summaryrefslogtreecommitdiff
path: root/boost/geometry/formulas/vincenty_direct.hpp
blob: 1697e5fb635adc30a476a1a1e7b382d9502f86ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// Boost.Geometry

// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.

// This file was modified by Oracle on 2014, 2016.
// Modifications copyright (c) 2014-2016 Oracle and/or its affiliates.

// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_FORMULAS_VINCENTY_DIRECT_HPP
#define BOOST_GEOMETRY_FORMULAS_VINCENTY_DIRECT_HPP


#include <boost/math/constants/constants.hpp>

#include <boost/geometry/core/radius.hpp>
#include <boost/geometry/core/srs.hpp>

#include <boost/geometry/util/condition.hpp>
#include <boost/geometry/util/math.hpp>

#include <boost/geometry/formulas/differential_quantities.hpp>
#include <boost/geometry/formulas/flattening.hpp>
#include <boost/geometry/formulas/result_direct.hpp>


#ifndef BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS
#define BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS 1000
#endif


namespace boost { namespace geometry { namespace formula
{

/*!
\brief The solution of the direct problem of geodesics on latlong coordinates, after Vincenty, 1975
\author See
    - http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
    - http://www.icsm.gov.au/gda/gdav2.3.pdf
\author Adapted from various implementations to get it close to the original document
    - http://www.movable-type.co.uk/scripts/LatLongVincenty.html
    - http://exogen.case.edu/projects/geopy/source/geopy.distance.html
    - http://futureboy.homeip.net/fsp/colorize.fsp?fileName=navigation.frink

*/
template <
    typename CT,
    bool EnableCoordinates = true,
    bool EnableReverseAzimuth = false,
    bool EnableReducedLength = false,
    bool EnableGeodesicScale = false
>
class vincenty_direct
{
    static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
    static const bool CalcCoordinates = EnableCoordinates || CalcQuantities;
    static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;

public:
    typedef result_direct<CT> result_type;

    template <typename T, typename Dist, typename Azi, typename Spheroid>
    static inline result_type apply(T const& lo1,
                                    T const& la1,
                                    Dist const& distance,
                                    Azi const& azimuth12,
                                    Spheroid const& spheroid)
    {
        result_type result;

        CT const lon1 = lo1;
        CT const lat1 = la1;

        if ( math::equals(distance, Dist(0)) || distance < Dist(0) )
        {
            result.lon2 = lon1;
            result.lat2 = lat1;
            return result;
        }

        CT const radius_a = CT(get_radius<0>(spheroid));
        CT const radius_b = CT(get_radius<2>(spheroid));
        CT const flattening = formula::flattening<CT>(spheroid);

        CT const sin_azimuth12 = sin(azimuth12);
        CT const cos_azimuth12 = cos(azimuth12);

        // U: reduced latitude, defined by tan U = (1-f) tan phi
        CT const one_min_f = CT(1) - flattening;
        CT const tan_U1 = one_min_f * tan(lat1);
        CT const sigma1 = atan2(tan_U1, cos_azimuth12); // (1)

        // may be calculated from tan using 1 sqrt()
        CT const U1 = atan(tan_U1);
        CT const sin_U1 = sin(U1);
        CT const cos_U1 = cos(U1);

        CT const sin_alpha = cos_U1 * sin_azimuth12; // (2)
        CT const sin_alpha_sqr = math::sqr(sin_alpha);
        CT const cos_alpha_sqr = CT(1) - sin_alpha_sqr;

        CT const b_sqr = radius_b * radius_b;
        CT const u_sqr = cos_alpha_sqr * (radius_a * radius_a - b_sqr) / b_sqr;
        CT const A = CT(1) + (u_sqr/CT(16384)) * (CT(4096) + u_sqr*(CT(-768) + u_sqr*(CT(320) - u_sqr*CT(175)))); // (3)
        CT const B = (u_sqr/CT(1024))*(CT(256) + u_sqr*(CT(-128) + u_sqr*(CT(74) - u_sqr*CT(47)))); // (4)

        CT s_div_bA = distance / (radius_b * A);
        CT sigma = s_div_bA; // (7)

        CT previous_sigma;
        CT sin_sigma;
        CT cos_sigma;
        CT cos_2sigma_m;
        CT cos_2sigma_m_sqr;

        int counter = 0; // robustness

        do
        {
            previous_sigma = sigma;

            CT const two_sigma_m = CT(2) * sigma1 + sigma; // (5)

            sin_sigma = sin(sigma);
            cos_sigma = cos(sigma);
            CT const sin_sigma_sqr = math::sqr(sin_sigma);
            cos_2sigma_m = cos(two_sigma_m);
            cos_2sigma_m_sqr = math::sqr(cos_2sigma_m);

            CT const delta_sigma = B * sin_sigma * (cos_2sigma_m
                                        + (B/CT(4)) * ( cos_sigma * (CT(-1) + CT(2)*cos_2sigma_m_sqr)
                                            - (B/CT(6) * cos_2sigma_m * (CT(-3)+CT(4)*sin_sigma_sqr) * (CT(-3)+CT(4)*cos_2sigma_m_sqr)) )); // (6)

            sigma = s_div_bA + delta_sigma; // (7)

            ++counter; // robustness

        } while ( geometry::math::abs(previous_sigma - sigma) > CT(1e-12)
               //&& geometry::math::abs(sigma) < pi
               && counter < BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS ); // robustness

        if (BOOST_GEOMETRY_CONDITION(CalcCoordinates))
        {
            result.lat2
                = atan2( sin_U1 * cos_sigma + cos_U1 * sin_sigma * cos_azimuth12,
                         one_min_f * math::sqrt(sin_alpha_sqr + math::sqr(sin_U1 * sin_sigma - cos_U1 * cos_sigma * cos_azimuth12))); // (8)
            
            CT const lambda = atan2( sin_sigma * sin_azimuth12,
                                     cos_U1 * cos_sigma - sin_U1 * sin_sigma * cos_azimuth12); // (9)
            CT const C = (flattening/CT(16)) * cos_alpha_sqr * ( CT(4) + flattening * ( CT(4) - CT(3) * cos_alpha_sqr ) ); // (10)
            CT const L = lambda - (CT(1) - C) * flattening * sin_alpha
                            * ( sigma + C * sin_sigma * ( cos_2sigma_m + C * cos_sigma * ( CT(-1) + CT(2) * cos_2sigma_m_sqr ) ) ); // (11)

            result.lon2 = lon1 + L;
        }

        if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
        {
            result.reverse_azimuth
                = atan2(sin_alpha, -sin_U1 * sin_sigma + cos_U1 * cos_sigma * cos_azimuth12); // (12)
        }

        if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
        {
            typedef differential_quantities<CT, EnableReducedLength, EnableGeodesicScale, 2> quantities;
            quantities::apply(lon1, lat1, result.lon2, result.lat2,
                              azimuth12, result.reverse_azimuth,
                              radius_b, flattening,
                              result.reduced_length, result.geodesic_scale);
        }

        return result;
    }

};

}}} // namespace boost::geometry::formula


#endif // BOOST_GEOMETRY_FORMULAS_VINCENTY_DIRECT_HPP