summaryrefslogtreecommitdiff
path: root/boost/geometry/algorithms/detail/relate/point_point.hpp
blob: b41d346f0bcc82e4588b725ecaff11175588bc89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// Boost.Geometry (aka GGL, Generic Geometry Library)

// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.

// This file was modified by Oracle on 2013, 2014, 2017.
// Modifications copyright (c) 2013-2017, Oracle and/or its affiliates.

// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_POINT_POINT_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_POINT_POINT_HPP

#include <algorithm>
#include <vector>

#include <boost/range/empty.hpp>

#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
#include <boost/geometry/algorithms/detail/within/point_in_geometry.hpp>
#include <boost/geometry/algorithms/detail/relate/less.hpp>
#include <boost/geometry/algorithms/detail/relate/result.hpp>

namespace boost { namespace geometry
{

#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace relate {

template <typename Point1, typename Point2>
struct point_point
{
    static const bool interruption_enabled = false;

    template <typename Result, typename Strategy>
    static inline void apply(Point1 const& point1, Point2 const& point2,
                             Result & result,
                             Strategy const& /*strategy*/)
    {
        bool equal = detail::equals::equals_point_point(point1, point2);
        if ( equal )
        {
            relate::set<interior, interior, '0'>(result);
        }
        else
        {
            relate::set<interior, exterior, '0'>(result);
            relate::set<exterior, interior, '0'>(result);
        }

        relate::set<exterior, exterior, result_dimension<Point1>::value>(result);
    }
};

template <typename Point, typename MultiPoint>
std::pair<bool, bool> point_multipoint_check(Point const& point, MultiPoint const& multi_point)
{
    bool found_inside = false;
    bool found_outside = false;

    // point_in_geometry could be used here but why iterate over MultiPoint twice?
    // we must search for a point in the exterior because all points in MultiPoint can be equal

    typedef typename boost::range_iterator<MultiPoint const>::type iterator;
    iterator it = boost::begin(multi_point);
    iterator last = boost::end(multi_point);
    for ( ; it != last ; ++it )
    {
        bool ii = detail::equals::equals_point_point(point, *it);

        if ( ii )
            found_inside = true;
        else
            found_outside = true;

        if ( found_inside && found_outside )
            break;
    }

    return std::make_pair(found_inside, found_outside);
}

template <typename Point, typename MultiPoint, bool Transpose = false>
struct point_multipoint
{
    static const bool interruption_enabled = false;

    template <typename Result, typename Strategy>
    static inline void apply(Point const& point, MultiPoint const& multi_point,
                             Result & result,
                             Strategy const& /*strategy*/)
    {
        if ( boost::empty(multi_point) )
        {
            // TODO: throw on empty input?
            relate::set<interior, exterior, '0', Transpose>(result);
            return;
        }

        std::pair<bool, bool> rel = point_multipoint_check(point, multi_point);

        if ( rel.first ) // some point of MP is equal to P
        {
            relate::set<interior, interior, '0', Transpose>(result);

            if ( rel.second ) // a point of MP was found outside P
            {
                relate::set<exterior, interior, '0', Transpose>(result);
            }
        }
        else
        {
            relate::set<interior, exterior, '0', Transpose>(result);
            relate::set<exterior, interior, '0', Transpose>(result);
        }

        relate::set<exterior, exterior, result_dimension<Point>::value, Transpose>(result);
    }
};

template <typename MultiPoint, typename Point>
struct multipoint_point
{
    static const bool interruption_enabled = false;

    template <typename Result, typename Strategy>
    static inline void apply(MultiPoint const& multi_point, Point const& point,
                             Result & result,
                             Strategy const& strategy)
    {
        point_multipoint<Point, MultiPoint, true>::apply(point, multi_point, result, strategy);
    }
};

template <typename MultiPoint1, typename MultiPoint2>
struct multipoint_multipoint
{
    static const bool interruption_enabled = true;

    template <typename Result, typename Strategy>
    static inline void apply(MultiPoint1 const& multi_point1, MultiPoint2 const& multi_point2,
                             Result & result,
                             Strategy const& /*strategy*/)
    {
        {
            // TODO: throw on empty input?
            bool empty1 = boost::empty(multi_point1);
            bool empty2 = boost::empty(multi_point2);
            if ( empty1 && empty2 )
            {
                return;
            }
            else if ( empty1 )
            {
                relate::set<exterior, interior, '0'>(result);
                return;
            }
            else if ( empty2 )
            {
                relate::set<interior, exterior, '0'>(result);
                return;
            }
        }

// TODO: ADD A CHECK TO THE RESULT INDICATING IF THE FIRST AND/OR SECOND GEOMETRY MUST BE ANALYSED

// TODO: if I/I is set for one MPt, this won't be changed when the other one in analysed
//       so if e.g. only I/I must be analysed we musn't check the other MPt

// TODO: Also, the geometry with the smaller number of points may be analysed first
        //if ( boost::size(multi_point1) < boost::size(multi_point2) )

        // NlogN + MlogN
        bool all_handled = search<false>(multi_point1, multi_point2, result);
        
        if ( BOOST_GEOMETRY_CONDITION(all_handled || result.interrupt) )
            return;

        // MlogM + NlogM
        search<true>(multi_point2, multi_point1, result);
    }

    template <bool Transpose,
              typename SortedMultiPoint,
              typename IteratedMultiPoint,
              typename Result>
    static inline bool search(SortedMultiPoint const& sorted_mpt,
                              IteratedMultiPoint const& iterated_mpt,
                              Result & result)
    {
        // sort points from the 1 MPt
        typedef typename geometry::point_type<SortedMultiPoint>::type point_type;
        std::vector<point_type> points(boost::begin(sorted_mpt), boost::end(sorted_mpt));
        std::sort(points.begin(), points.end(), less());

        bool found_inside = false;
        bool found_outside = false;

        // for each point in the second MPt
        typedef typename boost::range_iterator<IteratedMultiPoint const>::type iterator;
        for ( iterator it = boost::begin(iterated_mpt) ;
              it != boost::end(iterated_mpt) ; ++it )
        {
            bool ii =
                std::binary_search(points.begin(), points.end(), *it, less());
            if ( ii )
                found_inside = true;
            else
                found_outside = true;

            if ( found_inside && found_outside )
                break;
        }

        // an optimization
        bool all_handled = false;

        if ( found_inside ) // some point of MP2 is equal to some of MP1
        {
// TODO: if I/I is set for one MPt, this won't be changed when the other one in analysed
//       so if e.g. only I/I must be analysed we musn't check the other MPt

            relate::set<interior, interior, '0', Transpose>(result);

            if ( found_outside ) // some point of MP2 was found outside of MP1
            {
                relate::set<exterior, interior, '0', Transpose>(result);
            }
        }
        else
        {
            relate::set<interior, exterior, '0', Transpose>(result);
            relate::set<exterior, interior, '0', Transpose>(result);

            // if no point is intersecting the other MPt then we musn't analyse the reversed case
            all_handled = true;
        }

        relate::set<exterior, exterior, result_dimension<point_type>::value, Transpose>(result);

        return all_handled;
    }
};

}} // namespace detail::relate
#endif // DOXYGEN_NO_DETAIL

}} // namespace boost::geometry

#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_RELATE_POINT_POINT_HPP