summaryrefslogtreecommitdiff
path: root/boost/geometry/formulas/vincenty_inverse.hpp
blob: bbda00036b3e441577c4c08ff3b1999557d3719d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// Boost.Geometry

// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.

// This file was modified by Oracle on 2014, 2016.
// Modifications copyright (c) 2014-2016 Oracle and/or its affiliates.

// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_FORMULAS_VINCENTY_INVERSE_HPP
#define BOOST_GEOMETRY_FORMULAS_VINCENTY_INVERSE_HPP


#include <boost/math/constants/constants.hpp>

#include <boost/geometry/core/radius.hpp>
#include <boost/geometry/core/srs.hpp>

#include <boost/geometry/util/condition.hpp>
#include <boost/geometry/util/math.hpp>

#include <boost/geometry/algorithms/detail/flattening.hpp>

#include <boost/geometry/formulas/differential_quantities.hpp>
#include <boost/geometry/formulas/result_inverse.hpp>


#ifndef BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS
#define BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS 1000
#endif


namespace boost { namespace geometry { namespace formula
{

/*!
\brief The solution of the inverse problem of geodesics on latlong coordinates, after Vincenty, 1975
\author See
    - http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
    - http://www.icsm.gov.au/gda/gdav2.3.pdf
\author Adapted from various implementations to get it close to the original document
    - http://www.movable-type.co.uk/scripts/LatLongVincenty.html
    - http://exogen.case.edu/projects/geopy/source/geopy.distance.html
    - http://futureboy.homeip.net/fsp/colorize.fsp?fileName=navigation.frink

*/
template <
    typename CT,
    bool EnableDistance,
    bool EnableAzimuth,
    bool EnableReverseAzimuth = false,
    bool EnableReducedLength = false,
    bool EnableGeodesicScale = false
>
struct vincenty_inverse
{
    static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
    static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities;
    static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities;
    static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;

public:
    typedef result_inverse<CT> result_type;

    template <typename T1, typename T2, typename Spheroid>
    static inline result_type apply(T1 const& lon1,
                                    T1 const& lat1,
                                    T2 const& lon2,
                                    T2 const& lat2,
                                    Spheroid const& spheroid)
    {
        result_type result;

        if (math::equals(lat1, lat2) && math::equals(lon1, lon2))
        {
            return result;
        }

        CT const c1 = 1;
        CT const c2 = 2;
        CT const c3 = 3;
        CT const c4 = 4;
        CT const c16 = 16;
        CT const c_e_12 = CT(1e-12);

        CT const pi = geometry::math::pi<CT>();
        CT const two_pi = c2 * pi;

        // lambda: difference in longitude on an auxiliary sphere
        CT L = lon2 - lon1;
        CT lambda = L;

        if (L < -pi) L += two_pi;
        if (L > pi) L -= two_pi;

        CT const radius_a = CT(get_radius<0>(spheroid));
        CT const radius_b = CT(get_radius<2>(spheroid));
        CT const flattening = geometry::detail::flattening<CT>(spheroid);

        // U: reduced latitude, defined by tan U = (1-f) tan phi
        CT const one_min_f = c1 - flattening;
        CT const tan_U1 = one_min_f * tan(lat1); // above (1)
        CT const tan_U2 = one_min_f * tan(lat2); // above (1)

        // calculate sin U and cos U using trigonometric identities
        CT const temp_den_U1 = math::sqrt(c1 + math::sqr(tan_U1));
        CT const temp_den_U2 = math::sqrt(c1 + math::sqr(tan_U2));
        // cos = 1 / sqrt(1 + tan^2)
        CT const cos_U1 = c1 / temp_den_U1;
        CT const cos_U2 = c1 / temp_den_U2;
        // sin = tan / sqrt(1 + tan^2)
        CT const sin_U1 = tan_U1 / temp_den_U1;
        CT const sin_U2 = tan_U2 / temp_den_U2;

        // calculate sin U and cos U directly
        //CT const U1 = atan(tan_U1);
        //CT const U2 = atan(tan_U2);
        //cos_U1 = cos(U1);
        //cos_U2 = cos(U2);
        //sin_U1 = tan_U1 * cos_U1; // sin(U1);
        //sin_U2 = tan_U2 * cos_U2; // sin(U2);

        CT previous_lambda;
        CT sin_lambda;
        CT cos_lambda;
        CT sin_sigma;
        CT sin_alpha;
        CT cos2_alpha;
        CT cos2_sigma_m;
        CT sigma;

        int counter = 0; // robustness

        do
        {
            previous_lambda = lambda; // (13)
            sin_lambda = sin(lambda);
            cos_lambda = cos(lambda);
            sin_sigma = math::sqrt(math::sqr(cos_U2 * sin_lambda) + math::sqr(cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda)); // (14)
            CT cos_sigma = sin_U1 * sin_U2 + cos_U1 * cos_U2 * cos_lambda; // (15)
            sin_alpha = cos_U1 * cos_U2 * sin_lambda / sin_sigma; // (17)
            cos2_alpha = c1 - math::sqr(sin_alpha);
            cos2_sigma_m = math::equals(cos2_alpha, 0) ? 0 : cos_sigma - c2 * sin_U1 * sin_U2 / cos2_alpha; // (18)

            CT C = flattening/c16 * cos2_alpha * (c4 + flattening * (c4 - c3 * cos2_alpha)); // (10)
            sigma = atan2(sin_sigma, cos_sigma); // (16)
            lambda = L + (c1 - C) * flattening * sin_alpha *
                (sigma + C * sin_sigma * ( cos2_sigma_m + C * cos_sigma * (-c1 + c2 * math::sqr(cos2_sigma_m)))); // (11)

            ++counter; // robustness

        } while ( geometry::math::abs(previous_lambda - lambda) > c_e_12
               && geometry::math::abs(lambda) < pi
               && counter < BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS ); // robustness
    
        if ( BOOST_GEOMETRY_CONDITION(EnableDistance) )
        {
            // Oops getting hard here
            // (again, problem is that ttmath cannot divide by doubles, which is OK)
            CT const c1 = 1;
            CT const c2 = 2;
            CT const c3 = 3;
            CT const c4 = 4;
            CT const c6 = 6;
            CT const c47 = 47;
            CT const c74 = 74;
            CT const c128 = 128;
            CT const c256 = 256;
            CT const c175 = 175;
            CT const c320 = 320;
            CT const c768 = 768;
            CT const c1024 = 1024;
            CT const c4096 = 4096;
            CT const c16384 = 16384;

            //CT sqr_u = cos2_alpha * (math::sqr(radius_a) - math::sqr(radius_b)) / math::sqr(radius_b); // above (1)
            CT sqr_u = cos2_alpha * ( math::sqr(radius_a / radius_b) - c1 ); // above (1)

            CT A = c1 + sqr_u/c16384 * (c4096 + sqr_u * (-c768 + sqr_u * (c320 - c175 * sqr_u))); // (3)
            CT B = sqr_u/c1024 * (c256 + sqr_u * ( -c128 + sqr_u * (c74 - c47 * sqr_u))); // (4)
            CT delta_sigma = B * sin_sigma * ( cos2_sigma_m + (B/c4) * (cos(sigma)* (-c1 + c2 * cos2_sigma_m)
                - (B/c6) * cos2_sigma_m * (-c3 + c4 * math::sqr(sin_sigma)) * (-c3 + c4 * cos2_sigma_m))); // (6)

            result.distance = radius_b * A * (sigma - delta_sigma); // (19)
        }
    
        if ( BOOST_GEOMETRY_CONDITION(CalcAzimuths) )
        {
            if (BOOST_GEOMETRY_CONDITION(CalcFwdAzimuth))
            {
                result.azimuth = atan2(cos_U2 * sin_lambda, cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda); // (20)
            }

            if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
            {
                result.reverse_azimuth = atan2(cos_U1 * sin_lambda, -sin_U1 * cos_U2 + cos_U1 * sin_U2 * cos_lambda); // (21)
            }
        }

        if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
        {
            typedef differential_quantities<CT, EnableReducedLength, EnableGeodesicScale, 2> quantities;
            quantities::apply(lon1, lat1, lon2, lat2,
                              result.azimuth, result.reverse_azimuth,
                              radius_b, flattening,
                              result.reduced_length, result.geodesic_scale);
        }

        return result;
    }
};

}}} // namespace boost::geometry::formula


#endif // BOOST_GEOMETRY_FORMULAS_VINCENTY_INVERSE_HPP