summaryrefslogtreecommitdiff
path: root/boost/geometry/index/detail/rtree/rstar/insert.hpp
blob: b3ad01c34597ec6e67e0dea10a1ab531b9adac78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
// Boost.Geometry Index
//
// R-tree R*-tree insert algorithm implementation
//
// Copyright (c) 2011-2015 Adam Wulkiewicz, Lodz, Poland.
//
// This file was modified by Oracle on 2019-2023.
// Modifications copyright (c) 2019-2023 Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
//
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP
#define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP

#include <type_traits>

#include <boost/core/ignore_unused.hpp>

#include <boost/geometry/algorithms/centroid.hpp>
#include <boost/geometry/algorithms/detail/comparable_distance/interface.hpp>

#include <boost/geometry/index/detail/algorithms/content.hpp>
#include <boost/geometry/index/detail/rtree/node/concept.hpp>
#include <boost/geometry/index/detail/rtree/node/node_elements.hpp>
#include <boost/geometry/index/detail/rtree/visitors/insert.hpp>

namespace boost { namespace geometry { namespace index {

namespace detail { namespace rtree { namespace visitors {

namespace rstar {

// Utility to distinguish between default and non-default index strategy
template <typename Point1, typename Point2, typename Strategy>
struct comparable_distance
{
    typedef typename geometry::comparable_distance_result
        <
            Point1, Point2, Strategy
        >::type result_type;

    static inline result_type call(Point1 const& p1, Point2 const& p2, Strategy const& s)
    {
        return geometry::comparable_distance(p1, p2, s);
    }
};

template <typename Point1, typename Point2>
struct comparable_distance<Point1, Point2, default_strategy>
{
    typedef typename geometry::default_comparable_distance_result
        <
            Point1, Point2
        >::type result_type;

    static inline result_type call(Point1 const& p1, Point2 const& p2, default_strategy const& )
    {
        return geometry::comparable_distance(p1, p2);
    }
};

template <typename MembersHolder>
class remove_elements_to_reinsert
{
public:
    typedef typename MembersHolder::box_type box_type;
    typedef typename MembersHolder::parameters_type parameters_type;
    typedef typename MembersHolder::translator_type translator_type;
    typedef typename MembersHolder::allocators_type allocators_type;

    typedef typename MembersHolder::node node;
    typedef typename MembersHolder::internal_node internal_node;
    typedef typename MembersHolder::leaf leaf;

    //typedef typename Allocators::internal_node_pointer internal_node_pointer;
    typedef internal_node * internal_node_pointer;

    template <typename ResultElements, typename Node>
    static inline void apply(ResultElements & result_elements,
                             Node & n,
                             internal_node_pointer parent,
                             size_t current_child_index,
                             parameters_type const& parameters,
                             translator_type const& translator,
                             allocators_type & allocators)
    {
        typedef typename rtree::elements_type<Node>::type elements_type;
        typedef typename elements_type::value_type element_type;
        typedef typename geometry::point_type<box_type>::type point_type;
        typedef typename index::detail::strategy_type<parameters_type>::type strategy_type;
        // TODO: awulkiew - change second point_type to the point type of the Indexable?
        typedef rstar::comparable_distance
            <
                point_type, point_type, strategy_type
            > comparable_distance_pp;
        typedef typename comparable_distance_pp::result_type comparable_distance_type;

        elements_type & elements = rtree::elements(n);

        const size_t elements_count = parameters.get_max_elements() + 1;
        const size_t reinserted_elements_count = (::std::min)(parameters.get_reinserted_elements(), elements_count - parameters.get_min_elements());

        BOOST_GEOMETRY_INDEX_ASSERT(parent, "node shouldn't be the root node");
        BOOST_GEOMETRY_INDEX_ASSERT(elements.size() == elements_count, "unexpected elements number");
        BOOST_GEOMETRY_INDEX_ASSERT(0 < reinserted_elements_count, "wrong value of elements to reinsert");

        auto const& strategy = index::detail::get_strategy(parameters);

        // calculate current node's center
        point_type node_center;
        geometry::centroid(rtree::elements(*parent)[current_child_index].first, node_center,
                           strategy);

        // fill the container of centers' distances of children from current node's center
        typedef typename index::detail::rtree::container_from_elements_type<
            elements_type,
            std::pair<comparable_distance_type, element_type>
        >::type sorted_elements_type;

        sorted_elements_type sorted_elements;
        // If constructor is used instead of resize() MS implementation leaks here
        sorted_elements.reserve(elements_count);                                                         // MAY THROW, STRONG (V, E: alloc, copy)

        for ( typename elements_type::const_iterator it = elements.begin() ;
              it != elements.end() ; ++it )
        {
            point_type element_center;
            geometry::centroid(rtree::element_indexable(*it, translator), element_center,
                               strategy);
            sorted_elements.push_back(std::make_pair(
                comparable_distance_pp::call(node_center, element_center, strategy),
                *it));                                                                                  // MAY THROW (V, E: copy)
        }

        // sort elements by distances from center
        std::partial_sort(
            sorted_elements.begin(),
            sorted_elements.begin() + reinserted_elements_count,
            sorted_elements.end(),
            distances_dsc<comparable_distance_type, element_type>);                                                // MAY THROW, BASIC (V, E: copy)

        // copy elements which will be reinserted
        result_elements.clear();
        result_elements.reserve(reinserted_elements_count);                                             // MAY THROW, STRONG (V, E: alloc, copy)
        for ( typename sorted_elements_type::const_iterator it = sorted_elements.begin() ;
              it != sorted_elements.begin() + reinserted_elements_count ; ++it )
        {
            result_elements.push_back(it->second);                                                      // MAY THROW (V, E: copy)
        }

        BOOST_TRY
        {
            // copy remaining elements to the current node
            elements.clear();
            elements.reserve(elements_count - reinserted_elements_count);                                // SHOULDN'T THROW (new_size <= old size)
            for ( typename sorted_elements_type::const_iterator it = sorted_elements.begin() + reinserted_elements_count;
                  it != sorted_elements.end() ; ++it )
            {
                elements.push_back(it->second);                                                         // MAY THROW (V, E: copy)
            }
        }
        BOOST_CATCH(...)
        {
            elements.clear();

            for ( typename sorted_elements_type::iterator it = sorted_elements.begin() ;
                  it != sorted_elements.end() ; ++it )
            {
                destroy_element<MembersHolder>::apply(it->second, allocators);
            }

            BOOST_RETHROW                                                                                 // RETHROW
        }
        BOOST_CATCH_END

        ::boost::ignore_unused(parameters);
    }

private:
    template <typename Distance, typename El>
    static inline bool distances_asc(
        std::pair<Distance, El> const& d1,
        std::pair<Distance, El> const& d2)
    {
        return d1.first < d2.first;
    }

    template <typename Distance, typename El>
    static inline bool distances_dsc(
        std::pair<Distance, El> const& d1,
        std::pair<Distance, El> const& d2)
    {
        return d1.first > d2.first;
    }
};

template
<
    size_t InsertIndex,
    typename Element,
    typename MembersHolder,
    bool IsValue = std::is_same<Element, typename MembersHolder::value_type>::value
>
struct level_insert_elements_type
{
    typedef typename rtree::elements_type<
        typename rtree::internal_node<
            typename MembersHolder::value_type,
            typename MembersHolder::parameters_type,
            typename MembersHolder::box_type,
            typename MembersHolder::allocators_type,
            typename MembersHolder::node_tag
        >::type
    >::type type;
};

template <typename Value, typename MembersHolder>
struct level_insert_elements_type<0, Value, MembersHolder, true>
{
    typedef typename rtree::elements_type<
        typename rtree::leaf<
            typename MembersHolder::value_type,
            typename MembersHolder::parameters_type,
            typename MembersHolder::box_type,
            typename MembersHolder::allocators_type,
            typename MembersHolder::node_tag
        >::type
    >::type type;
};

template <size_t InsertIndex, typename Element, typename MembersHolder>
struct level_insert_base
    : public detail::insert<Element, MembersHolder>
{
    typedef detail::insert<Element, MembersHolder> base;
    typedef typename base::node node;
    typedef typename base::internal_node internal_node;
    typedef typename base::leaf leaf;

    typedef typename level_insert_elements_type<InsertIndex, Element, MembersHolder>::type elements_type;
    typedef typename index::detail::rtree::container_from_elements_type<
        elements_type,
        typename elements_type::value_type
    >::type result_elements_type;

    typedef typename MembersHolder::box_type box_type;
    typedef typename MembersHolder::parameters_type parameters_type;
    typedef typename MembersHolder::translator_type translator_type;
    typedef typename MembersHolder::allocators_type allocators_type;

    typedef typename allocators_type::node_pointer node_pointer;
    typedef typename allocators_type::size_type size_type;

    inline level_insert_base(node_pointer & root,
                             size_type & leafs_level,
                             Element const& element,
                             parameters_type const& parameters,
                             translator_type const& translator,
                             allocators_type & allocators,
                             size_type relative_level)
        : base(root, leafs_level, element, parameters, translator, allocators, relative_level)
        , result_relative_level(0)
    {}

    template <typename Node>
    inline void handle_possible_reinsert_or_split_of_root(Node &n)
    {
        BOOST_GEOMETRY_INDEX_ASSERT(result_elements.empty(), "reinsert should be handled only once for level");

        result_relative_level = base::m_leafs_level - base::m_traverse_data.current_level;

        // overflow
        if ( base::m_parameters.get_max_elements() < rtree::elements(n).size() )
        {
            // node isn't root node
            if ( !base::m_traverse_data.current_is_root() )
            {
                // NOTE: exception-safety
                // After an exception result_elements may contain garbage, don't use it
                rstar::remove_elements_to_reinsert<MembersHolder>::apply(
                    result_elements, n,
                    base::m_traverse_data.parent, base::m_traverse_data.current_child_index,
                    base::m_parameters, base::m_translator, base::m_allocators);                            // MAY THROW, BASIC (V, E: alloc, copy)
            }
            // node is root node
            else
            {
                BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<Node>(*base::m_root_node), "node should be the root node");
                base::split(n);                                                                             // MAY THROW (V, E: alloc, copy, N: alloc)
            }
        }
    }

    template <typename Node>
    inline void handle_possible_split(Node &n) const
    {
        // overflow
        if ( base::m_parameters.get_max_elements() < rtree::elements(n).size() )
        {
            base::split(n);                                                                                 // MAY THROW (V, E: alloc, copy, N: alloc)
        }
    }

    template <typename Node>
    inline void recalculate_aabb_if_necessary(Node const& n) const
    {
        if ( !result_elements.empty() && !base::m_traverse_data.current_is_root() )
        {
            // calulate node's new box
            recalculate_aabb(n);
        }
    }

    template <typename Node>
    inline void recalculate_aabb(Node const& n) const
    {
        base::m_traverse_data.current_element().first =
            elements_box<box_type>(rtree::elements(n).begin(), rtree::elements(n).end(),
                                   base::m_translator,
                                   index::detail::get_strategy(base::m_parameters));
    }

    inline void recalculate_aabb(leaf const& n) const
    {
        base::m_traverse_data.current_element().first =
            values_box<box_type>(rtree::elements(n).begin(), rtree::elements(n).end(),
                                 base::m_translator,
                                 index::detail::get_strategy(base::m_parameters));
    }

    size_type result_relative_level;
    result_elements_type result_elements;
};

template
<
    size_t InsertIndex,
    typename Element,
    typename MembersHolder,
    bool IsValue = std::is_same<Element, typename MembersHolder::value_type>::value
>
struct level_insert
    : public level_insert_base<InsertIndex, Element, MembersHolder>
{
    typedef level_insert_base<InsertIndex, Element, MembersHolder> base;
    typedef typename base::node node;
    typedef typename base::internal_node internal_node;
    typedef typename base::leaf leaf;

    typedef typename base::parameters_type parameters_type;
    typedef typename base::translator_type translator_type;
    typedef typename base::allocators_type allocators_type;

    typedef typename base::node_pointer node_pointer;
    typedef typename base::size_type size_type;

    inline level_insert(node_pointer & root,
                        size_type & leafs_level,
                        Element const& element,
                        parameters_type const& parameters,
                        translator_type const& translator,
                        allocators_type & allocators,
                        size_type relative_level)
        : base(root, leafs_level, element, parameters, translator, allocators, relative_level)
    {}

    inline void operator()(internal_node & n)
    {
        BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level, "unexpected level");

        if ( base::m_traverse_data.current_level < base::m_level )
        {
            // next traversing step
            base::traverse(*this, n);                                                                       // MAY THROW (E: alloc, copy, N: alloc)

            // further insert
            if ( 0 < InsertIndex )
            {
                BOOST_GEOMETRY_INDEX_ASSERT(0 < base::m_level, "illegal level value, level shouldn't be the root level for 0 < InsertIndex");

                if ( base::m_traverse_data.current_level == base::m_level - 1 )
                {
                    base::handle_possible_reinsert_or_split_of_root(n);                                     // MAY THROW (E: alloc, copy, N: alloc)
                }
            }
        }
        else
        {
            BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level, "unexpected level");

            BOOST_TRY
            {
                // push new child node
                rtree::elements(n).push_back(base::m_element);                                              // MAY THROW, STRONG (E: alloc, copy)
            }
            BOOST_CATCH(...)
            {
                // NOTE: exception-safety
                // if the insert fails above, the element won't be stored in the tree, so delete it

                rtree::visitors::destroy<MembersHolder>::apply(base::m_element.second, base::m_allocators);

                BOOST_RETHROW                                                                                 // RETHROW
            }
            BOOST_CATCH_END

            // first insert
            if ( 0 == InsertIndex )
            {
                base::handle_possible_reinsert_or_split_of_root(n);                                         // MAY THROW (E: alloc, copy, N: alloc)
            }
            // not the first insert
            else
            {
                base::handle_possible_split(n);                                                             // MAY THROW (E: alloc, N: alloc)
            }
        }

        base::recalculate_aabb_if_necessary(n);
    }

    inline void operator()(leaf &)
    {
        BOOST_GEOMETRY_INDEX_ASSERT(false, "this visitor can't be used for a leaf");
    }
};

template <size_t InsertIndex, typename Value, typename MembersHolder>
struct level_insert<InsertIndex, Value, MembersHolder, true>
    : public level_insert_base<InsertIndex, typename MembersHolder::value_type, MembersHolder>
{
    typedef level_insert_base<InsertIndex, typename MembersHolder::value_type, MembersHolder> base;
    typedef typename base::node node;
    typedef typename base::internal_node internal_node;
    typedef typename base::leaf leaf;

    typedef typename MembersHolder::value_type value_type;
    typedef typename base::parameters_type parameters_type;
    typedef typename base::translator_type translator_type;
    typedef typename base::allocators_type allocators_type;

    typedef typename base::node_pointer node_pointer;
    typedef typename base::size_type size_type;

    inline level_insert(node_pointer & root,
                        size_type & leafs_level,
                        value_type const& v,
                        parameters_type const& parameters,
                        translator_type const& translator,
                        allocators_type & allocators,
                        size_type relative_level)
        : base(root, leafs_level, v, parameters, translator, allocators, relative_level)
    {}

    inline void operator()(internal_node & n)
    {
        BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level, "unexpected level");
        BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_level, "unexpected level");

        // next traversing step
        base::traverse(*this, n);                                                                       // MAY THROW (V, E: alloc, copy, N: alloc)

        BOOST_GEOMETRY_INDEX_ASSERT(0 < base::m_level, "illegal level value, level shouldn't be the root level for 0 < InsertIndex");

        if ( base::m_traverse_data.current_level == base::m_level - 1 )
        {
            base::handle_possible_reinsert_or_split_of_root(n);                                         // MAY THROW (E: alloc, copy, N: alloc)
        }

        base::recalculate_aabb_if_necessary(n);
    }

    inline void operator()(leaf & n)
    {
        BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level == base::m_leafs_level,
                                    "unexpected level");
        BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level ||
                                    base::m_level == (std::numeric_limits<size_t>::max)(),
                                    "unexpected level");

        rtree::elements(n).push_back(base::m_element);                                                  // MAY THROW, STRONG (V: alloc, copy)

        base::handle_possible_split(n);                                                                 // MAY THROW (V: alloc, copy, N: alloc)
    }
};

template <typename Value, typename MembersHolder>
struct level_insert<0, Value, MembersHolder, true>
    : public level_insert_base<0, typename MembersHolder::value_type, MembersHolder>
{
    typedef level_insert_base<0, typename MembersHolder::value_type, MembersHolder> base;
    typedef typename base::node node;
    typedef typename base::internal_node internal_node;
    typedef typename base::leaf leaf;

    typedef typename MembersHolder::value_type value_type;
    typedef typename base::parameters_type parameters_type;
    typedef typename base::translator_type translator_type;
    typedef typename base::allocators_type allocators_type;

    typedef typename base::node_pointer node_pointer;
    typedef typename base::size_type size_type;

    inline level_insert(node_pointer & root,
                        size_type & leafs_level,
                        value_type const& v,
                        parameters_type const& parameters,
                        translator_type const& translator,
                        allocators_type & allocators,
                        size_type relative_level)
        : base(root, leafs_level, v, parameters, translator, allocators, relative_level)
    {}

    inline void operator()(internal_node & n)
    {
        BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level,
                                    "unexpected level");
        BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_level,
                                    "unexpected level");

        // next traversing step
        base::traverse(*this, n);                                                                       // MAY THROW (V: alloc, copy, N: alloc)

        base::recalculate_aabb_if_necessary(n);
    }

    inline void operator()(leaf & n)
    {
        BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level == base::m_leafs_level,
                                    "unexpected level");
        BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level ||
                                    base::m_level == (std::numeric_limits<size_t>::max)(),
                                    "unexpected level");

        rtree::elements(n).push_back(base::m_element);                                                  // MAY THROW, STRONG (V: alloc, copy)

        base::handle_possible_reinsert_or_split_of_root(n);                                             // MAY THROW (V: alloc, copy, N: alloc)

        base::recalculate_aabb_if_necessary(n);
    }
};

} // namespace rstar

// R*-tree insert visitor
// After passing the Element to insert visitor the Element is managed by the tree
// I.e. one should not delete the node passed to the insert visitor after exception is thrown
// because this visitor may delete it
template <typename Element, typename MembersHolder>
class insert<Element, MembersHolder, insert_reinsert_tag>
    : public MembersHolder::visitor
{
    typedef typename MembersHolder::parameters_type parameters_type;
    typedef typename MembersHolder::translator_type translator_type;
    typedef typename MembersHolder::allocators_type allocators_type;

    typedef typename MembersHolder::node node;
    typedef typename MembersHolder::internal_node internal_node;
    typedef typename MembersHolder::leaf leaf;

    typedef typename allocators_type::node_pointer node_pointer;
    typedef typename allocators_type::size_type size_type;

public:
    inline insert(node_pointer & root,
                  size_type & leafs_level,
                  Element const& element,
                  parameters_type const& parameters,
                  translator_type const& translator,
                  allocators_type & allocators,
                  size_type relative_level = 0)
        : m_root(root), m_leafs_level(leafs_level), m_element(element)
        , m_parameters(parameters), m_translator(translator)
        , m_relative_level(relative_level), m_allocators(allocators)
    {}

    inline void operator()(internal_node & n)
    {
        boost::ignore_unused(n);
        BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<internal_node>(*m_root), "current node should be the root");

        // Distinguish between situation when reinserts are required and use adequate visitor, otherwise use default one
        if ( m_parameters.get_reinserted_elements() > 0 )
        {
            rstar::level_insert<0, Element, MembersHolder> lins_v(
                m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);

            rtree::apply_visitor(lins_v, *m_root);                                                              // MAY THROW (V, E: alloc, copy, N: alloc)

            if ( !lins_v.result_elements.empty() )
            {
                recursive_reinsert(lins_v.result_elements, lins_v.result_relative_level);                       // MAY THROW (V, E: alloc, copy, N: alloc)
            }
        }
        else
        {
            visitors::insert<Element, MembersHolder, insert_default_tag> ins_v(
                m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);

            rtree::apply_visitor(ins_v, *m_root);
        }
    }

    inline void operator()(leaf & n)
    {
        boost::ignore_unused(n);
        BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<leaf>(*m_root), "current node should be the root");

        // Distinguish between situation when reinserts are required and use adequate visitor, otherwise use default one
        if ( m_parameters.get_reinserted_elements() > 0 )
        {
            rstar::level_insert<0, Element, MembersHolder> lins_v(
                m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);

            rtree::apply_visitor(lins_v, *m_root);                                                              // MAY THROW (V, E: alloc, copy, N: alloc)

            // we're in the root, so root should be split and there should be no elements to reinsert
            BOOST_GEOMETRY_INDEX_ASSERT(lins_v.result_elements.empty(), "unexpected state");
        }
        else
        {
            visitors::insert<Element, MembersHolder, insert_default_tag> ins_v(
                m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);

            rtree::apply_visitor(ins_v, *m_root);
        }
    }

private:
    template <typename Elements>
    inline void recursive_reinsert(Elements & elements, size_t relative_level)
    {
        typedef typename Elements::value_type element_type;

        // reinsert children starting from the minimum distance
        typename Elements::reverse_iterator it = elements.rbegin();
        for ( ; it != elements.rend() ; ++it)
        {
            rstar::level_insert<1, element_type, MembersHolder> lins_v(
                m_root, m_leafs_level, *it, m_parameters, m_translator, m_allocators, relative_level);

            BOOST_TRY
            {
                rtree::apply_visitor(lins_v, *m_root);                                                          // MAY THROW (V, E: alloc, copy, N: alloc)
            }
            BOOST_CATCH(...)
            {
                ++it;
                for ( ; it != elements.rend() ; ++it)
                    rtree::destroy_element<MembersHolder>::apply(*it, m_allocators);
                BOOST_RETHROW                                                                                     // RETHROW
            }
            BOOST_CATCH_END

            BOOST_GEOMETRY_INDEX_ASSERT(relative_level + 1 == lins_v.result_relative_level, "unexpected level");

            // non-root relative level
            if ( lins_v.result_relative_level < m_leafs_level && !lins_v.result_elements.empty())
            {
                recursive_reinsert(lins_v.result_elements, lins_v.result_relative_level);                   // MAY THROW (V, E: alloc, copy, N: alloc)
            }
        }
    }

    node_pointer & m_root;
    size_type & m_leafs_level;
    Element const& m_element;

    parameters_type const& m_parameters;
    translator_type const& m_translator;

    size_type m_relative_level;

    allocators_type & m_allocators;
};

}}} // namespace detail::rtree::visitors

}}} // namespace boost::geometry::index

#endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP