summaryrefslogtreecommitdiff
path: root/boost/geometry/algorithms/detail/overlay/assign_parents.hpp
blob: c8ce651007176ffbbb23d1393febd8453bb73cad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
// Boost.Geometry (aka GGL, Generic Geometry Library)

// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.

// This file was modified by Oracle on 2017.
// Modifications copyright (c) 2017 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_ASSIGN_PARENTS_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_ASSIGN_PARENTS_HPP

#include <boost/range.hpp>

#include <boost/geometry/algorithms/area.hpp>
#include <boost/geometry/algorithms/envelope.hpp>
#include <boost/geometry/algorithms/expand.hpp>
#include <boost/geometry/algorithms/detail/partition.hpp>
#include <boost/geometry/algorithms/detail/overlay/get_ring.hpp>
#include <boost/geometry/algorithms/detail/overlay/range_in_geometry.hpp>
#include <boost/geometry/algorithms/covered_by.hpp>

#include <boost/geometry/geometries/box.hpp>

namespace boost { namespace geometry
{


#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace overlay
{



template
<
    typename Item,
    typename InnerGeometry,
    typename Geometry1, typename Geometry2,
    typename RingCollection,
    typename Strategy
>
static inline bool within_selected_input(Item const& item2,
        InnerGeometry const& inner_geometry,
        ring_identifier const& outer_id,
        Geometry1 const& geometry1, Geometry2 const& geometry2,
        RingCollection const& collection,
        Strategy const& strategy)
{
    typedef typename geometry::tag<Geometry1>::type tag1;
    typedef typename geometry::tag<Geometry2>::type tag2;

    // NOTE: range_in_geometry first checks the item2.point and then
    // if this point is on boundary it checks points of inner_geometry
    // ring until a point inside/outside other geometry ring is found
    switch (outer_id.source_index)
    {
        // covered_by
        case 0 :
            return range_in_geometry(item2.point, inner_geometry,
                get_ring<tag1>::apply(outer_id, geometry1), strategy) >= 0;
        case 1 :
            return range_in_geometry(item2.point, inner_geometry,
                get_ring<tag2>::apply(outer_id, geometry2), strategy) >= 0;
        case 2 :
            return range_in_geometry(item2.point, inner_geometry,
                get_ring<void>::apply(outer_id, collection), strategy) >= 0;
    }
    return false;
}

template
<
    typename Item,
    typename Geometry1, typename Geometry2,
    typename RingCollection,
    typename Strategy
>
static inline bool within_selected_input(Item const& item2,
        ring_identifier const& inner_id, ring_identifier const& outer_id,
        Geometry1 const& geometry1, Geometry2 const& geometry2,
        RingCollection const& collection,
        Strategy const& strategy)
{
    typedef typename geometry::tag<Geometry1>::type tag1;
    typedef typename geometry::tag<Geometry2>::type tag2;

    switch (inner_id.source_index)
    {
        case 0 :
            return within_selected_input(item2,
               get_ring<tag1>::apply(inner_id, geometry1),
               outer_id, geometry1, geometry2, collection, strategy);
        case 1 :
            return within_selected_input(item2,
               get_ring<tag2>::apply(inner_id, geometry2),
               outer_id, geometry1, geometry2, collection, strategy);
        case 2 :
            return within_selected_input(item2,
                get_ring<void>::apply(inner_id, collection),
                outer_id, geometry1, geometry2, collection, strategy);
    }
    return false;
}


template <typename Point, typename AreaType>
struct ring_info_helper
{
    ring_identifier id;
    AreaType real_area;
    AreaType abs_area;
    model::box<Point> envelope;

    inline ring_info_helper()
        : real_area(0), abs_area(0)
    {}

    inline ring_info_helper(ring_identifier i, AreaType const& a)
        : id(i), real_area(a), abs_area(geometry::math::abs(a))
    {}
};


struct ring_info_helper_get_box
{
    template <typename Box, typename InputItem>
    static inline void apply(Box& total, InputItem const& item)
    {
        geometry::expand(total, item.envelope);
    }
};

struct ring_info_helper_ovelaps_box
{
    template <typename Box, typename InputItem>
    static inline bool apply(Box const& box, InputItem const& item)
    {
        return ! geometry::detail::disjoint::disjoint_box_box(box, item.envelope);
    }
};

template
<
    typename Geometry1,
    typename Geometry2,
    typename Collection,
    typename RingMap,
    typename Strategy
>
struct assign_visitor
{
    typedef typename RingMap::mapped_type ring_info_type;

    Geometry1 const& m_geometry1;
    Geometry2 const& m_geometry2;
    Collection const& m_collection;
    RingMap& m_ring_map;
    Strategy const& m_strategy;
    bool m_check_for_orientation;

    inline assign_visitor(Geometry1 const& g1, Geometry2 const& g2, Collection const& c,
                          RingMap& map, Strategy const& strategy, bool check)
        : m_geometry1(g1)
        , m_geometry2(g2)
        , m_collection(c)
        , m_ring_map(map)
        , m_strategy(strategy)
        , m_check_for_orientation(check)
    {}

    template <typename Item>
    inline bool apply(Item const& outer, Item const& inner, bool first = true)
    {
        if (first && outer.abs_area < inner.abs_area)
        {
            // Apply with reversed arguments
            apply(inner, outer, false);
            return true;
        }

        if (m_check_for_orientation
         || (math::larger(outer.real_area, 0)
          && math::smaller(inner.real_area, 0)))
        {
            ring_info_type& inner_in_map = m_ring_map[inner.id];

            if (geometry::covered_by(inner_in_map.point, outer.envelope)
               && within_selected_input(inner_in_map, inner.id, outer.id,
                                        m_geometry1, m_geometry2, m_collection,
                                        m_strategy)
               )
            {
                // Assign a parent if there was no earlier parent, or the newly
                // found parent is smaller than the previous one
                if (inner_in_map.parent.source_index == -1
                    || outer.abs_area < inner_in_map.parent_area)
                {
                    inner_in_map.parent = outer.id;
                    inner_in_map.parent_area = outer.abs_area;
                }
            }
        }

        return true;
    }
};




template
<
    typename Geometry1, typename Geometry2,
    typename RingCollection,
    typename RingMap,
    typename Strategy
>
inline void assign_parents(Geometry1 const& geometry1,
            Geometry2 const& geometry2,
            RingCollection const& collection,
            RingMap& ring_map,
            Strategy const& strategy,
            bool check_for_orientation = false,
            bool discard_double_negative = false)
{
    typedef typename geometry::tag<Geometry1>::type tag1;
    typedef typename geometry::tag<Geometry2>::type tag2;

    typedef typename RingMap::mapped_type ring_info_type;
    typedef typename ring_info_type::point_type point_type;
    typedef model::box<point_type> box_type;
    typedef typename Strategy::template area_strategy
        <
            point_type
        >::type::return_type area_result_type;

    typedef typename RingMap::iterator map_iterator_type;

    {
        typedef ring_info_helper<point_type, area_result_type> helper;
        typedef std::vector<helper> vector_type;
        typedef typename boost::range_iterator<vector_type const>::type vector_iterator_type;

        std::size_t count_total = ring_map.size();
        std::size_t count_positive = 0;
        std::size_t index_positive = 0; // only used if count_positive>0
        std::size_t index = 0;

        // Copy to vector (with new approach this might be obsolete as well, using the map directly)
        vector_type vector(count_total);

        for (map_iterator_type it = boost::begin(ring_map);
            it != boost::end(ring_map); ++it, ++index)
        {
            vector[index] = helper(it->first, it->second.get_area());
            helper& item = vector[index];
            switch(it->first.source_index)
            {
                case 0 :
                    geometry::envelope(get_ring<tag1>::apply(it->first, geometry1),
                                       item.envelope, strategy.get_envelope_strategy());
                    break;
                case 1 :
                    geometry::envelope(get_ring<tag2>::apply(it->first, geometry2),
                                       item.envelope, strategy.get_envelope_strategy());
                    break;
                case 2 :
                    geometry::envelope(get_ring<void>::apply(it->first, collection),
                                       item.envelope, strategy.get_envelope_strategy());
                    break;
            }

            // Expand envelope slightly
            expand_by_epsilon(item.envelope);

            if (item.real_area > 0)
            {
                count_positive++;
                index_positive = index;
            }
        }

        if (! check_for_orientation)
        {
            if (count_positive == count_total)
            {
                // Optimization for only positive rings
                // -> no assignment of parents or reversal necessary, ready here.
                return;
            }

            if (count_positive == 1)
            {
                // Optimization for one outer ring
                // -> assign this as parent to all others (all interior rings)
                // In unions, this is probably the most occuring case and gives
                //    a dramatic improvement (factor 5 for star_comb testcase)
                ring_identifier id_of_positive = vector[index_positive].id;
                ring_info_type& outer = ring_map[id_of_positive];
                index = 0;
                for (vector_iterator_type it = boost::begin(vector);
                    it != boost::end(vector); ++it, ++index)
                {
                    if (index != index_positive)
                    {
                        ring_info_type& inner = ring_map[it->id];
                        inner.parent = id_of_positive;
                        outer.children.push_back(it->id);
                    }
                }
                return;
            }
        }

        assign_visitor
            <
                Geometry1, Geometry2,
                RingCollection, RingMap,
                Strategy
            > visitor(geometry1, geometry2, collection, ring_map, strategy, check_for_orientation);

        geometry::partition
            <
                box_type
            >::apply(vector, visitor, ring_info_helper_get_box(),
                     ring_info_helper_ovelaps_box());
    }

    if (check_for_orientation)
    {
        for (map_iterator_type it = boost::begin(ring_map);
            it != boost::end(ring_map); ++it)
        {
            ring_info_type& info = it->second;
            if (geometry::math::equals(info.get_area(), 0))
            {
                info.discarded = true;
            }
            else if (info.parent.source_index >= 0)
            {
                const ring_info_type& parent = ring_map[info.parent];
                bool const pos = math::larger(info.get_area(), 0);
                bool const parent_pos = math::larger(parent.area, 0);

                bool const double_neg = discard_double_negative && ! pos && ! parent_pos;

                if ((pos && parent_pos) || double_neg)
                {
                    // Discard positive inner ring with positive parent
                    // Also, for some cases (dissolve), negative inner ring
                    // with negative parent shouild be discarded
                    info.discarded = true;
                }

                if (pos || info.discarded)
                {
                    // Remove parent ID from any positive or discarded inner rings
                    info.parent.source_index = -1;
                }
            }
            else if (info.parent.source_index < 0
                    && math::smaller(info.get_area(), 0))
            {
                // Reverse negative ring without parent
                info.reversed = true;
            }
        }
    }

    // Assign childlist
    for (map_iterator_type it = boost::begin(ring_map);
        it != boost::end(ring_map); ++it)
    {
        if (it->second.parent.source_index >= 0)
        {
            ring_map[it->second.parent].children.push_back(it->first);
        }
    }
}


// Version for one geometry (called by buffer/dissolve)
template
<
    typename Geometry,
    typename RingCollection,
    typename RingMap,
    typename Strategy
>
inline void assign_parents(Geometry const& geometry,
            RingCollection const& collection,
            RingMap& ring_map,
            Strategy const& strategy,
            bool check_for_orientation,
            bool discard_double_negative)
{
    // Call it with an empty geometry as second geometry (source_id == 1)
    // (ring_map should be empty for source_id==1)

    Geometry empty;
    assign_parents(geometry, empty, collection, ring_map, strategy,
                   check_for_orientation, discard_double_negative);
}


}} // namespace detail::overlay
#endif // DOXYGEN_NO_DETAIL


}} // namespace geometry


#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_ASSIGN_PARENTS_HPP