summaryrefslogtreecommitdiff
path: root/boost/geometry/strategies/agnostic/point_in_poly_winding.hpp
blob: 0a797ac0f0615343385adeb457460dcf57e62ff4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
// Boost.Geometry (aka GGL, Generic Geometry Library)

// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2013 Adam Wulkiewicz, Lodz, Poland.

// This file was modified by Oracle on 2013, 2014, 2016, 2017.
// Modifications copyright (c) 2013-2017 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_WINDING_HPP
#define BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_WINDING_HPP


#include <boost/core/ignore_unused.hpp>

#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>

#include <boost/geometry/strategies/side.hpp>
#include <boost/geometry/strategies/covered_by.hpp>
#include <boost/geometry/strategies/within.hpp>


namespace boost { namespace geometry
{

namespace strategy { namespace within
{

// 1 deg or pi/180 rad
template <typename Point,
          typename CalculationType = typename coordinate_type<Point>::type>
struct winding_small_angle
{
    typedef typename coordinate_system<Point>::type cs_t;
    typedef math::detail::constants_on_spheroid
        <
            CalculationType,
            typename cs_t::units
        > constants;

    static inline CalculationType apply()
    {
        return constants::half_period() / CalculationType(180);
    }
};


// Fix for https://svn.boost.org/trac/boost/ticket/9628
// For floating point coordinates, the <D> coordinate of a point is compared
// with the segment's points using some EPS. If the coordinates are "equal"
// the sides are calculated. Therefore we can treat a segment as a long areal
// geometry having some width. There is a small ~triangular area somewhere
// between the segment's effective area and a segment's line used in sides
// calculation where the segment is on the one side of the line but on the
// other side of a segment (due to the width).
// Below picture assuming D = 1, if D = 0 horiz<->vert, E<->N, RIGHT<->UP.
// For the s1 of a segment going NE the real side is RIGHT but the point may
// be detected as LEFT, like this:
//                     RIGHT
//                 ___----->
//                  ^      O Pt  __ __
//                 EPS     __ __
//                  v__ __ BUT DETECTED AS LEFT OF THIS LINE
//             _____7
//       _____/
// _____/
// In the code below actually D = 0, so segments are nearly-vertical
// Called when the point is on the same level as one of the segment's points
// but the point is not aligned with a vertical segment
template <typename CSTag>
struct winding_side_equal
{
    typedef typename strategy::side::services::default_strategy
        <
            CSTag
        >::type strategy_side_type;

    template <typename Point, typename PointOfSegment>
    static inline int apply(Point const& point,
                            PointOfSegment const& se,
                            int count)
    {
        typedef typename coordinate_type<PointOfSegment>::type scoord_t;
        typedef typename coordinate_system<PointOfSegment>::type::units units_t;

        if (math::equals(get<1>(point), get<1>(se)))
            return 0;

        // Create a horizontal segment intersecting the original segment's endpoint
        // equal to the point, with the derived direction (E/W).
        PointOfSegment ss1, ss2;
        set<1>(ss1, get<1>(se));
        set<0>(ss1, get<0>(se));
        set<1>(ss2, get<1>(se));
        scoord_t ss20 = get<0>(se);
        if (count > 0)
        {
            ss20 += winding_small_angle<PointOfSegment>::apply();
        }
        else
        {
            ss20 -= winding_small_angle<PointOfSegment>::apply();
        }
        math::normalize_longitude<units_t>(ss20);
        set<0>(ss2, ss20);

        // Check the side using this vertical segment
        return strategy_side_type::apply(ss1, ss2, point);
    }
};
// The optimization for cartesian
template <>
struct winding_side_equal<cartesian_tag>
{
    template <typename Point, typename PointOfSegment>
    static inline int apply(Point const& point,
                            PointOfSegment const& se,
                            int count)
    {
        // NOTE: for D=0 the signs would be reversed
        return math::equals(get<1>(point), get<1>(se)) ?
                0 :
                get<1>(point) < get<1>(se) ?
                    // assuming count is equal to 1 or -1
                    -count : // ( count > 0 ? -1 : 1) :
                    count;   // ( count > 0 ? 1 : -1) ;
    }
};


template <typename Point,
          typename CalculationType,
          typename CSTag = typename cs_tag<Point>::type>
struct winding_check_touch
{
    typedef CalculationType calc_t;
    typedef typename coordinate_system<Point>::type::units units_t;
    typedef math::detail::constants_on_spheroid<CalculationType, units_t> constants;

    template <typename PointOfSegment, typename State>
    static inline int apply(Point const& point,
                            PointOfSegment const& seg1,
                            PointOfSegment const& seg2,
                            State& state,
                            bool& eq1,
                            bool& eq2)
    {
        calc_t const pi = constants::half_period();
        calc_t const pi2 = pi / calc_t(2);

        calc_t const px = get<0>(point);
        calc_t const s1x = get<0>(seg1);
        calc_t const s2x = get<0>(seg2);
        calc_t const py = get<1>(point);
        calc_t const s1y = get<1>(seg1);
        calc_t const s2y = get<1>(seg2);

        // NOTE: lat in {-90, 90} and arbitrary lon
        //  it doesn't matter what lon it is if it's a pole
        //  so e.g. if one of the segment endpoints is a pole
        //  then only the other lon matters
        
        bool eq1_strict = math::equals(s1x, px);
        bool eq2_strict = math::equals(s2x, px);

        eq1 = eq1_strict // lon strictly equal to s1
           || math::equals(s1y, pi2) || math::equals(s1y, -pi2); // s1 is pole
        eq2 = eq2_strict // lon strictly equal to s2
           || math::equals(s2y, pi2) || math::equals(s2y, -pi2); // s2 is pole
        
        // segment overlapping pole
        calc_t s1x_anti = s1x + constants::half_period();
        math::normalize_longitude<units_t, calc_t>(s1x_anti);
        bool antipodal = math::equals(s2x, s1x_anti);
        if (antipodal)
        {
            eq1 = eq2 = eq1 || eq2;

            // segment overlapping pole and point is pole
            if (math::equals(py, pi2) || math::equals(py, -pi2))
            {
                eq1 = eq2 = true;
            }
        }
        
        // Both equal p -> segment vertical
        // The only thing which has to be done is check if point is ON segment
        if (eq1 && eq2)
        {
            // segment endpoints on the same sides of the globe
            if (! antipodal
                // p's lat between segment endpoints' lats
                ? (s1y <= py && s2y >= py) || (s2y <= py && s1y >= py)
                // going through north or south pole?
                : (pi - s1y - s2y <= pi
                    ? (eq1_strict && s1y <= py) || (eq2_strict && s2y <= py) // north
                        || math::equals(py, pi2) // point on north pole
                    : (eq1_strict && s1y >= py) || (eq2_strict && s2y >= py)) // south
                        || math::equals(py, -pi2) // point on south pole
                )
            {
                state.m_touches = true;
            }
            return true;
        }
        return false;
    }
};
// The optimization for cartesian
template <typename Point, typename CalculationType>
struct winding_check_touch<Point, CalculationType, cartesian_tag>
{
    typedef CalculationType calc_t;

    template <typename PointOfSegment, typename State>
    static inline bool apply(Point const& point,
                             PointOfSegment const& seg1,
                             PointOfSegment const& seg2,
                             State& state,
                             bool& eq1,
                             bool& eq2)
    {
        calc_t const px = get<0>(point);
        calc_t const s1x = get<0>(seg1);
        calc_t const s2x = get<0>(seg2);

        eq1 = math::equals(s1x, px);
        eq2 = math::equals(s2x, px);

        // Both equal p -> segment vertical
        // The only thing which has to be done is check if point is ON segment
        if (eq1 && eq2)
        {
            calc_t const py = get<1>(point);
            calc_t const s1y = get<1>(seg1);
            calc_t const s2y = get<1>(seg2);
            if ((s1y <= py && s2y >= py) || (s2y <= py && s1y >= py))
            {
                state.m_touches = true;
            }
            return true;
        }
        return false;
    }
};


// Called if point is not aligned with a vertical segment
template <typename Point,
          typename CalculationType,
          typename CSTag = typename cs_tag<Point>::type>
struct winding_calculate_count
{
    typedef CalculationType calc_t;
    typedef typename coordinate_system<Point>::type::units units_t;

    static inline bool greater(calc_t const& l, calc_t const& r)
    {
        calc_t diff = l - r;
        math::normalize_longitude<units_t, calc_t>(diff);
        return diff > calc_t(0);
    }

    static inline int apply(calc_t const& p,
                            calc_t const& s1, calc_t const& s2,
                            bool eq1, bool eq2)
    {
        // Probably could be optimized by avoiding normalization for some comparisons
        // e.g. s1 > p could be calculated from p > s1

        // If both segment endpoints were poles below checks wouldn't be enough
        // but this means that either both are the same or that they are N/S poles
        // and therefore the segment is not valid.
        // If needed (eq1 && eq2 ? 0) could be returned

        return
              eq1 ? (greater(s2, p) ?  1 : -1)      // Point on level s1, E/W depending on s2
            : eq2 ? (greater(s1, p) ? -1 :  1)      // idem
            : greater(p, s1) && greater(s2, p) ?  2 // Point between s1 -> s2 --> E
            : greater(p, s2) && greater(s1, p) ? -2 // Point between s2 -> s1 --> W
            : 0;
    }
};
// The optimization for cartesian
template <typename Point, typename CalculationType>
struct winding_calculate_count<Point, CalculationType, cartesian_tag>
{
    typedef CalculationType calc_t;
    
    static inline int apply(calc_t const& p,
                            calc_t const& s1, calc_t const& s2,
                            bool eq1, bool eq2)
    {
        return
              eq1 ? (s2 > p ?  1 : -1)  // Point on level s1, E/W depending on s2
            : eq2 ? (s1 > p ? -1 :  1)  // idem
            : s1 < p && s2 > p ?  2     // Point between s1 -> s2 --> E
            : s2 < p && s1 > p ? -2     // Point between s2 -> s1 --> W
            : 0;
    }
};


/*!
\brief Within detection using winding rule
\ingroup strategies
\tparam Point \tparam_point
\tparam PointOfSegment \tparam_segment_point
\tparam SideStrategy Side strategy
\tparam CalculationType \tparam_calculation
\author Barend Gehrels
\note The implementation is inspired by terralib http://www.terralib.org (LGPL)
\note but totally revised afterwards, especially for cases on segments
\note Only dependant on "side", -> agnostic, suitable for spherical/latlong

\qbk{
[heading See also]
[link geometry.reference.algorithms.within.within_3_with_strategy within (with strategy)]
}
 */
template
<
    typename Point,
    typename PointOfSegment = Point,
    typename SideStrategy = typename strategy::side::services::default_strategy
                                <
                                    typename cs_tag<Point>::type
                                >::type,
    typename CalculationType = void
>
class winding
{
    typedef typename select_calculation_type
        <
            Point,
            PointOfSegment,
            CalculationType
        >::type calculation_type;
    
    /*! subclass to keep state */
    class counter
    {
        int m_count;
        bool m_touches;

        inline int code() const
        {
            return m_touches ? 0 : m_count == 0 ? -1 : 1;
        }

    public :
        friend class winding;

        template <typename P, typename CT, typename CST>
        friend struct winding_check_touch;

        inline counter()
            : m_count(0)
            , m_touches(false)
        {}

    };

    static inline int check_segment(Point const& point,
                PointOfSegment const& seg1, PointOfSegment const& seg2,
                counter& state, bool& eq1, bool& eq2)
    {
        if (winding_check_touch<Point, calculation_type>
                ::apply(point, seg1, seg2, state, eq1, eq2))
        {
            return 0;
        }

        calculation_type const p = get<0>(point);
        calculation_type const s1 = get<0>(seg1);
        calculation_type const s2 = get<0>(seg2);
        return winding_calculate_count<Point, calculation_type>
                    ::apply(p, s1, s2, eq1, eq2);
    }


public:
    typedef typename SideStrategy::envelope_strategy_type envelope_strategy_type;

    inline envelope_strategy_type get_envelope_strategy() const
    {
        return m_side_strategy.get_envelope_strategy();
    }

    typedef typename SideStrategy::disjoint_strategy_type disjoint_strategy_type;

    inline disjoint_strategy_type get_disjoint_strategy() const
    {
        return m_side_strategy.get_disjoint_strategy();
    }

    winding()
    {}

    explicit winding(SideStrategy const& side_strategy)
        : m_side_strategy(side_strategy)
    {}

    // Typedefs and static methods to fulfill the concept
    typedef Point point_type;
    typedef PointOfSegment segment_point_type;
    typedef counter state_type;

    inline bool apply(Point const& point,
                      PointOfSegment const& s1, PointOfSegment const& s2,
                      counter& state) const
    {
        typedef typename cs_tag<Point>::type cs_t;

        bool eq1 = false;
        bool eq2 = false;
        boost::ignore_unused(eq2);

        int count = check_segment(point, s1, s2, state, eq1, eq2);
        if (count != 0)
        {
            int side = 0;
            if (count == 1 || count == -1)
            {
                side = winding_side_equal<cs_t>::apply(point, eq1 ? s1 : s2, count);
            }
            else // count == 2 || count == -2
            {
                // 1 left, -1 right
                side = m_side_strategy.apply(s1, s2, point);
            }
            
            if (side == 0)
            {
                // Point is lying on segment
                state.m_touches = true;
                state.m_count = 0;
                return false;
            }

            // Side is NEG for right, POS for left.
            // The count is -2 for down, 2 for up (or -1/1)
            // Side positive thus means UP and LEFTSIDE or DOWN and RIGHTSIDE
            // See accompagnying figure (TODO)
            if (side * count > 0)
            {
                state.m_count += count;
            }
        }
        return ! state.m_touches;
    }

    static inline int result(counter const& state)
    {
        return state.code();
    }

private:
    SideStrategy m_side_strategy;
};


#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS

namespace services
{

template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, polygonal_tag, cartesian_tag, cartesian_tag>
{
    typedef winding
        <
            typename geometry::point_type<PointLike>::type,
            typename geometry::point_type<Geometry>::type
        > type;
};

template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, polygonal_tag, spherical_tag, spherical_tag>
{
    typedef winding
        <
            typename geometry::point_type<PointLike>::type,
            typename geometry::point_type<Geometry>::type
        > type;
};

template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, linear_tag, cartesian_tag, cartesian_tag>
{
    typedef winding
        <
            typename geometry::point_type<PointLike>::type,
            typename geometry::point_type<Geometry>::type
        > type;
};

template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, linear_tag, spherical_tag, spherical_tag>
{
    typedef winding
        <
            typename geometry::point_type<PointLike>::type,
            typename geometry::point_type<Geometry>::type
        > type;
};

} // namespace services

#endif


}} // namespace strategy::within


#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace strategy { namespace covered_by { namespace services
{

template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, polygonal_tag, cartesian_tag, cartesian_tag>
{
    typedef within::winding
        <
            typename geometry::point_type<PointLike>::type,
            typename geometry::point_type<Geometry>::type
        > type;
};

template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, polygonal_tag, spherical_tag, spherical_tag>
{
    typedef within::winding
        <
            typename geometry::point_type<PointLike>::type,
            typename geometry::point_type<Geometry>::type
        > type;
};

template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, linear_tag, cartesian_tag, cartesian_tag>
{
    typedef within::winding
        <
            typename geometry::point_type<PointLike>::type,
            typename geometry::point_type<Geometry>::type
        > type;
};

template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, linear_tag, spherical_tag, spherical_tag>
{
    typedef within::winding
        <
            typename geometry::point_type<PointLike>::type,
            typename geometry::point_type<Geometry>::type
        > type;
};

}}} // namespace strategy::covered_by::services
#endif


}} // namespace boost::geometry


#endif // BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_WINDING_HPP