summaryrefslogtreecommitdiff
path: root/boost/geometry/index/detail/rtree/linear/redistribute_elements.hpp
blob: a10b046c0dc920074015290a538f1f40bb0c3533 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// Boost.Geometry Index
//
// R-tree linear split algorithm implementation
//
// Copyright (c) 2008 Federico J. Fernandez.
// Copyright (c) 2011-2014 Adam Wulkiewicz, Lodz, Poland.
//
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_LINEAR_REDISTRIBUTE_ELEMENTS_HPP
#define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_LINEAR_REDISTRIBUTE_ELEMENTS_HPP

#include <boost/type_traits/is_unsigned.hpp>

#include <boost/geometry/index/detail/algorithms/content.hpp>
#include <boost/geometry/index/detail/bounded_view.hpp>

#include <boost/geometry/index/detail/rtree/node/node.hpp>
#include <boost/geometry/index/detail/rtree/visitors/insert.hpp>
#include <boost/geometry/index/detail/rtree/visitors/is_leaf.hpp>

namespace boost { namespace geometry { namespace index {

namespace detail { namespace rtree {

namespace linear {

template <typename R, typename T>
inline R difference_dispatch(T const& from, T const& to, ::boost::mpl::bool_<false> const& /*is_unsigned*/)
{
    return to - from;
}

template <typename R, typename T>
inline R difference_dispatch(T const& from, T const& to, ::boost::mpl::bool_<true> const& /*is_unsigned*/)
{
    return from <= to ? R(to - from) : -R(from - to);
}

template <typename R, typename T>
inline R difference(T const& from, T const& to)
{
    BOOST_MPL_ASSERT_MSG(!boost::is_unsigned<R>::value, RESULT_CANT_BE_UNSIGNED, (R));

    typedef ::boost::mpl::bool_<
        boost::is_unsigned<T>::value
    > is_unsigned;

    return difference_dispatch<R>(from, to, is_unsigned());
}

// TODO: awulkiew
// In general, all aerial Indexables in the tree with box-like nodes will be analyzed as boxes
// because they must fit into larger box. Therefore the algorithm could be the same for Bounds type.
// E.g. if Bounds type is sphere, Indexables probably should be analyzed as spheres.
// 1. View could be provided to 'see' all Indexables as Bounds type.
//    Not ok in the case of big types like Ring, however it's possible that Rings won't be supported,
//    only simple types. Even then if we consider storing Box inside the Sphere we must calculate
//    the bounding sphere 2x for each box because there are 2 loops. For each calculation this means
//    4-2d or 8-3d expansions or -, / and sqrt().
// 2. Additional container could be used and reused if the Indexable type is other than the Bounds type.

// IMPORTANT!
// Still probably the best way would be providing specialized algorithms for each Indexable-Bounds pair!
// Probably on pick_seeds algorithm level - For Bounds=Sphere seeds would be choosen differently

// TODO: awulkiew
// there are loops inside find_greatest_normalized_separation::apply()
// iteration is done for each DimensionIndex.
// Separations and seeds for all DimensionIndex(es) could be calculated at once, stored, then the greatest would be choosen.

// The following struct/method was adapted for the preliminary version of the R-tree. Then it was called:
// void find_normalized_separations(std::vector<Box> const& boxes, T& separation, unsigned int& first, unsigned int& second) const

template <typename Elements, typename Parameters, typename Translator, typename Tag, size_t DimensionIndex>
struct find_greatest_normalized_separation
{
    typedef typename Elements::value_type element_type;
    typedef typename rtree::element_indexable_type<element_type, Translator>::type indexable_type;
    typedef typename coordinate_type<indexable_type>::type coordinate_type;

    typedef typename boost::mpl::if_c<
        boost::is_integral<coordinate_type>::value,
        double,
        coordinate_type
    >::type separation_type;

    typedef typename geometry::point_type<indexable_type>::type point_type;
    typedef geometry::model::box<point_type> bounds_type;
    typedef index::detail::bounded_view<indexable_type, bounds_type> bounded_view_type;

    static inline void apply(Elements const& elements,
                             Parameters const& parameters,
                             Translator const& translator,
                             separation_type & separation,
                             size_t & seed1,
                             size_t & seed2)
    {
        const size_t elements_count = parameters.get_max_elements() + 1;
        BOOST_GEOMETRY_INDEX_ASSERT(elements.size() == elements_count, "unexpected number of elements");
        BOOST_GEOMETRY_INDEX_ASSERT(2 <= elements_count, "unexpected number of elements");

        // find the lowest low, highest high
        bounded_view_type bounded_indexable_0(rtree::element_indexable(elements[0], translator));
        coordinate_type lowest_low = geometry::get<min_corner, DimensionIndex>(bounded_indexable_0);
        coordinate_type highest_high = geometry::get<max_corner, DimensionIndex>(bounded_indexable_0);

        // and the lowest high
        coordinate_type lowest_high = highest_high;
        size_t lowest_high_index = 0;
        for ( size_t i = 1 ; i < elements_count ; ++i )
        {
            bounded_view_type bounded_indexable(rtree::element_indexable(elements[i], translator));
            coordinate_type min_coord = geometry::get<min_corner, DimensionIndex>(bounded_indexable);
            coordinate_type max_coord = geometry::get<max_corner, DimensionIndex>(bounded_indexable);

            if ( max_coord < lowest_high )
            {
                lowest_high = max_coord;
                lowest_high_index = i;
            }

            if ( min_coord < lowest_low )
                lowest_low = min_coord;

            if ( highest_high < max_coord )
                highest_high = max_coord;
        }

        // find the highest low
        size_t highest_low_index = lowest_high_index == 0 ? 1 : 0;
        bounded_view_type bounded_indexable_hl(rtree::element_indexable(elements[highest_low_index], translator));
        coordinate_type highest_low = geometry::get<min_corner, DimensionIndex>(bounded_indexable_hl);
        for ( size_t i = highest_low_index ; i < elements_count ; ++i )
        {
            bounded_view_type bounded_indexable(rtree::element_indexable(elements[i], translator));
            coordinate_type min_coord = geometry::get<min_corner, DimensionIndex>(bounded_indexable);
            if ( highest_low < min_coord &&
                 i != lowest_high_index )
            {
                highest_low = min_coord;
                highest_low_index = i;
            }
        }

        coordinate_type const width = highest_high - lowest_low;
        
        // highest_low - lowest_high
        separation = difference<separation_type>(lowest_high, highest_low);
        // BOOST_GEOMETRY_INDEX_ASSERT(0 <= width);
        if ( std::numeric_limits<coordinate_type>::epsilon() < width )
            separation /= width;

        seed1 = highest_low_index;
        seed2 = lowest_high_index;

        ::boost::ignore_unused_variable_warning(parameters);
    }
};

// Version for points doesn't calculate normalized separation since it would always be equal to 1
// It returns two seeds most distant to each other, separation is equal to distance
template <typename Elements, typename Parameters, typename Translator, size_t DimensionIndex>
struct find_greatest_normalized_separation<Elements, Parameters, Translator, point_tag, DimensionIndex>
{
    typedef typename Elements::value_type element_type;
    typedef typename rtree::element_indexable_type<element_type, Translator>::type indexable_type;
    typedef typename coordinate_type<indexable_type>::type coordinate_type;

    typedef coordinate_type separation_type;

    static inline void apply(Elements const& elements,
                             Parameters const& parameters,
                             Translator const& translator,
                             separation_type & separation,
                             size_t & seed1,
                             size_t & seed2)
    {
        const size_t elements_count = parameters.get_max_elements() + 1;
        BOOST_GEOMETRY_INDEX_ASSERT(elements.size() == elements_count, "unexpected number of elements");
        BOOST_GEOMETRY_INDEX_ASSERT(2 <= elements_count, "unexpected number of elements");

        // find the lowest low, highest high
        coordinate_type lowest = geometry::get<DimensionIndex>(rtree::element_indexable(elements[0], translator));
        coordinate_type highest = geometry::get<DimensionIndex>(rtree::element_indexable(elements[0], translator));
        size_t lowest_index = 0;
        size_t highest_index = 0;
        for ( size_t i = 1 ; i < elements_count ; ++i )
        {
            coordinate_type coord = geometry::get<DimensionIndex>(rtree::element_indexable(elements[i], translator));

            if ( coord < lowest )
            {
                lowest = coord;
                lowest_index = i;
            }

            if ( highest < coord )
            {
                highest = coord;
                highest_index = i;
            }
        }

        separation = highest - lowest;
        seed1 = lowest_index;
        seed2 = highest_index;

        if ( lowest_index == highest_index )
            seed2 = (lowest_index + 1) % elements_count; // % is just in case since if this is true lowest_index is 0

        ::boost::ignore_unused_variable_warning(parameters);
    }
};

template <typename Elements, typename Parameters, typename Translator, size_t Dimension>
struct pick_seeds_impl
{
    BOOST_STATIC_ASSERT(0 < Dimension);

    typedef typename Elements::value_type element_type;
    typedef typename rtree::element_indexable_type<element_type, Translator>::type indexable_type;

    typedef find_greatest_normalized_separation<
        Elements, Parameters, Translator,
        typename tag<indexable_type>::type, Dimension - 1
    > find_norm_sep;

    typedef typename find_norm_sep::separation_type separation_type;

    static inline void apply(Elements const& elements,
                             Parameters const& parameters,
                             Translator const& tr,
                             separation_type & separation,
                             size_t & seed1,
                             size_t & seed2)
    {
        pick_seeds_impl<Elements, Parameters, Translator, Dimension - 1>::apply(elements, parameters, tr, separation, seed1, seed2);

        separation_type current_separation;
        size_t s1, s2;
        find_norm_sep::apply(elements, parameters, tr, current_separation, s1, s2);

        // in the old implementation different operator was used: <= (y axis prefered)
        if ( separation < current_separation )
        {
            separation = current_separation;
            seed1 = s1;
            seed2 = s2;
        }
    }
};

template <typename Elements, typename Parameters, typename Translator>
struct pick_seeds_impl<Elements, Parameters, Translator, 1>
{
    typedef typename Elements::value_type element_type;
    typedef typename rtree::element_indexable_type<element_type, Translator>::type indexable_type;
    typedef typename coordinate_type<indexable_type>::type coordinate_type;

    typedef find_greatest_normalized_separation<
        Elements, Parameters, Translator,
        typename tag<indexable_type>::type, 0
    > find_norm_sep;

    typedef typename find_norm_sep::separation_type separation_type;

    static inline void apply(Elements const& elements,
                             Parameters const& parameters,
                             Translator const& tr,
                             separation_type & separation,
                             size_t & seed1,
                             size_t & seed2)
    {
        find_norm_sep::apply(elements, parameters, tr, separation, seed1, seed2);
    }
};

// from void linear_pick_seeds(node_pointer const& n, unsigned int &seed1, unsigned int &seed2) const

template <typename Elements, typename Parameters, typename Translator>
inline void pick_seeds(Elements const& elements,
                       Parameters const& parameters,
                       Translator const& tr,
                       size_t & seed1,
                       size_t & seed2)
{
    typedef typename Elements::value_type element_type;
    typedef typename rtree::element_indexable_type<element_type, Translator>::type indexable_type;

    typedef pick_seeds_impl
        <
            Elements, Parameters, Translator,
            geometry::dimension<indexable_type>::value
        > impl;
    typedef typename impl::separation_type separation_type;

    separation_type separation = 0;
    impl::apply(elements, parameters, tr, separation, seed1, seed2);
}

} // namespace linear

// from void split_node(node_pointer const& n, node_pointer& n1, node_pointer& n2) const

template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
struct redistribute_elements<Value, Options, Translator, Box, Allocators, linear_tag>
{
    typedef typename Options::parameters_type parameters_type;

    typedef typename rtree::node<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type node;
    typedef typename rtree::internal_node<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
    typedef typename rtree::leaf<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;

    template <typename Node>
    static inline void apply(Node & n,
                             Node & second_node,
                             Box & box1,
                             Box & box2,
                             parameters_type const& parameters,
                             Translator const& translator,
                             Allocators & allocators)
    {
        typedef typename rtree::elements_type<Node>::type elements_type;
        typedef typename elements_type::value_type element_type;
        typedef typename rtree::element_indexable_type<element_type, Translator>::type indexable_type;
        typedef typename index::detail::default_content_result<Box>::type content_type;

        elements_type & elements1 = rtree::elements(n);
        elements_type & elements2 = rtree::elements(second_node);
        const size_t elements1_count = parameters.get_max_elements() + 1;

        BOOST_GEOMETRY_INDEX_ASSERT(elements1.size() == elements1_count, "unexpected number of elements");

        // copy original elements - use in-memory storage (std::allocator)
        // TODO: move if noexcept
        typedef typename rtree::container_from_elements_type<elements_type, element_type>::type
            container_type;
        container_type elements_copy(elements1.begin(), elements1.end());                                   // MAY THROW, STRONG (alloc, copy)

        // calculate initial seeds
        size_t seed1 = 0;
        size_t seed2 = 0;
        linear::pick_seeds(elements_copy, parameters, translator, seed1, seed2);

        // prepare nodes' elements containers
        elements1.clear();
        BOOST_GEOMETRY_INDEX_ASSERT(elements2.empty(), "unexpected container state");

        BOOST_TRY
        {
            // add seeds
            elements1.push_back(elements_copy[seed1]);                                                      // MAY THROW, STRONG (copy)
            elements2.push_back(elements_copy[seed2]);                                                      // MAY THROW, STRONG (alloc, copy)

            // calculate boxes
            detail::bounds(rtree::element_indexable(elements_copy[seed1], translator), box1);
            detail::bounds(rtree::element_indexable(elements_copy[seed2], translator), box2);

            // initialize areas
            content_type content1 = index::detail::content(box1);
            content_type content2 = index::detail::content(box2);

            BOOST_GEOMETRY_INDEX_ASSERT(2 <= elements1_count, "unexpected elements number");
            size_t remaining = elements1_count - 2;

            // redistribute the rest of the elements
            for ( size_t i = 0 ; i < elements1_count ; ++i )
            {
                if (i != seed1 && i != seed2)
                {
                    element_type const& elem = elements_copy[i];
                    indexable_type const& indexable = rtree::element_indexable(elem, translator);

                    // if there is small number of elements left and the number of elements in node is lesser than min_elems
                    // just insert them to this node
                    if ( elements1.size() + remaining <= parameters.get_min_elements() )
                    {
                        elements1.push_back(elem);                                                          // MAY THROW, STRONG (copy)
                        geometry::expand(box1, indexable);
                        content1 = index::detail::content(box1);
                    }
                    else if ( elements2.size() + remaining <= parameters.get_min_elements() )
                    {
                        elements2.push_back(elem);                                                          // MAY THROW, STRONG (alloc, copy)
                        geometry::expand(box2, indexable);
                        content2 = index::detail::content(box2);
                    }
                    // choose better node and insert element
                    else
                    {
                        // calculate enlarged boxes and areas
                        Box enlarged_box1(box1);
                        Box enlarged_box2(box2);
                        geometry::expand(enlarged_box1, indexable);
                        geometry::expand(enlarged_box2, indexable);
                        content_type enlarged_content1 = index::detail::content(enlarged_box1);
                        content_type enlarged_content2 = index::detail::content(enlarged_box2);

                        content_type content_increase1 = enlarged_content1 - content1;
                        content_type content_increase2 = enlarged_content2 - content2;

                        // choose group which box content have to be enlarged least or has smaller content or has fewer elements
                        if ( content_increase1 < content_increase2 ||
                                ( content_increase1 == content_increase2 &&
                                    ( content1 < content2 ||
                                        ( content1 == content2 && elements1.size() <= elements2.size() ) ) ) )
                        {
                            elements1.push_back(elem);                                                      // MAY THROW, STRONG (copy)
                            box1 = enlarged_box1;
                            content1 = enlarged_content1;
                        }
                        else
                        {
                            elements2.push_back(elem);                                                      // MAY THROW, STRONG (alloc, copy)
                            box2 = enlarged_box2;
                            content2 = enlarged_content2;
                        }
                    }
                
                    BOOST_GEOMETRY_INDEX_ASSERT(0 < remaining, "unexpected value");
                    --remaining;
                }
            }
        }
        BOOST_CATCH(...)
        {
            elements1.clear();
            elements2.clear();

            rtree::destroy_elements<Value, Options, Translator, Box, Allocators>::apply(elements_copy, allocators);
            //elements_copy.clear();

            BOOST_RETHROW                                                                                     // RETHROW, BASIC
        }
        BOOST_CATCH_END
    }
};

}} // namespace detail::rtree

}}} // namespace boost::geometry::index

#endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_LINEAR_REDISTRIBUTE_ELEMENTS_HPP