summaryrefslogtreecommitdiff
path: root/boost/geometry/strategies/cartesian/cart_intersect.hpp
blob: a7bd38522630ba154f8053a429ceb810a039b3c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Boost.Geometry (aka GGL, Generic Geometry Library)

// Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2013-2014 Adam Wulkiewicz, Lodz, Poland.

// This file was modified by Oracle on 2014.
// Modifications copyright (c) 2014, Oracle and/or its affiliates.

// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP
#define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP

#include <algorithm>

#include <boost/geometry/core/exception.hpp>

#include <boost/geometry/geometries/concepts/point_concept.hpp>
#include <boost/geometry/geometries/concepts/segment_concept.hpp>

#include <boost/geometry/arithmetic/determinant.hpp>
#include <boost/geometry/algorithms/detail/assign_values.hpp>
#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
#include <boost/geometry/algorithms/detail/recalculate.hpp>

#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>

// Temporary / will be Strategy as template parameter
#include <boost/geometry/strategies/side.hpp>
#include <boost/geometry/strategies/cartesian/side_by_triangle.hpp>

#include <boost/geometry/strategies/side_info.hpp>
#include <boost/geometry/strategies/intersection_result.hpp>

#include <boost/geometry/policies/robustness/robust_point_type.hpp>
#include <boost/geometry/policies/robustness/segment_ratio_type.hpp>


#if defined(BOOST_GEOMETRY_DEBUG_ROBUSTNESS)
#  include <boost/geometry/io/wkt/write.hpp>
#endif


namespace boost { namespace geometry
{


namespace strategy { namespace intersection
{


/*!
    \see http://mathworld.wolfram.com/Line-LineIntersection.html
 */
template <typename Policy, typename CalculationType = void>
struct relate_cartesian_segments
{
    typedef typename Policy::return_type return_type;

    template <typename D, typename W, typename ResultType>
    static inline void cramers_rule(D const& dx_a, D const& dy_a,
        D const& dx_b, D const& dy_b, W const& wx, W const& wy,
        // out:
        ResultType& d, ResultType& da)
    {
        // Cramers rule
        d = geometry::detail::determinant<ResultType>(dx_a, dy_a, dx_b, dy_b);
        da = geometry::detail::determinant<ResultType>(dx_b, dy_b, wx, wy);
        // Ratio is da/d , collinear if d == 0, intersecting if 0 <= r <= 1
        // IntersectionPoint = (x1 + r * dx_a, y1 + r * dy_a)
    }


    // Relate segments a and b
    template <typename Segment1, typename Segment2, typename RobustPolicy>
    static inline return_type apply(Segment1 const& a, Segment2 const& b,
                RobustPolicy const& robust_policy)
    {
        // type them all as in Segment1 - TODO reconsider this, most precise?
        typedef typename geometry::point_type<Segment1>::type point_type;

        typedef typename geometry::robust_point_type
            <
                point_type, RobustPolicy
            >::type robust_point_type;

        point_type a0, a1, b0, b1;
        robust_point_type a0_rob, a1_rob, b0_rob, b1_rob;

        detail::assign_point_from_index<0>(a, a0);
        detail::assign_point_from_index<1>(a, a1);
        detail::assign_point_from_index<0>(b, b0);
        detail::assign_point_from_index<1>(b, b1);

        geometry::recalculate(a0_rob, a0, robust_policy);
        geometry::recalculate(a1_rob, a1, robust_policy);
        geometry::recalculate(b0_rob, b0, robust_policy);
        geometry::recalculate(b1_rob, b1, robust_policy);

        return apply(a, b, robust_policy, a0_rob, a1_rob, b0_rob, b1_rob);
    }

    // The main entry-routine, calculating intersections of segments a / b
    template <typename Segment1, typename Segment2, typename RobustPolicy, typename RobustPoint>
    static inline return_type apply(Segment1 const& a, Segment2 const& b,
            RobustPolicy const& robust_policy,
            RobustPoint const& robust_a1, RobustPoint const& robust_a2,
            RobustPoint const& robust_b1, RobustPoint const& robust_b2)
    {
        BOOST_CONCEPT_ASSERT( (concept::ConstSegment<Segment1>) );
        BOOST_CONCEPT_ASSERT( (concept::ConstSegment<Segment2>) );

        boost::ignore_unused_variable_warning(robust_policy);

        typedef typename select_calculation_type
            <Segment1, Segment2, CalculationType>::type coordinate_type;

        using geometry::detail::equals::equals_point_point;
        bool const a_is_point = equals_point_point(robust_a1, robust_a2);
        bool const b_is_point = equals_point_point(robust_b1, robust_b2);

        typedef side::side_by_triangle<coordinate_type> side;

        if(a_is_point && b_is_point)
        {
            return equals_point_point(robust_a1, robust_b2)
                ? Policy::degenerate(a, true)
                : Policy::disjoint()
                ;
        }

        side_info sides;
        sides.set<0>(side::apply(robust_b1, robust_b2, robust_a1),
                     side::apply(robust_b1, robust_b2, robust_a2));
        sides.set<1>(side::apply(robust_a1, robust_a2, robust_b1),
                     side::apply(robust_a1, robust_a2, robust_b2));

        bool collinear = sides.collinear();

        if (sides.same<0>() || sides.same<1>())
        {
            // Both points are at same side of other segment, we can leave
            return Policy::disjoint();
        }

        typedef typename select_most_precise
            <
                coordinate_type, double
            >::type promoted_type;

        typedef typename geometry::coordinate_type
            <
                RobustPoint
            >::type robust_coordinate_type;

        typedef typename segment_ratio_type
        <
            typename geometry::point_type<Segment1>::type, // TODO: most precise point?
            RobustPolicy
        >::type ratio_type;

        segment_intersection_info
        <
            coordinate_type,
            promoted_type,
            ratio_type
        > sinfo;

        sinfo.dx_a = get<1, 0>(a) - get<0, 0>(a); // distance in x-dir
        sinfo.dx_b = get<1, 0>(b) - get<0, 0>(b);
        sinfo.dy_a = get<1, 1>(a) - get<0, 1>(a); // distance in y-dir
        sinfo.dy_b = get<1, 1>(b) - get<0, 1>(b);

        robust_coordinate_type const robust_dx_a = get<0>(robust_a2) - get<0>(robust_a1);
        robust_coordinate_type const robust_dx_b = get<0>(robust_b2) - get<0>(robust_b1);
        robust_coordinate_type const robust_dy_a = get<1>(robust_a2) - get<1>(robust_a1);
        robust_coordinate_type const robust_dy_b = get<1>(robust_b2) - get<1>(robust_b1);

        // r: ratio 0-1 where intersection divides A/B
        // (only calculated for non-collinear segments)
        if (! collinear)
        {
            robust_coordinate_type robust_da0, robust_da;
            robust_coordinate_type robust_db0, robust_db;

            cramers_rule(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b,
                get<0>(robust_a1) - get<0>(robust_b1),
                get<1>(robust_a1) - get<1>(robust_b1),
                robust_da0, robust_da);

            cramers_rule(robust_dx_b, robust_dy_b, robust_dx_a, robust_dy_a,
                get<0>(robust_b1) - get<0>(robust_a1),
                get<1>(robust_b1) - get<1>(robust_a1),
                robust_db0, robust_db);

            math::detail::equals_factor_policy<robust_coordinate_type>
                policy(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b);
            robust_coordinate_type const zero = 0;
            if (math::detail::equals_by_policy(robust_da0, zero, policy)
             || math::detail::equals_by_policy(robust_db0, zero, policy))
            {
                // If this is the case, no rescaling is done for FP precision.
                // We set it to collinear, but it indicates a robustness issue.
                sides.set<0>(0,0);
                sides.set<1>(0,0);
                collinear = true;
            }
            else
            {
                sinfo.robust_ra.assign(robust_da, robust_da0);
                sinfo.robust_rb.assign(robust_db, robust_db0);
            }
        }

        if (collinear)
        {
            std::pair<bool, bool> const collinear_use_first
                    = is_x_more_significant(geometry::math::abs(robust_dx_a),
                                            geometry::math::abs(robust_dy_a),
                                            geometry::math::abs(robust_dx_b),
                                            geometry::math::abs(robust_dy_b),
                                            a_is_point, b_is_point);

            if (collinear_use_first.second)
            {
                // Degenerate cases: segments of single point, lying on other segment, are not disjoint
                // This situation is collinear too

                if (collinear_use_first.first)
                {
                    return relate_collinear<0, ratio_type>(a, b,
                            robust_a1, robust_a2, robust_b1, robust_b2,
                            a_is_point, b_is_point);
                }
                else
                {
                    // Y direction contains larger segments (maybe dx is zero)
                    return relate_collinear<1, ratio_type>(a, b,
                            robust_a1, robust_a2, robust_b1, robust_b2,
                            a_is_point, b_is_point);
                }
            }
        }

        return Policy::segments_crosses(sides, sinfo, a, b);
    }

private:
    // first is true if x is more significant
    // second is true if the more significant difference is not 0
    template <typename RobustCoordinateType>
    static inline std::pair<bool, bool>
        is_x_more_significant(RobustCoordinateType const& abs_robust_dx_a,
                              RobustCoordinateType const& abs_robust_dy_a,
                              RobustCoordinateType const& abs_robust_dx_b,
                              RobustCoordinateType const& abs_robust_dy_b,
                              bool const a_is_point,
                              bool const b_is_point)
    {
        //BOOST_ASSERT_MSG(!(a_is_point && b_is_point), "both segments shouldn't be degenerated");

        // for degenerated segments the second is always true because this function
        // shouldn't be called if both segments were degenerated

        if (a_is_point)
        {
            return std::make_pair(abs_robust_dx_b >= abs_robust_dy_b, true);
        }
        else if (b_is_point)
        {
            return std::make_pair(abs_robust_dx_a >= abs_robust_dy_a, true);
        }
        else
        {
            RobustCoordinateType const min_dx = (std::min)(abs_robust_dx_a, abs_robust_dx_b);
            RobustCoordinateType const min_dy = (std::min)(abs_robust_dy_a, abs_robust_dy_b);
            return min_dx == min_dy ?
                    std::make_pair(true, min_dx > RobustCoordinateType(0)) :
                    std::make_pair(min_dx > min_dy, true);
        }
    }

    template
    <
        std::size_t Dimension,
        typename RatioType,
        typename Segment1,
        typename Segment2,
        typename RobustPoint
    >
    static inline return_type relate_collinear(Segment1 const& a,
            Segment2 const& b,
            RobustPoint const& robust_a1, RobustPoint const& robust_a2,
            RobustPoint const& robust_b1, RobustPoint const& robust_b2,
            bool a_is_point, bool b_is_point)
    {
        if (a_is_point)
        {
            return relate_one_degenerate<RatioType>(a,
                get<Dimension>(robust_a1),
                get<Dimension>(robust_b1), get<Dimension>(robust_b2),
                true);
        }
        if (b_is_point)
        {
            return relate_one_degenerate<RatioType>(b,
                get<Dimension>(robust_b1),
                get<Dimension>(robust_a1), get<Dimension>(robust_a2),
                false);
        }
        return relate_collinear<RatioType>(a, b,
                                get<Dimension>(robust_a1),
                                get<Dimension>(robust_a2),
                                get<Dimension>(robust_b1),
                                get<Dimension>(robust_b2));
    }

    /// Relate segments known collinear
    template
    <
        typename RatioType,
        typename Segment1,
        typename Segment2,
        typename RobustType
    >
    static inline return_type relate_collinear(Segment1 const& a
            , Segment2 const& b
            , RobustType oa_1, RobustType oa_2
            , RobustType ob_1, RobustType ob_2
            )
    {
        // Calculate the ratios where a starts in b, b starts in a
        //         a1--------->a2         (2..7)
        //                b1----->b2      (5..8)
        // length_a: 7-2=5
        // length_b: 8-5=3
        // b1 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a)
        // b2 is located w.r.t. a at ratio: (8-2)/5=6/5 (right of a)
        // a1 is located w.r.t. b at ratio: (2-5)/3=-3/3 (left of b)
        // a2 is located w.r.t. b at ratio: (7-5)/3=2/3 (on b)
        // A arrives (a2 on b), B departs (b1 on a)

        // If both are reversed:
        //         a2<---------a1         (7..2)
        //                b2<-----b1      (8..5)
        // length_a: 2-7=-5
        // length_b: 5-8=-3
        // b1 is located w.r.t. a at ratio: (8-7)/-5=-1/5 (before a starts)
        // b2 is located w.r.t. a at ratio: (5-7)/-5=2/5 (on a)
        // a1 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b)
        // a2 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends)

        // If both one is reversed:
        //         a1--------->a2         (2..7)
        //                b2<-----b1      (8..5)
        // length_a: 7-2=+5
        // length_b: 5-8=-3
        // b1 is located w.r.t. a at ratio: (8-2)/5=6/5 (after a ends)
        // b2 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a)
        // a1 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends)
        // a2 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b)
        RobustType const length_a = oa_2 - oa_1; // no abs, see above
        RobustType const length_b = ob_2 - ob_1;

        RatioType ra_from(oa_1 - ob_1, length_b);
        RatioType ra_to(oa_2 - ob_1, length_b);
        RatioType rb_from(ob_1 - oa_1, length_a);
        RatioType rb_to(ob_2 - oa_1, length_a);

        // use absolute measure to detect endpoints intersection
        // NOTE: it'd be possible to calculate bx_wrt_a using ax_wrt_b values
        int const a1_wrt_b = position_value(oa_1, ob_1, ob_2);
        int const a2_wrt_b = position_value(oa_2, ob_1, ob_2);
        int const b1_wrt_a = position_value(ob_1, oa_1, oa_2);
        int const b2_wrt_a = position_value(ob_2, oa_1, oa_2);
        
        // fix the ratios if necessary
        // CONSIDER: fixing ratios also in other cases, if they're inconsistent
        // e.g. if ratio == 1 or 0 (so IP at the endpoint)
        // but position value indicates that the IP is in the middle of the segment
        // because one of the segments is very long
        // In such case the ratios could be moved into the middle direction
        // by some small value (e.g. EPS+1ULP)
        if (a1_wrt_b == 1)
        {
            ra_from.assign(0, 1);
            rb_from.assign(0, 1);
        }
        else if (a1_wrt_b == 3)
        {
            ra_from.assign(1, 1);
            rb_to.assign(0, 1);
        } 

        if (a2_wrt_b == 1)
        {
            ra_to.assign(0, 1);
            rb_from.assign(1, 1);
        }
        else if (a2_wrt_b == 3)
        {
            ra_to.assign(1, 1);
            rb_to.assign(1, 1);
        }

        if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3))
        //if ((ra_from.left() && ra_to.left()) || (ra_from.right() && ra_to.right()))
        {
            return Policy::disjoint();
        }

        bool const opposite = math::sign(length_a) != math::sign(length_b);

        return Policy::segments_collinear(a, b, opposite,
                                          a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a,
                                          ra_from, ra_to, rb_from, rb_to);
    }

    /// Relate segments where one is degenerate
    template
    <
        typename RatioType,
        typename DegenerateSegment,
        typename RobustType
    >
    static inline return_type relate_one_degenerate(
            DegenerateSegment const& degenerate_segment
            , RobustType d
            , RobustType s1, RobustType s2
            , bool a_degenerate
            )
    {
        // Calculate the ratios where ds starts in s
        //         a1--------->a2         (2..6)
        //              b1/b2      (4..4)
        // Ratio: (4-2)/(6-2)
        RatioType const ratio(d - s1, s2 - s1);

        if (!ratio.on_segment())
        {
            return Policy::disjoint();
        }

        return Policy::one_degenerate(degenerate_segment, ratio, a_degenerate);
    }

    template <typename ProjCoord1, typename ProjCoord2>
    static inline int position_value(ProjCoord1 const& ca1,
                                     ProjCoord2 const& cb1,
                                     ProjCoord2 const& cb2)
    {
        // S1x  0   1    2     3   4
        // S2       |---------->
        return math::equals(ca1, cb1) ? 1
             : math::equals(ca1, cb2) ? 3
             : cb1 < cb2 ?
                ( ca1 < cb1 ? 0
                : ca1 > cb2 ? 4
                : 2 )
              : ( ca1 > cb1 ? 0
                : ca1 < cb2 ? 4
                : 2 );
    }
};


}} // namespace strategy::intersection

}} // namespace boost::geometry


#endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP