summaryrefslogtreecommitdiff
path: root/boost/geometry/index/detail/rtree/visitors/distance_query.hpp
blob: de2f68f88a704dd4bf307abcca152dd6e2c280c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
// Boost.Geometry Index
//
// R-tree distance (knn, path, etc. ) query visitor implementation
//
// Copyright (c) 2011-2014 Adam Wulkiewicz, Lodz, Poland.
//
// This file was modified by Oracle on 2019-2023.
// Modifications copyright (c) 2019-2023 Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
//
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_VISITORS_DISTANCE_QUERY_HPP
#define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_VISITORS_DISTANCE_QUERY_HPP

#include <queue>

#include <boost/geometry/index/detail/distance_predicates.hpp>
#include <boost/geometry/index/detail/predicates.hpp>
#include <boost/geometry/index/detail/priority_dequeue.hpp>
#include <boost/geometry/index/detail/rtree/node/weak_visitor.hpp>
#include <boost/geometry/index/detail/rtree/node/node_elements.hpp>
#include <boost/geometry/index/detail/translator.hpp>
#include <boost/geometry/index/parameters.hpp>

namespace boost { namespace geometry { namespace index {

namespace detail { namespace rtree { namespace visitors {


struct pair_first_less
{
    template <typename First, typename Second>
    inline bool operator()(std::pair<First, Second> const& p1,
                           std::pair<First, Second> const& p2) const
    {
        return p1.first < p2.first;
    }
};

struct pair_first_greater
{
    template <typename First, typename Second>
    inline bool operator()(std::pair<First, Second> const& p1,
                           std::pair<First, Second> const& p2) const
    {
        return p1.first > p2.first;
    }
};

template <typename T, typename Comp>
struct priority_dequeue : index::detail::priority_dequeue<T, std::vector<T>, Comp>
{
    priority_dequeue() = default;
    //void reserve(typename std::vector<T>::size_type n)
    //{
    //    this->c.reserve(n);
    //}
    //void clear()
    //{
    //    this->c.clear();
    //}
};

template <typename T, typename Comp>
struct priority_queue : std::priority_queue<T, std::vector<T>, Comp>
{
    priority_queue() = default;
    //void reserve(typename std::vector<T>::size_type n)
    //{
    //    this->c.reserve(n);
    //}
    void clear()
    {
        this->c.clear();
    }
};

struct branch_data_comp
{
    template <typename BranchData>
    bool operator()(BranchData const& b1, BranchData const& b2) const
    {
        return b1.distance > b2.distance || (b1.distance == b2.distance && b1.reverse_level > b2.reverse_level);
    }
};

template <typename DistanceType, typename Value>
class distance_query_result
{
    using neighbor_data = std::pair<DistanceType, const Value *>;
    using neighbors_type = std::vector<neighbor_data>;
    using size_type = typename neighbors_type::size_type;

public:
    inline distance_query_result(size_type k)
        : m_count(k)
    {
        m_neighbors.reserve(m_count);
    }

    // NOTE: Do not call if max_count() == 0
    inline void store(DistanceType const& distance, const Value * value_ptr)
    {
        if (m_neighbors.size() < m_count)
        {
            m_neighbors.push_back(std::make_pair(distance, value_ptr));

            if (m_neighbors.size() == m_count)
            {
                std::make_heap(m_neighbors.begin(), m_neighbors.end(), pair_first_less());
            }
        }
        else if (distance < m_neighbors.front().first)
        {
            std::pop_heap(m_neighbors.begin(), m_neighbors.end(), pair_first_less());
            m_neighbors.back().first = distance;
            m_neighbors.back().second = value_ptr;
            std::push_heap(m_neighbors.begin(), m_neighbors.end(), pair_first_less());
        }
    }

    // NOTE: Do not call if max_count() == 0
    inline bool ignore_branch(DistanceType const& distance) const
    {
        return m_neighbors.size() == m_count
            && m_neighbors.front().first <= distance;
    }

    template <typename OutIt>
    inline size_type finish(OutIt out_it) const
    {
        for (auto const& p : m_neighbors)
        {
            *out_it = *(p.second);
            ++out_it;
        }

        return m_neighbors.size();
    }

    size_type max_count() const
    {
        return m_count;
    }

private:
    size_type m_count;
    neighbors_type m_neighbors;
};

template <typename MembersHolder, typename Predicates>
class distance_query
{
    typedef typename MembersHolder::value_type value_type;
    typedef typename MembersHolder::box_type box_type;
    typedef typename MembersHolder::parameters_type parameters_type;
    typedef typename MembersHolder::translator_type translator_type;

    typedef typename index::detail::strategy_type<parameters_type>::type strategy_type;

    typedef typename MembersHolder::node node;
    typedef typename MembersHolder::internal_node internal_node;
    typedef typename MembersHolder::leaf leaf;

    typedef index::detail::predicates_element
        <
            index::detail::predicates_find_distance<Predicates>::value, Predicates
        > nearest_predicate_access;
    typedef typename nearest_predicate_access::type nearest_predicate_type;
    typedef typename indexable_type<translator_type>::type indexable_type;

    typedef index::detail::calculate_distance<nearest_predicate_type, indexable_type, strategy_type, value_tag> calculate_value_distance;
    typedef index::detail::calculate_distance<nearest_predicate_type, box_type, strategy_type, bounds_tag> calculate_node_distance;
    typedef typename calculate_value_distance::result_type value_distance_type;
    typedef typename calculate_node_distance::result_type node_distance_type;

    typedef typename MembersHolder::size_type size_type;
    typedef typename MembersHolder::node_pointer node_pointer;

    using neighbor_data = std::pair<value_distance_type, const value_type *>;
    using neighbors_type = std::vector<neighbor_data>;

    struct branch_data
    {
        branch_data(node_distance_type d, size_type rl, node_pointer p)
            : distance(d), reverse_level(rl), ptr(p)
        {}

        node_distance_type distance;
        size_type reverse_level;
        node_pointer ptr;
    };
    using branches_type = priority_queue<branch_data, branch_data_comp>;

public:
    distance_query(MembersHolder const& members, Predicates const& pred)
        : m_tr(members.translator())
        , m_strategy(index::detail::get_strategy(members.parameters()))
        , m_pred(pred)
    {
        m_neighbors.reserve((std::min)(members.values_count, size_type(max_count())));
        //m_branches.reserve(members.parameters().get_min_elements() * members.leafs_level); ?
        // min, max or average?
    }

    template <typename OutIter>
    size_type apply(MembersHolder const& members, OutIter out_it)
    {
        return apply(members.root, members.leafs_level, out_it);
    }

private:
    template <typename OutIter>
    size_type apply(node_pointer ptr, size_type reverse_level, OutIter out_it)
    {
        namespace id = index::detail;

        if (max_count() <= 0)
        {
            return 0;
        }

        for (;;)
        {
            if (reverse_level > 0)
            {
                internal_node& n = rtree::get<internal_node>(*ptr);
                // fill array of nodes meeting predicates
                for (auto const& p : rtree::elements(n))
                {
                    node_distance_type node_distance; // for distance predicate

                    // if current node meets predicates (0 is dummy value)
                    if (id::predicates_check<id::bounds_tag>(m_pred, 0, p.first, m_strategy)
                        // and if distance is ok
                        && calculate_node_distance::apply(predicate(), p.first, m_strategy, node_distance)
                        // and if current node is closer than the furthest neighbor
                        && ! ignore_branch(node_distance))
                    {
                        // add current node's data into the list
                        m_branches.push(branch_data(node_distance, reverse_level - 1, p.second));
                    }
                }
            }
            else
            {
                leaf& n = rtree::get<leaf>(*ptr);
                // search leaf for closest value meeting predicates
                for (auto const& v : rtree::elements(n))
                {
                    value_distance_type value_distance; // for distance predicate

                    // if value meets predicates
                    if (id::predicates_check<id::value_tag>(m_pred, v, m_tr(v), m_strategy)
                        // and if distance is ok
                        && calculate_value_distance::apply(predicate(), m_tr(v), m_strategy, value_distance))
                    {
                        // store value
                        store_value(value_distance, boost::addressof(v));
                    }
                }
            }

            if (m_branches.empty()
                || ignore_branch(m_branches.top().distance))
            {
                break;
            }

            ptr = m_branches.top().ptr;
            reverse_level = m_branches.top().reverse_level;
            m_branches.pop();
        }

        for (auto const& p : m_neighbors)
        {
            *out_it = *(p.second);
            ++out_it;
        }

        return m_neighbors.size();
    }

    bool ignore_branch(node_distance_type const& node_distance) const
    {
        return m_neighbors.size() == max_count()
            && m_neighbors.front().first <= node_distance;
    }

    void store_value(value_distance_type value_distance, const value_type * value_ptr)
    {
        if (m_neighbors.size() < max_count())
        {
            m_neighbors.push_back(std::make_pair(value_distance, value_ptr));

            if (m_neighbors.size() == max_count())
            {
                std::make_heap(m_neighbors.begin(), m_neighbors.end(), pair_first_less());
            }
        }
        else if (value_distance < m_neighbors.front().first)
        {
            std::pop_heap(m_neighbors.begin(), m_neighbors.end(), pair_first_less());
            m_neighbors.back() = std::make_pair(value_distance, value_ptr);
            std::push_heap(m_neighbors.begin(), m_neighbors.end(), pair_first_less());
        }
    }

    std::size_t max_count() const
    {
        return nearest_predicate_access::get(m_pred).count;
    }

    nearest_predicate_type const& predicate() const
    {
        return nearest_predicate_access::get(m_pred);
    }

    translator_type const& m_tr;
    strategy_type m_strategy;

    Predicates const& m_pred;

    branches_type m_branches;
    neighbors_type m_neighbors;
};

template <typename MembersHolder, typename Predicates>
class distance_query_incremental
{
    typedef typename MembersHolder::value_type value_type;
    typedef typename MembersHolder::box_type box_type;
    typedef typename MembersHolder::parameters_type parameters_type;
    typedef typename MembersHolder::translator_type translator_type;
    typedef typename MembersHolder::allocators_type allocators_type;

    typedef typename index::detail::strategy_type<parameters_type>::type strategy_type;

    typedef typename MembersHolder::node node;
    typedef typename MembersHolder::internal_node internal_node;
    typedef typename MembersHolder::leaf leaf;

    typedef index::detail::predicates_element
        <
            index::detail::predicates_find_distance<Predicates>::value, Predicates
        > nearest_predicate_access;
    typedef typename nearest_predicate_access::type nearest_predicate_type;
    typedef typename indexable_type<translator_type>::type indexable_type;

    typedef index::detail::calculate_distance<nearest_predicate_type, indexable_type, strategy_type, value_tag> calculate_value_distance;
    typedef index::detail::calculate_distance<nearest_predicate_type, box_type, strategy_type, bounds_tag> calculate_node_distance;
    typedef typename calculate_value_distance::result_type value_distance_type;
    typedef typename calculate_node_distance::result_type node_distance_type;

    typedef typename allocators_type::size_type size_type;
    typedef typename allocators_type::const_reference const_reference;
    typedef typename allocators_type::node_pointer node_pointer;

    typedef typename rtree::elements_type<internal_node>::type internal_elements;
    typedef typename internal_elements::const_iterator internal_iterator;
    typedef typename rtree::elements_type<leaf>::type leaf_elements;

    using neighbor_data = std::pair<value_distance_type, const value_type *>;
    using neighbors_type = priority_dequeue<neighbor_data, pair_first_greater>;

    struct branch_data
    {
        branch_data(node_distance_type d, size_type rl, node_pointer p)
            : distance(d), reverse_level(rl), ptr(p)
        {}

        node_distance_type distance;
        size_type reverse_level;
        node_pointer ptr;
    };
    using branches_type = priority_queue<branch_data, branch_data_comp>;

public:
    inline distance_query_incremental()
        : m_tr(nullptr)
//        , m_strategy()
//        , m_pred()
        , m_neighbors_count(0)
        , m_neighbor_ptr(nullptr)
    {}

    inline distance_query_incremental(Predicates const& pred)
        : m_tr(nullptr)
//        , m_strategy()
        , m_pred(pred)
        , m_neighbors_count(0)
        , m_neighbor_ptr(nullptr)
    {}

    inline distance_query_incremental(MembersHolder const& members, Predicates const& pred)
        : m_tr(::boost::addressof(members.translator()))
        , m_strategy(index::detail::get_strategy(members.parameters()))
        , m_pred(pred)
        , m_neighbors_count(0)
        , m_neighbor_ptr(nullptr)
    {}

    const_reference dereference() const
    {
        return *m_neighbor_ptr;
    }

    void initialize(MembersHolder const& members)
    {
        if (0 < max_count())
        {
            apply(members.root, members.leafs_level);
            increment();
        }
    }

    void increment()
    {
        for (;;)
        {
            if (m_branches.empty())
            {
                // there exists a next closest neighbor so we can increment
                if (! m_neighbors.empty())
                {
                    m_neighbor_ptr = m_neighbors.top().second;
                    ++m_neighbors_count;
                    m_neighbors.pop_top();
                }
                else
                {
                    // there aren't any neighbors left, end
                    m_neighbor_ptr = nullptr;
                    m_neighbors_count = max_count();
                }

                return;
            }
            else
            {
                branch_data const& closest_branch = m_branches.top();

                // if next neighbor is closer or as close as the closest branch, set next neighbor
                if (! m_neighbors.empty() && m_neighbors.top().first <= closest_branch.distance )
                {
                    m_neighbor_ptr = m_neighbors.top().second;
                    ++m_neighbors_count;
                    m_neighbors.pop_top();
                    return;
                }

                BOOST_GEOMETRY_INDEX_ASSERT(m_neighbors_count + m_neighbors.size() <= max_count(), "unexpected neighbors count");

                // if there is enough neighbors and there is no closer branch
                if (ignore_branch_or_value(closest_branch.distance))
                {
                    m_branches.clear();
                    continue;
                }
                else
                {
                    node_pointer ptr = closest_branch.ptr;
                    size_type reverse_level = closest_branch.reverse_level;
                    m_branches.pop();

                    apply(ptr, reverse_level);
                }
            }
        }
    }

    bool is_end() const
    {
        return m_neighbor_ptr == nullptr;
    }

    friend bool operator==(distance_query_incremental const& l, distance_query_incremental const& r)
    {
        return l.m_neighbors_count == r.m_neighbors_count;
    }

private:
    void apply(node_pointer ptr, size_type reverse_level)
    {
        namespace id = index::detail;
        // Put node's elements into the list of active branches if those elements meets predicates
        // and distance predicates(currently not used)
        // and aren't further than found neighbours (if there is enough neighbours)
        if (reverse_level > 0)
        {
            internal_node& n = rtree::get<internal_node>(*ptr);
            // fill active branch list array of nodes meeting predicates
            for (auto const& p : rtree::elements(n))
            {
                node_distance_type node_distance; // for distance predicate

                // if current node meets predicates (0 is dummy value)
                if (id::predicates_check<id::bounds_tag>(m_pred, 0, p.first, m_strategy)
                    // and if distance is ok
                    && calculate_node_distance::apply(predicate(), p.first, m_strategy, node_distance)
                    // and if current node is closer than the furthest neighbor
                    && ! ignore_branch_or_value(node_distance))
                {
                    // add current node into the queue
                    m_branches.push(branch_data(node_distance, reverse_level - 1, p.second));
                }
            }
        }
        // Put values into the list of neighbours if those values meets predicates
        // and distance predicates(currently not used)
        // and aren't further than already found neighbours (if there is enough neighbours)
        else
        {
            leaf& n = rtree::get<leaf>(*ptr);
            // search leaf for closest value meeting predicates
            for (auto const& v : rtree::elements(n))
            {
                value_distance_type value_distance; // for distance predicate

                // if value meets predicates
                if (id::predicates_check<id::value_tag>(m_pred, v, (*m_tr)(v), m_strategy)
                    // and if distance is ok
                    && calculate_value_distance::apply(predicate(), (*m_tr)(v), m_strategy, value_distance)
                    // and if current value is closer than the furthest neighbor
                    && ! ignore_branch_or_value(value_distance))
                {
                    // add current value into the queue
                    m_neighbors.push(std::make_pair(value_distance, boost::addressof(v)));

                    // remove unneeded value
                    if (m_neighbors_count + m_neighbors.size() > max_count())
                    {
                        m_neighbors.pop_bottom();
                    }
                }
            }
        }
    }

    template <typename Distance>
    bool ignore_branch_or_value(Distance const& distance)
    {
        return m_neighbors_count + m_neighbors.size() == max_count()
            && (m_neighbors.empty() || m_neighbors.bottom().first <= distance);
    }

    std::size_t max_count() const
    {
        return nearest_predicate_access::get(m_pred).count;
    }

    nearest_predicate_type const& predicate() const
    {
        return nearest_predicate_access::get(m_pred);
    }

    const translator_type * m_tr;
    strategy_type m_strategy;

    Predicates m_pred;

    branches_type m_branches;
    neighbors_type m_neighbors;
    size_type m_neighbors_count;
    const value_type * m_neighbor_ptr;
};

}}} // namespace detail::rtree::visitors

}}} // namespace boost::geometry::index

#endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_VISITORS_DISTANCE_QUERY_HPP