node, tColorTraits::black());
              add_active_node(current_node);
              set_edge_to_parent(current_node, from_source);
              put(m_dist_map, current_node, 1);
              put(m_time_map, current_node, 1);
              // add stuff to flow and update residuals. we dont need to
              // update reverse_edges, as incoming/outgoing edges to/from
              // source/sink don't count for max-flow
              put(m_res_cap_map, from_source, get(m_res_cap_map, from_source) - cap_to_sink);
              put(m_res_cap_map, to_sink, 0);
              m_flow += cap_to_sink;
            } else if(cap_to_sink > 0){
              set_tree(current_node, tColorTraits::white());
              add_active_node(current_node);
              set_edge_to_parent(current_node, to_sink);
              put(m_dist_map, current_node, 1);
              put(m_time_map, current_node, 1);
              // add stuff to flow and update residuals. we dont need to update
              // reverse_edges, as incoming/outgoing edges to/from source/sink
              // don't count for max-flow
              put(m_res_cap_map, to_sink, get(m_res_cap_map, to_sink) - cap_from_source);
              put(m_res_cap_map, from_source, 0);
              m_flow += cap_from_source;
            }
          } else if(get(m_res_cap_map, from_source)){
            // there is no sink connect, so we can't augment this path, but to
            // avoid adding m_source to the active nodes, we just activate this
            // node and set the approciate things
            set_tree(current_node, tColorTraits::black());
            set_edge_to_parent(current_node, from_source);
            put(m_dist_map, current_node, 1);
            put(m_time_map, current_node, 1);
            add_active_node(current_node);
          }
        }
        for(boost::tie(ei, e_end) = out_edges(m_sink, m_g); ei != e_end; ++ei){
          edge_descriptor to_sink = get(m_rev_edge_map, *ei);
          vertex_descriptor current_node = source(to_sink, m_g);
          if(get(m_res_cap_map, to_sink)){
            set_tree(current_node, tColorTraits::white());
            set_edge_to_parent(current_node, to_sink);
            put(m_dist_map, current_node, 1);
            put(m_time_map, current_node, 1);
            add_active_node(current_node);
          }
        }
      }

      /**
       * Returns a pair of an edge and a boolean. if the bool is true, the
       * edge is a connection of a found path from s->t , read "the link" and
       * source(returnVal, m_g) is the end of the path found in the source-tree
       * target(returnVal, m_g) is the beginning of the path found in the sink-tree
       */
      std::pair<edge_descriptor, bool> grow(){
        BOOST_ASSERT(m_orphans.empty());
        vertex_descriptor current_node;
        while((current_node = get_next_active_node()) != graph_traits<Graph>::null_vertex()){ //if there is one
          BOOST_ASSERT(get_tree(current_node) != tColorTraits::gray() &&
                       (has_parent(current_node) ||
                         current_node == m_source ||
                         current_node == m_sink));

          if(get_tree(current_node) == tColorTraits::black()){
            //source tree growing
            out_edge_iterator ei, e_end;
            if(current_node != m_last_grow_vertex){
              m_last_grow_vertex = current_node;
              boost::tie(m_last_grow_edge_it, m_last_grow_edge_end) = out_edges(current_node, m_g);
            }
            for(; m_last_grow_edge_it != m_last_grow_edge_end; ++m_last_grow_edge_it) {
              edge_descriptor out_edge = *m_last_grow_edge_it;
              if(get(m_res_cap_map, out_edge) > 0){ //check if we have capacity left on this edge
                vertex_descriptor other_node = target(out_edge, m_g);
                if(get_tree(other_node) == tColorTraits::gray()){ //it's a free node
                  set_tree(other_node, tColorTraits::black()); //aquire other node to our search tree
                  set_edge_to_parent(other_node, out_edge);   //set us as parent
                  put(m_dist_map, other_node, get(m_dist_map, current_node) + 1);  //and update the distance-heuristic
                  put(m_time_map, other_node, get(m_time_map, current_node));
                  add_active_node(other_node);
                } else if(get_tree(other_node) == tColorTraits::black()) {
                  // we do this to get shorter paths. check if we are nearer to
                  // the source as its parent is
                  if(is_closer_to_terminal(current_node, other_node)){
                    set_edge_to_parent(other_node, out_edge);
                    put(m_dist_map, other_node, get(m_dist_map, current_node) + 1);
                    put(m_time_map, other_node, get(m_time_map, current_node));
                  }
                } else{
                  BOOST_ASSERT(get_tree(other_node)==tColorTraits::white());
                  //kewl, found a path from one to the other search tree, return
                  // the connecting edge in src->sink dir
                  return std::make_pair(out_edge, true);
                }
              }
            } //for all out-edges
          } //source-tree-growing
          else{
            BOOST_ASSERT(get_tree(current_node) == tColorTraits::white());
            out_edge_iterator ei, e_end;
            if(current_node != m_last_grow_vertex){
              m_last_grow_vertex = current_node;
              boost::tie(m_last_grow_edge_it, m_last_grow_edge_end) = out_edges(current_node, m_g);
            }
            for(; m_last_grow_edge_it != m_last_grow_edge_end; ++m_last_grow_edge_it){
              edge_descriptor in_edge = get(m_rev_edge_map, *m_last_grow_edge_it);
              if(get(m_res_cap_map, in_edge) > 0){ //check if there is capacity left
                vertex_descriptor other_node = source(in_edge, m_g);
                if(get_tree(other_node) == tColorTraits::gray()){ //it's a free node
                  set_tree(other_node, tColorTraits::white());      //aquire that node to our search tree
                  set_edge_to_parent(other_node, in_edge);          //set us as parent
                  add_active_node(other_node);                      //activate that node
                  put(m_dist_map, other_node, get(m_dist_map, current_node) + 1); //set its distance
                  put(m_time_map, other_node, get(m_time_map, current_node));//and time
                } else if(get_tree(other_node) == tColorTraits::white()){
                  if(is_closer_to_terminal(current_node, other_node)){
                    //we are closer to the sink than its parent is, so we "adopt" him
                    set_edge_to_parent(other_node, in_edge);
                    put(m_dist_map, other_node, get(m_dist_map, current_node) + 1);
                    put(m_time_map, other_node, get(m_time_map, current_node));
                  }
                } else{
                  BOOST_ASSERT(get_tree(other_node)==tColorTraits::black());
                  //kewl, found a path from one to the other search tree,
                  // return the connecting edge in src->sink dir
                  return std::make_pair(in_edge, true);
                }
              }
            } //for all out-edges
          } //sink-tree growing

          //all edges of that node are processed, and no more paths were found.
          // remove if from the front of the active queue
          finish_node(current_node);
        } //while active_nodes not empty

        //no active nodes anymore and no path found, we're done
        return std::make_pair(edge_descriptor(), false);
      }

      /**
       * augments path from s->t and updates residual graph
       * source(e, m_g) is the end of the path found in the source-tree
       * target(e, m_g) is the beginning of the path found in the sink-tree
       * this phase generates orphans on satured edges, if the attached verts are
       * from different search-trees orphans are ordered in distance to
       * sink/source. first the farest from the source are front_inserted into
       * the orphans list, and after that the sink-tree-orphans are
       * front_inserted. when going to adoption stage the orphans are popped_front,
       * and so we process the nearest verts to the terminals first
       */
      void augment(edge_descriptor e) {
        BOOST_ASSERT(get_tree(target(e, m_g)) == tColorTraits::white());
        BOOST_ASSERT(get_tree(source(e, m_g)) == tColorTraits::black());
        BOOST_ASSERT(m_orphans.empty());

        const tEdgeVal bottleneck = find_bottleneck(e);
        //now we push the found flow through the path
        //for each edge we saturate we have to look for the verts that belong to that edge, one of them becomes an orphans
        //now process the connecting edge
        put(m_res_cap_map, e, get(m_res_cap_map, e) - bottleneck);
        BOOST_ASSERT(get(m_res_cap_map, e) >= 0);
        put(m_res_cap_map, get(m_rev_edge_map, e), get(m_res_cap_map, get(m_rev_edge_map, e)) + bottleneck);

        //now we follow the path back to the source
        vertex_descriptor current_node = source(e, m_g);
        while(current_node != m_source){
          edge_descriptor pred = get_edge_to_parent(current_node);
          put(m_res_cap_map, pred, get(m_res_cap_map, pred) - bottleneck);
          BOOST_ASSERT(get(m_res_cap_map, pred) >= 0);
          put(m_res_cap_map, get(m_rev_edge_map, pred), get(m_res_cap_map, get(m_rev_edge_map, pred)) + bottleneck);
          if(get(m_res_cap_map, pred) == 0){
            set_no_parent(current_node);
            m_orphans.push_front(current_node);
          }
          current_node = source(pred, m_g);
        }
        //then go forward in the sink-tree
        current_node = target(e, m_g);
        while(current_node != m_sink){
          edge_descriptor pred = get_edge_to_parent(current_node);
          put(m_res_cap_map, pred, get(m_res_cap_map, pred) - bottleneck);
          BOOST_ASSERT(get(m_res_cap_map, pred) >= 0);
          put(m_res_cap_map, get(m_rev_edge_map, pred), get(m_res_cap_map, get(m_rev_edge_map, pred)) + bottleneck);
          if(get(m_res_cap_map, pred) == 0){
            set_no_parent(current_node);
            m_orphans.push_front(current_node);
          }
          current_node = target(pred, m_g);
        }
        //and add it to the max-flow
        m_flow += bottleneck;
      }

      /**
       * returns the bottleneck of a s->t path (end_of_path is last vertex in
       * source-tree, begin_of_path is first vertex in sink-tree)
       */
      inline tEdgeVal find_bottleneck(edge_descriptor e){
        BOOST_USING_STD_MIN();
        tEdgeVal minimum_cap = get(m_res_cap_map, e);
        vertex_descriptor current_node = source(e, m_g);
        //first go back in the source tree
        while(current_node != m_source){
          edge_descriptor pred = get_edge_to_parent(current_node);
          minimum_cap = min BOOST_PREVENT_MACRO_SUBSTITUTION(minimum_cap, get(m_res_cap_map, pred));
          current_node = source(pred, m_g);
        }
        //then go forward in the sink-tree
        current_node = target(e, m_g);
        while(current_node != m_sink){
          edge_descriptor pred = get_edge_to_parent(current_node);
          minimum_cap = min BOOST_PREVENT_MACRO_SUBSTITUTION(minimum_cap, get(m_res_cap_map, pred));
          current_node = target(pred, m_g);
        }
        return minimum_cap;
      }

      /**
       * rebuild search trees
       * empty the queue of orphans, and find new parents for them or just drop
       * them from the search trees
       */
      void adopt(){
        while(!m_orphans.empty() || !m_child_orphans.empty()){
          vertex_descriptor current_node;
          if(m_child_orphans.empty()){
            //get the next orphan from the main-queue  and remove it
            current_node = m_orphans.front();
            m_orphans.pop_front();
          } else{
            current_node = m_child_orphans.front();
            m_child_orphans.pop();
          }
          if(get_tree(current_node) == tColorTraits::black()){
            //we're in the source-tree
            tDistanceVal min_distance = (std::numeric_limits<tDistanceVal>::max)();
            edge_descriptor new_parent_edge;
            out_edge_iterator ei, e_end;
            for(boost::tie(ei, e_end) = out_edges(current_node, m_g); ei != e_end; ++ei){
              const edge_descriptor in_edge = get(m_rev_edge_map, *ei);
              BOOST_ASSERT(target(in_edge, m_g) == current_node); //we should be the target of this edge
              if(get(m_res_cap_map, in_edge) > 0){
                vertex_descriptor other_node = source(in_edge, m_g);
                if(get_tree(other_node) == tColorTraits::black() && has_source_connect(other_node)){
                  if(get(m_dist_map, other_node) < min_distance){
                    min_distance = get(m_dist_map, other_node);
                    new_parent_edge = in_edge;
                  }
                }
              }
            }
            if(min_distance != (std::numeric_limits<tDistanceVal>::max)()){
              set_edge_to_parent(current_node, new_parent_edge);
              put(m_dist_map, current_node, min_distance + 1);
              put(m_time_map, current_node, m_time);
            } else{
              put(m_time_map, current_node, 0);
              for(boost::tie(ei, e_end) = out_edges(current_node, m_g); ei != e_end; ++ei){
                edge_descriptor in_edge = get(m_rev_edge_map, *ei);
                vertex_descriptor other_node = source(in_edge, m_g);
                if(get_tree(other_node) == tColorTraits::black() && other_node != m_source){
                  if(get(m_res_cap_map, in_edge) > 0){
                    add_active_node(other_node);
                  }
                  if(has_parent(other_node) && source(get_edge_to_parent(other_node), m_g) == current_node){
                    //we are the parent of that node
                    //it has to find a new parent, too
                    set_no_parent(other_node);
                    m_child_orphans.push(other_node);
                  }
                }
              }
              set_tree(current_node, tColorTraits::gray());
            } //no parent found
          } //source-tree-adoption
          else{
            //now we should be in the sink-tree, check that...
            BOOST_ASSERT(get_tree(current_node) == tColorTraits::white());
            out_edge_iterator ei, e_end;
            edge_descriptor new_parent_edge;
            tDistanceVal min_distance = (std::numeric_limits<tDistanceVal>::max)();
            for(boost::tie(ei, e_end) = out_edges(current_node, m_g); ei != e_end; ++ei){
              const edge_descriptor out_edge = *ei;
              if(get(m_res_cap_map, out_edge) > 0){
                const vertex_descriptor other_node = target(out_edge, m_g);
                if(get_tree(other_node) == tColorTraits::white() && has_sink_connect(other_node))
                  if(get(m_dist_map, other_node) < min_distance){
                    min_distance = get(m_dist_map, other_node);
                    new_parent_edge = out_edge;
                  }
              }
            }
            if(min_distance != (std::numeric_limits<tDistanceVal>::max)()){
              set_edge_to_parent(current_node, new_parent_edge);
              put(m_dist_map, current_node, min_distance + 1);
              put(m_time_map, current_node, m_time);
            } else{
              put(m_time_map, current_node, 0);
              for(boost::tie(ei, e_end) = out_edges(current_node, m_g); ei != e_end; ++ei){
                const edge_descriptor out_edge = *ei;
                const vertex_descriptor other_node = target(out_edge, m_g);
                if(get_tree(other_node) == tColorTraits::white() && other_node != m_sink){
                  if(get(m_res_cap_map, out_edge) > 0){
                    add_active_node(other_node);
                  }
                  if(has_parent(other_node) && target(get_edge_to_parent(other_node), m_g) == current_node){
                    //we were it's parent, so it has to find a new one, too
                    set_no_parent(other_node);
                    m_child_orphans.push(other_node);
                  }
                }
              }
              set_tree(current_node, tColorTraits::gray());
            } //no parent found
          } //sink-tree adoption
        } //while !orphans.empty()
      } //adopt

      /**
       * return next active vertex if there is one, otherwise a null_vertex
       */
      inline vertex_descriptor get_next_active_node(){
        while(true){
          if(m_active_nodes.empty())
            return graph_traits<Graph>::null_vertex();
          vertex_descriptor v = m_active_nodes.front();

      //if it has no parent, this node can't be active (if its not source or sink)
      if(!has_parent(v) && v != m_source && v != m_sink){
            m_active_nodes.pop();
            put(m_in_active_list_map, v, false);
          } else{
            BOOST_ASSERT(get_tree(v) == tColorTraits::black() || get_tree(v) == tColorTraits::white());
            return v;
          }
        }
      }

      /**
       * adds v as an active vertex, but only if its not in the list already
       */
      inline void add_active_node(vertex_descriptor v){
        BOOST_ASSERT(get_tree(v) != tColorTraits::gray());
        if(get(m_in_active_list_map, v)){
          if (m_last_grow_vertex == v) {
              m_last_grow_vertex = graph_traits<Graph>::null_vertex();
          }
          return;
        } else{
          put(m_in_active_list_map, v, true);
          m_active_nodes.push(v);
        }
      }

      /**
       * finish_node removes a node from the front of the active queue (its called in grow phase, if no more paths can be found using this node)
       */
      inline void finish_node(vertex_descriptor v){
        BOOST_ASSERT(m_active_nodes.front() == v);
        m_active_nodes.pop();
        put(m_in_active_list_map, v, false);
        m_last_grow_vertex = graph_traits<Graph>::null_vertex();
      }

      /**
       * removes a vertex from the queue of active nodes (actually this does nothing,
       * but checks if this node has no parent edge, as this is the criteria for
       * being no more active)
       */
      inline void remove_active_node(vertex_descriptor v){
        BOOST_ASSERT(!has_parent(v));
      }

      /**
       * returns the search tree of v; tColorValue::black() for source tree,
       * white() for sink tree, gray() for no tree
       */
      inline tColorValue get_tree(vertex_descriptor v) const {
        return get(m_tree_map, v);
      }

      /**
       * sets search tree of v; tColorValue::black() for source tree, white()
       * for sink tree, gray() for no tree
       */
      inline void set_tree(vertex_descriptor v, tColorValue t){
        put(m_tree_map, v, t);
      }

      /**
       * returns edge to parent vertex of v;
       */
      inline edge_descriptor get_edge_to_parent(vertex_descriptor v) const{
        return get(m_pre_map, v);
      }

      /**
       * returns true if the edge stored in m_pre_map[v] is a valid entry
       */
      inline bool has_parent(vertex_descriptor v) const{
        return get(m_has_parent_map, v);
      }

      /**
       * sets edge to parent vertex of v;
       */
      inline void set_edge_to_parent(vertex_descriptor v, edge_descriptor f_edge_to_parent){
        BOOST_ASSERT(get(m_res_cap_map, f_edge_to_parent) > 0);
        put(m_pre_map, v, f_edge_to_parent);
        put(m_has_parent_map, v, true);
      }

      /**
       * removes the edge to parent of v (this is done by invalidating the
       * entry an additional map)
       */
      inline void set_no_parent(vertex_descriptor v){
        put(m_has_parent_map, v, false);
      }

      /**
       * checks if vertex v has a connect to the sink-vertex (@var m_sink)
       * @param v the vertex which is checked
       * @return true if a path to the sink was found, false if not
       */
      inline bool has_sink_connect(vertex_descriptor v){
        tDistanceVal current_distance = 0;
        vertex_descriptor current_vertex = v;
        while(true){
          if(get(m_time_map, current_vertex) == m_time){
            //we found a node which was already checked this round. use it for distance calculations
            current_distance += get(m_dist_map, current_vertex);
            break;
          }
          if(current_vertex == m_sink){
            put(m_time_map, m_sink, m_time);
            break;
          }
          if(has_parent(current_vertex)){
            //it has a parent, so get it
            current_vertex = target(get_edge_to_parent(current_vertex), m_g);
            ++current_distance;
          } else{
            //no path found
            return false;
          }
        }
        current_vertex=v;
        while(get(m_time_map, current_vertex) != m_time){
          put(m_dist_map, current_vertex, current_distance);
          --current_distance;
          put(m_time_map, current_vertex, m_time);
          current_vertex = target(get_edge_to_parent(current_vertex), m_g);
        }
        return true;
      }

      /**
       * checks if vertex v has a connect to the source-vertex (@var m_source)
       * @param v the vertex which is checked
       * @return true if a path to the source was found, false if not
       */
      inline bool has_source_connect(vertex_descriptor v){
        tDistanceVal current_distance = 0;
        vertex_descriptor current_vertex = v;
        while(true){
          if(get(m_time_map, current_vertex) == m_time){
            //we found a node which was already checked this round. use it for distance calculations
            current_distance += get(m_dist_map, current_vertex);
            break;
          }
          if(current_vertex == m_source){
            put(m_time_map, m_source, m_time);
            break;
          }
          if(has_parent(current_vertex)){
            //it has a parent, so get it
            current_vertex = source(get_edge_to_parent(current_vertex), m_g);
            ++current_distance;
          } else{
            //no path found
            return false;
          }
        }
        current_vertex=v;
        while(get(m_time_map, current_vertex) != m_time){
            put(m_dist_map, current_vertex, current_distance);
            --current_distance;
            put(m_time_map, current_vertex, m_time);
            current_vertex = source(get_edge_to_parent(current_vertex), m_g);
        }
        return true;
      }

      /**
       * returns true, if p is closer to a terminal than q
       */
      inline bool is_closer_to_terminal(vertex_descriptor p, vertex_descriptor q){
        //checks the timestamps first, to build no cycles, and after that the real distance
        return (get(m_time_map, q) <= get(m_time_map, p) &&
                get(m_dist_map, q) > get(m_dist_map, p)+1);
      }

      ////////
      // member vars
      ////////
      Graph& m_g;
      IndexMap m_index_map;
      EdgeCapacityMap m_cap_map;
      ResidualCapacityEdgeMap m_res_cap_map;
      ReverseEdgeMap m_rev_edge_map;
      PredecessorMap m_pre_map; //stores paths found in the growth stage
      ColorMap m_tree_map; //maps each vertex into one of the two search tree or none (gray())
      DistanceMap m_dist_map; //stores distance to source/sink nodes
      vertex_descriptor m_source;
      vertex_descriptor m_sink;

      tQueue m_active_nodes;
      std::vector<bool> m_in_active_list_vec;
      iterator_property_map<std::vector<bool>::iterator, IndexMap> m_in_active_list_map;

      std::list<vertex_descriptor> m_orphans;
      tQueue m_child_orphans; // we use a second queuqe for child orphans, as they are FIFO processed

      std::vector<bool> m_has_parent_vec;
      iterator_property_map<std::vector<bool>::iterator, IndexMap> m_has_parent_map;

      std::vector<long> m_time_vec; //timestamp of each node, used for sink/source-path calculations
      iterator_property_map<std::vector<long>::iterator, IndexMap> m_time_map;
      tEdgeVal m_flow;
      long m_time;
      vertex_descriptor m_last_grow_vertex;
      out_edge_iterator m_last_grow_edge_it;
      out_edge_iterator m_last_grow_edge_end;
};

} //namespace boost::detail

/**
  * non-named-parameter version, given everything
  * this is the catch all version
  */
template<class Graph,
         class CapacityEdgeMap,
         class ResidualCapacityEdgeMap,
         class ReverseEdgeMap, class PredecessorMap,
         class ColorMap,
         class DistanceMap,
         class IndexMap>
typename property_traits<CapacityEdgeMap>::value_type
boykov_kolmogorov_max_flow(Graph& g,
                           CapacityEdgeMap cap,
                           ResidualCapacityEdgeMap res_cap,
                           ReverseEdgeMap rev_map,
                           PredecessorMap pre_map,
                           ColorMap color,
                           DistanceMap dist,
                           IndexMap idx,
                           typename graph_traits<Graph>::vertex_descriptor src,
                           typename graph_traits<Graph>::vertex_descriptor sink)
{
  typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
  typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;

  //as this method is the last one before we instantiate the solver, we do the concept checks here
  BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> )); //to have vertices(), num_vertices(),
  BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph> )); //to have edges()
  BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> )); //to have source(), target() and out_edges()
  BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<CapacityEdgeMap, edge_descriptor> )); //read flow-values from edges
  BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept<ResidualCapacityEdgeMap, edge_descriptor> )); //write flow-values to residuals
  BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<ReverseEdgeMap, edge_descriptor> )); //read out reverse edges
  BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept<PredecessorMap, vertex_descriptor> )); //store predecessor there
  BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept<ColorMap, vertex_descriptor> )); //write corresponding tree
  BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept<DistanceMap, vertex_descriptor> )); //write distance to source/sink
  BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap, vertex_descriptor> )); //get index 0...|V|-1
  BOOST_ASSERT(num_vertices(g) >= 2 && src != sink);

  detail::bk_max_flow<
    Graph, CapacityEdgeMap, ResidualCapacityEdgeMap, ReverseEdgeMap,
    PredecessorMap, ColorMap, DistanceMap, IndexMap
  > algo(g, cap, res_cap, rev_map, pre_map, color, dist, idx, src, sink);

  return algo.max_flow();
}

/**
 * non-named-parameter version, given capacity, residucal_capacity,
 * reverse_edges, and an index map.
 */
template<class Graph,
         class CapacityEdgeMap,
         class ResidualCapacityEdgeMap,
         class ReverseEdgeMap,
         class IndexMap>
typename property_traits<CapacityEdgeMap>::value_type
boykov_kolmogorov_max_flow(Graph& g,
                           CapacityEdgeMap cap,
                           ResidualCapacityEdgeMap res_cap,
                           ReverseEdgeMap rev,
                           IndexMap idx,
                           typename graph_traits<Graph>::vertex_descriptor src,
                           typename graph_traits<Graph>::vertex_descriptor sink)
{
  typename graph_traits<Graph>::vertices_size_type n_verts = num_vertices(g);
  std::vector<typename graph_traits<Graph>::edge_descriptor> predecessor_vec(n_verts);
  std::vector<default_color_type> color_vec(n_verts);
  std::vector<typename graph_traits<Graph>::vertices_size_type> distance_vec(n_verts);
  return
    boykov_kolmogorov_max_flow(
      g, cap, res_cap, rev,
      make_iterator_property_map(predecessor_vec.begin(), idx),
      make_iterator_property_map(color_vec.begin(), idx),
      make_iterator_property_map(distance_vec.begin(), idx),
      idx, src, sink);
}

/**
 * non-named-parameter version, some given: capacity, residual_capacity,
 * reverse_edges, color_map and an index map. Use this if you are interested in
 * the minimum cut, as the color map provides that info.
 */
template<class Graph,
         class CapacityEdgeMap,
         class ResidualCapacityEdgeMap,
         class ReverseEdgeMap,
         class ColorMap,
         class IndexMap>
typename property_traits<CapacityEdgeMap>::value_type
boykov_kolmogorov_max_flow(Graph& g,
                           CapacityEdgeMap cap,
                           ResidualCapacityEdgeMap res_cap,
                           ReverseEdgeMap rev,
                           ColorMap color,
                           IndexMap idx,
                           typename graph_traits<Graph>::vertex_descriptor src,
                           typename graph_traits<Graph>::vertex_descriptor sink)
{
  typename graph_traits<Graph>::vertices_size_type n_verts = num_vertices(g);
  std::vector<typename graph_traits<Graph>::edge_descriptor> predecessor_vec(n_verts);
  std::vector<typename graph_traits<Graph>::vertices_size_type> distance_vec(n_verts);
  return
    boykov_kolmogorov_max_flow(
      g, cap, res_cap, rev,
      make_iterator_property_map(predecessor_vec.begin(), idx),
      color,
      make_iterator_property_map(distance_vec.begin(), idx),
      idx, src, sink);
}

/**
 * named-parameter version, some given
 */
template<class Graph, class P, class T, class R>
typename property_traits<typename property_map<Graph, edge_capacity_t>::const_type>::value_type
boykov_kolmogorov_max_flow(Graph& g,
                           typename graph_traits<Graph>::vertex_descriptor src,
                           typename graph_traits<Graph>::vertex_descriptor sink,
                           const bgl_named_params<P, T, R>& params)
{
  return
  boykov_kolmogorov_max_flow(
    g,
    choose_const_pmap(get_param(params, edge_capacity), g, edge_capacity),
    choose_pmap(get_param(params, edge_residual_capacity), g, edge_residual_capacity),
    choose_const_pmap(get_param(params, edge_reverse), g, edge_reverse),
    choose_pmap(get_param(params, vertex_predecessor), g, vertex_predecessor),
    choose_pmap(get_param(params, vertex_color), g, vertex_color),
    choose_pmap(get_param(params, vertex_distance), g, vertex_distance),
    choose_const_pmap(get_param(params, vertex_index), g, vertex_index),
    src, sink);
}

/**
 * named-parameter version, none given
 */
template<class Graph>
typename property_traits<typename property_map<Graph, edge_capacity_t>::const_type>::value_type
boykov_kolmogorov_max_flow(Graph& g,
                           typename graph_traits<Graph>::vertex_descriptor src,
                           typename graph_traits<Graph>::vertex_descriptor sink)
{
  bgl_named_params<int, buffer_param_t> params(0); // bogus empty param
  return boykov_kolmogorov_max_flow(g, src, sink, params);
}

} // namespace boost

#endif // BOOST_BOYKOV_KOLMOGOROV_MAX_FLOW_HPP