summaryrefslogtreecommitdiff
path: root/boost/geometry/policies/relate/direction.hpp
blob: cfbaf7dd15321f2e4ae739d5a828b5a4b941c044 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// Boost.Geometry (aka GGL, Generic Geometry Library)

// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DIRECTION_HPP
#define BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DIRECTION_HPP


#include <cstddef>
#include <string>

#include <boost/concept_check.hpp>

#include <boost/geometry/arithmetic/determinant.hpp>
#include <boost/geometry/strategies/side_info.hpp>

#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
#include <boost/geometry/util/select_most_precise.hpp>


namespace boost { namespace geometry
{


namespace policies { namespace relate
{

struct direction_type
{
    // NOTE: "char" will be replaced by enum in future version

    inline direction_type(side_info const& s, char h,
                int ha, int hb,
                int da = 0, int db = 0,
                bool op = false)
        : how(h)
        , opposite(op)
        , how_a(ha)
        , how_b(hb)
        , dir_a(da)
        , dir_b(db)
        , sides(s)
    {
        arrival[0] = ha;
        arrival[1] = hb;
    }

    inline direction_type(char h, bool op, int ha = 0, int hb = 0)
        : how(h)
        , opposite(op)
        , how_a(ha)
        , how_b(hb)
        , dir_a(0)
        , dir_b(0)
    {
        arrival[0] = ha;
        arrival[1] = hb;
    }


    // TODO: replace this
    // NOTE: "char" will be replaced by enum in future version
    // "How" is the intersection formed?
    char how;

    // Is it opposite (for collinear/equal cases)
    bool opposite;

    // Information on how A arrives at intersection, how B arrives at intersection
    // 1: arrives at intersection
    // -1: starts from intersection
    int how_a;
    int how_b;

    // Direction: how is A positioned from B
    // 1: points left, seen from IP
    // -1: points right, seen from IP
    // In case of intersection: B's TO direction
    // In case that B's TO direction is at A: B's from direction
    // In collinear cases: it is 0
    int dir_a; // Direction of A-s TO from IP
    int dir_b; // Direction of B-s TO from IP

    // New information
    side_info sides;
    int arrival[2]; // 1=arrival, -1departure, 0=neutral; == how_a//how_b


    // About arrival[0] (== arrival of a2 w.r.t. b) for COLLINEAR cases
    // Arrival  1: a1--------->a2         (a arrives within b)
    //                      b1----->b2

    // Arrival  1: (a in b)
    //


    // Arrival -1:      a1--------->a2     (a does not arrive within b)
    //             b1----->b2

    // Arrival -1: (b in a)               a_1-------------a_2
    //                                         b_1---b_2

    // Arrival  0:                        a1------->a2  (a arrives at TO-border of b)
    //                                        b1--->b2

};


template <typename S1, typename S2, typename CalculationType = void>
struct segments_direction
{
    typedef direction_type return_type;
    typedef S1 segment_type1;
    typedef S2 segment_type2;
    typedef typename select_calculation_type
        <
            S1, S2, CalculationType
        >::type coordinate_type;

    // Get the same type, but at least a double
    typedef typename select_most_precise<coordinate_type, double>::type rtype;


	template <typename R>
    static inline return_type segments_intersect(side_info const& sides,
					R const&,
                    coordinate_type const& dx1, coordinate_type const& dy1,
                    coordinate_type const& dx2, coordinate_type const& dy2,
                    S1 const& s1, S2 const& s2)
    {
        bool const ra0 = sides.get<0,0>() == 0;
        bool const ra1 = sides.get<0,1>() == 0;
        bool const rb0 = sides.get<1,0>() == 0;
        bool const rb1 = sides.get<1,1>() == 0;

        return
            // opposite and same starting point (FROM)
            ra0 && rb0 ? calculate_side<1>(sides, dx1, dy1, s1, s2, 'f', -1, -1)

            // opposite and point to each other (TO)
            : ra1 && rb1 ? calculate_side<0>(sides, dx1, dy1, s1, s2, 't', 1, 1)

            // not opposite, forming an angle, first a then b,
            // directed either both left, or both right
            // Check side of B2 from A. This is not calculated before
            : ra1 && rb0 ? angle<1>(sides, dx1, dy1, s1, s2, 'a', 1, -1)

            // not opposite, forming a angle, first b then a,
            // directed either both left, or both right
            : ra0 && rb1 ? angle<0>(sides, dx1, dy1, s1, s2, 'a', -1, 1)

            // b starts from interior of a
            : rb0 ? starts_from_middle(sides, dx1, dy1, s1, s2, 'B', 0, -1)

            // a starts from interior of b (#39)
            : ra0 ? starts_from_middle(sides, dx1, dy1, s1, s2, 'A', -1, 0)

            // b ends at interior of a, calculate direction of A from IP
            : rb1 ? b_ends_at_middle(sides, dx2, dy2, s1, s2)

            // a ends at interior of b
            : ra1 ? a_ends_at_middle(sides, dx1, dy1, s1, s2)

            // normal intersection
            : calculate_side<1>(sides, dx1, dy1, s1, s2, 'i', -1, -1)
            ;
    }

    static inline return_type collinear_touch(
                coordinate_type const& ,
                coordinate_type const& , int arrival_a, int arrival_b)
    {
        // Though this is 'collinear', we handle it as To/From/Angle because it is the same.
        // It only does NOT have a direction.
        side_info sides;
        //int const arrive = how == 'T' ? 1 : -1;
        bool opposite = arrival_a == arrival_b;
        return
            ! opposite
            ? return_type(sides, 'a', arrival_a, arrival_b)
            : return_type(sides, arrival_a == 0 ? 't' : 'f', arrival_a, arrival_b, 0, 0, true);
    }

    template <typename S>
    static inline return_type collinear_interior_boundary_intersect(S const& , bool,
                    int arrival_a, int arrival_b, bool opposite)
    {
        return_type r('c', opposite);
        r.arrival[0] = arrival_a;
        r.arrival[1] = arrival_b;
        return r;
    }

    static inline return_type collinear_a_in_b(S1 const& , bool opposite)
    {
        return_type r('c', opposite);
        r.arrival[0] = 1;
        r.arrival[1] = -1;
        return r;
    }
    static inline return_type collinear_b_in_a(S2 const& , bool opposite)
    {
        return_type r('c', opposite);
        r.arrival[0] = -1;
        r.arrival[1] = 1;
        return r;
    }

    static inline return_type collinear_overlaps(
                    coordinate_type const& , coordinate_type const& ,
                    coordinate_type const& , coordinate_type const& ,
                    int arrival_a, int arrival_b, bool opposite)
    {
        return_type r('c', opposite);
        r.arrival[0] = arrival_a;
        r.arrival[1] = arrival_b;
        return r;
    }

    static inline return_type segment_equal(S1 const& , bool opposite)
    {
        return return_type('e', opposite);
    }

    static inline return_type degenerate(S1 const& , bool)
    {
        return return_type('0', false);
    }

    static inline return_type disjoint()
    {
        return return_type('d', false);
    }

    static inline return_type collinear_disjoint()
    {
        return return_type('d', false);
    }

    static inline return_type error(std::string const&)
    {
        // Return "E" to denote error
        // This will throw an error in get_turn_info
        // TODO: change to enum or similar
        return return_type('E', false);
    }

private :

    static inline bool is_left
        (
            coordinate_type const& ux, 
            coordinate_type const& uy,
            coordinate_type const& vx,
            coordinate_type const& vy
        )
    {
        // This is a "side calculation" as in the strategies, but here terms are precalculated
        // We might merge this with side, offering a pre-calculated term (in fact already done using cross-product)
        // Waiting for implementing spherical...

        rtype const zero = rtype();
        return geometry::detail::determinant<rtype>(ux, uy, vx, vy) > zero;
    }

    template <std::size_t I>
    static inline return_type calculate_side(side_info const& sides,
                coordinate_type const& dx1, coordinate_type const& dy1,
                S1 const& s1, S2 const& s2,
                char how, int how_a, int how_b)
    {
        coordinate_type dpx = get<I, 0>(s2) - get<0, 0>(s1);
        coordinate_type dpy = get<I, 1>(s2) - get<0, 1>(s1);

        return is_left(dx1, dy1, dpx, dpy)
            ? return_type(sides, how, how_a, how_b, -1, 1)
            : return_type(sides, how, how_a, how_b, 1, -1);
    }

    template <std::size_t I>
    static inline return_type angle(side_info const& sides,
                coordinate_type const& dx1, coordinate_type const& dy1,
                S1 const& s1, S2 const& s2,
                char how, int how_a, int how_b)
    {
        coordinate_type dpx = get<I, 0>(s2) - get<0, 0>(s1);
        coordinate_type dpy = get<I, 1>(s2) - get<0, 1>(s1);

        return is_left(dx1, dy1, dpx, dpy)
            ? return_type(sides, how, how_a, how_b, 1, 1)
            : return_type(sides, how, how_a, how_b, -1, -1);
    }


    static inline return_type starts_from_middle(side_info const& sides,
                coordinate_type const& dx1, coordinate_type const& dy1,
                S1 const& s1, S2 const& s2,
                char which,
                int how_a, int how_b)
    {
        // Calculate ARROW of b segment w.r.t. s1
        coordinate_type dpx = get<1, 0>(s2) - get<0, 0>(s1);
        coordinate_type dpy = get<1, 1>(s2) - get<0, 1>(s1);

        int dir = is_left(dx1, dy1, dpx, dpy) ? 1 : -1;

        // From other perspective, then reverse
        bool const is_a = which == 'A';
        if (is_a)
        {
            dir = -dir;
        }

        return return_type(sides, 's',
            how_a,
            how_b,
            is_a ? dir : -dir,
            ! is_a ? dir : -dir);
    }



    // To be harmonized
    static inline return_type a_ends_at_middle(side_info const& sides,
                coordinate_type const& dx, coordinate_type const& dy,
                S1 const& s1, S2 const& s2)
    {
        coordinate_type dpx = get<1, 0>(s2) - get<0, 0>(s1);
        coordinate_type dpy = get<1, 1>(s2) - get<0, 1>(s1);

        // Ending at the middle, one ARRIVES, the other one is NEUTRAL
        // (because it both "arrives"  and "departs"  there
        return is_left(dx, dy, dpx, dpy)
            ? return_type(sides, 'm', 1, 0, 1, 1)
            : return_type(sides, 'm', 1, 0, -1, -1);
    }


    static inline return_type b_ends_at_middle(side_info const& sides,
                coordinate_type const& dx, coordinate_type const& dy,
                S1 const& s1, S2 const& s2)
    {
        coordinate_type dpx = get<1, 0>(s1) - get<0, 0>(s2);
        coordinate_type dpy = get<1, 1>(s1) - get<0, 1>(s2);

        return is_left(dx, dy, dpx, dpy)
            ? return_type(sides, 'm', 0, 1, 1, 1)
            : return_type(sides, 'm', 0, 1, -1, -1);
    }

};

}} // namespace policies::relate

}} // namespace boost::geometry

#endif // BOOST_GEOMETRY_GEOMETRY_POLICIES_RELATE_DIRECTION_HPP