summaryrefslogtreecommitdiff
path: root/boost/geometry/util/math.hpp
blob: 4042f4e4cd2fe0085279d43649d89e5561996ecb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
// Boost.Geometry (aka GGL, Generic Geometry Library)

// Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2015 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2015 Mateusz Loskot, London, UK.

// This file was modified by Oracle on 2014, 2015.
// Modifications copyright (c) 2014-2015, Oracle and/or its affiliates.

// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_UTIL_MATH_HPP
#define BOOST_GEOMETRY_UTIL_MATH_HPP

#include <cmath>
#include <limits>

#include <boost/core/ignore_unused.hpp>

#include <boost/math/constants/constants.hpp>
#ifdef BOOST_GEOMETRY_SQRT_CHECK_FINITENESS
#include <boost/math/special_functions/fpclassify.hpp>
#endif // BOOST_GEOMETRY_SQRT_CHECK_FINITENESS
#include <boost/math/special_functions/round.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/type_traits/is_fundamental.hpp>

#include <boost/geometry/util/select_most_precise.hpp>

namespace boost { namespace geometry
{

namespace math
{

#ifndef DOXYGEN_NO_DETAIL
namespace detail
{

template <typename T>
inline T const& greatest(T const& v1, T const& v2)
{
    return (std::max)(v1, v2);
}

template <typename T>
inline T const& greatest(T const& v1, T const& v2, T const& v3)
{
    return (std::max)(greatest(v1, v2), v3);
}

template <typename T>
inline T const& greatest(T const& v1, T const& v2, T const& v3, T const& v4)
{
    return (std::max)(greatest(v1, v2, v3), v4);
}

template <typename T>
inline T const& greatest(T const& v1, T const& v2, T const& v3, T const& v4, T const& v5)
{
    return (std::max)(greatest(v1, v2, v3, v4), v5);
}


template <typename T,
          bool IsFloatingPoint = boost::is_floating_point<T>::value>
struct abs
{
    static inline T apply(T const& value)
    {
        T const zero = T();
        return value < zero ? -value : value;
    }
};

template <typename T>
struct abs<T, true>
{
    static inline T apply(T const& value)
    {
        return fabs(value);
    }
};


struct equals_default_policy
{
    template <typename T>
    static inline T apply(T const& a, T const& b)
    {
        // See http://www.parashift.com/c++-faq-lite/newbie.html#faq-29.17
        return greatest(abs<T>::apply(a), abs<T>::apply(b), T(1));
    }
};

template <typename T,
          bool IsFloatingPoint = boost::is_floating_point<T>::value>
struct equals_factor_policy
{
    equals_factor_policy()
        : factor(1) {}
    explicit equals_factor_policy(T const& v)
        : factor(greatest(abs<T>::apply(v), T(1)))
    {}
    equals_factor_policy(T const& v0, T const& v1, T const& v2, T const& v3)
        : factor(greatest(abs<T>::apply(v0), abs<T>::apply(v1),
                          abs<T>::apply(v2), abs<T>::apply(v3),
                          T(1)))
    {}

    T const& apply(T const&, T const&) const
    {
        return factor;
    }

    T factor;
};

template <typename T>
struct equals_factor_policy<T, false>
{
    equals_factor_policy() {}
    explicit equals_factor_policy(T const&) {}
    equals_factor_policy(T const& , T const& , T const& , T const& ) {}

    static inline T apply(T const&, T const&)
    {
        return T(1);
    }
};

template <typename Type,
          bool IsFloatingPoint = boost::is_floating_point<Type>::value>
struct equals
{
    template <typename Policy>
    static inline bool apply(Type const& a, Type const& b, Policy const&)
    {
        return a == b;
    }
};

template <typename Type>
struct equals<Type, true>
{
    template <typename Policy>
    static inline bool apply(Type const& a, Type const& b, Policy const& policy)
    {
        boost::ignore_unused(policy);

        if (a == b)
        {
            return true;
        }

        return abs<Type>::apply(a - b) <= std::numeric_limits<Type>::epsilon() * policy.apply(a, b);
    }
};

template <typename T1, typename T2, typename Policy>
inline bool equals_by_policy(T1 const& a, T2 const& b, Policy const& policy)
{
    return detail::equals
        <
            typename select_most_precise<T1, T2>::type
        >::apply(a, b, policy);
}

template <typename Type,
          bool IsFloatingPoint = boost::is_floating_point<Type>::value>
struct smaller
{
    static inline bool apply(Type const& a, Type const& b)
    {
        return a < b;
    }
};

template <typename Type>
struct smaller<Type, true>
{
    static inline bool apply(Type const& a, Type const& b)
    {
        if (equals<Type, true>::apply(a, b, equals_default_policy()))
        {
            return false;
        }
        return a < b;
    }
};


template <typename Type,
          bool IsFloatingPoint = boost::is_floating_point<Type>::value>
struct equals_with_epsilon
    : public equals<Type, IsFloatingPoint>
{};

template
<
    typename T,
    bool IsFundemantal = boost::is_fundamental<T>::value /* false */
>
struct square_root
{
    typedef T return_type;

    static inline T apply(T const& value)
    {
        // for non-fundamental number types assume that sqrt is
        // defined either:
        // 1) at T's scope, or
        // 2) at global scope, or
        // 3) in namespace std
        using ::sqrt;
        using std::sqrt;

        return sqrt(value);
    }
};

template <typename FundamentalFP>
struct square_root_for_fundamental_fp
{
    typedef FundamentalFP return_type;

    static inline FundamentalFP apply(FundamentalFP const& value)
    {
#ifdef BOOST_GEOMETRY_SQRT_CHECK_FINITENESS
        // This is a workaround for some 32-bit platforms.
        // For some of those platforms it has been reported that
        // std::sqrt(nan) and/or std::sqrt(-nan) returns a finite value.
        // For those platforms we need to define the macro
        // BOOST_GEOMETRY_SQRT_CHECK_FINITENESS so that the argument
        // to std::sqrt is checked appropriately before passed to std::sqrt
        if (boost::math::isfinite(value))
        {
            return std::sqrt(value);
        }
        else if (boost::math::isinf(value) && value < 0)
        {
            return -std::numeric_limits<FundamentalFP>::quiet_NaN();
        }
        return value;
#else
        // for fundamental floating point numbers use std::sqrt
        return std::sqrt(value);
#endif // BOOST_GEOMETRY_SQRT_CHECK_FINITENESS
    }
};

template <>
struct square_root<float, true>
    : square_root_for_fundamental_fp<float>
{
};

template <>
struct square_root<double, true>
    : square_root_for_fundamental_fp<double>
{
};

template <>
struct square_root<long double, true>
    : square_root_for_fundamental_fp<long double>
{
};

template <typename T>
struct square_root<T, true>
{
    typedef double return_type;

    static inline double apply(T const& value)
    {
        // for all other fundamental number types use also std::sqrt
        //
        // Note: in C++98 the only other possibility is double;
        //       in C++11 there are also overloads for integral types;
        //       this specialization works for those as well.
        return square_root_for_fundamental_fp
            <
                double
            >::apply(boost::numeric_cast<double>(value));
    }
};


/*!
\brief Short construct to enable partial specialization for PI, currently not possible in Math.
*/
template <typename T>
struct define_pi
{
    static inline T apply()
    {
        // Default calls Boost.Math
        return boost::math::constants::pi<T>();
    }
};

template <typename T>
struct relaxed_epsilon
{
    static inline T apply(const T& factor)
    {
        return factor * std::numeric_limits<T>::epsilon();
    }
};

// ItoF ItoI FtoF
template <typename Result, typename Source,
          bool ResultIsInteger = std::numeric_limits<Result>::is_integer,
          bool SourceIsInteger = std::numeric_limits<Source>::is_integer>
struct round
{
    static inline Result apply(Source const& v)
    {
        return boost::numeric_cast<Result>(v);
    }
};

// FtoI
template <typename Result, typename Source>
struct round<Result, Source, true, false>
{
    static inline Result apply(Source const& v)
    {
        namespace bmp = boost::math::policies;
        // ignore rounding errors for backward compatibility
        typedef bmp::policy< bmp::rounding_error<bmp::ignore_error> > policy;
        return boost::numeric_cast<Result>(boost::math::round(v, policy()));
    }
};

} // namespace detail
#endif


template <typename T>
inline T pi() { return detail::define_pi<T>::apply(); }

template <typename T>
inline T relaxed_epsilon(T const& factor)
{
    return detail::relaxed_epsilon<T>::apply(factor);
}


// Maybe replace this by boost equals or boost ublas numeric equals or so

/*!
    \brief returns true if both arguments are equal.
    \ingroup utility
    \param a first argument
    \param b second argument
    \return true if a == b
    \note If both a and b are of an integral type, comparison is done by ==.
    If one of the types is floating point, comparison is done by abs and
    comparing with epsilon. If one of the types is non-fundamental, it might
    be a high-precision number and comparison is done using the == operator
    of that class.
*/

template <typename T1, typename T2>
inline bool equals(T1 const& a, T2 const& b)
{
    return detail::equals
        <
            typename select_most_precise<T1, T2>::type
        >::apply(a, b, detail::equals_default_policy());
}

template <typename T1, typename T2>
inline bool equals_with_epsilon(T1 const& a, T2 const& b)
{
    return detail::equals_with_epsilon
        <
            typename select_most_precise<T1, T2>::type
        >::apply(a, b, detail::equals_default_policy());
}

template <typename T1, typename T2>
inline bool smaller(T1 const& a, T2 const& b)
{
    return detail::smaller
        <
            typename select_most_precise<T1, T2>::type
        >::apply(a, b);
}

template <typename T1, typename T2>
inline bool larger(T1 const& a, T2 const& b)
{
    return detail::smaller
        <
            typename select_most_precise<T1, T2>::type
        >::apply(b, a);
}



double const d2r = geometry::math::pi<double>() / 180.0;
double const r2d = 1.0 / d2r;

/*!
    \brief Calculates the haversine of an angle
    \ingroup utility
    \note See http://en.wikipedia.org/wiki/Haversine_formula
    haversin(alpha) = sin2(alpha/2)
*/
template <typename T>
inline T hav(T const& theta)
{
    T const half = T(0.5);
    T const sn = sin(half * theta);
    return sn * sn;
}

/*!
\brief Short utility to return the square
\ingroup utility
\param value Value to calculate the square from
\return The squared value
*/
template <typename T>
inline T sqr(T const& value)
{
    return value * value;
}

/*!
\brief Short utility to return the square root
\ingroup utility
\param value Value to calculate the square root from
\return The square root value
*/
template <typename T>
inline typename detail::square_root<T>::return_type
sqrt(T const& value)
{
    return detail::square_root
        <
            T, boost::is_fundamental<T>::value
        >::apply(value);
}

/*!
\brief Short utility to workaround gcc/clang problem that abs is converting to integer
       and that older versions of MSVC does not support abs of long long...
\ingroup utility
*/
template<typename T>
inline T abs(T const& value)
{
    return detail::abs<T>::apply(value);
}

/*!
\brief Short utility to calculate the sign of a number: -1 (negative), 0 (zero), 1 (positive)
\ingroup utility
*/
template <typename T>
static inline int sign(T const& value)
{
    T const zero = T();
    return value > zero ? 1 : value < zero ? -1 : 0;
}

/*!
\brief Short utility to calculate the rounded value of a number.
\ingroup utility
\note If the source T is NOT an integral type and Result is an integral type
      the value is rounded towards the closest integral value. Otherwise it's
      casted.
*/
template <typename Result, typename T>
inline Result round(T const& v)
{
    return detail::round<Result, T>::apply(v);
}

} // namespace math


}} // namespace boost::geometry

#endif // BOOST_GEOMETRY_UTIL_MATH_HPP