summaryrefslogtreecommitdiff
path: root/boost/geometry/algorithms/detail/is_simple/linear.hpp
blob: 4f3e875eef553be4a78303c0844ce1846e3de802 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Boost.Geometry (aka GGL, Generic Geometry Library)

// Copyright (c) 2014-2015, Oracle and/or its affiliates.

// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle

// Licensed under the Boost Software License version 1.0.
// http://www.boost.org/users/license.html

#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_IS_SIMPLE_LINEAR_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_IS_SIMPLE_LINEAR_HPP

#include <algorithm>
#include <deque>

#include <boost/assert.hpp>
#include <boost/range.hpp>

#include <boost/geometry/core/closure.hpp>
#include <boost/geometry/core/coordinate_type.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/core/tag.hpp>
#include <boost/geometry/core/tags.hpp>

#include <boost/geometry/util/range.hpp>

#include <boost/geometry/policies/predicate_based_interrupt_policy.hpp>
#include <boost/geometry/policies/robustness/no_rescale_policy.hpp>
#include <boost/geometry/policies/robustness/segment_ratio.hpp>

#include <boost/geometry/algorithms/equals.hpp>
#include <boost/geometry/algorithms/intersects.hpp>
#include <boost/geometry/algorithms/not_implemented.hpp>

#include <boost/geometry/algorithms/detail/check_iterator_range.hpp>
#include <boost/geometry/algorithms/detail/signed_index_type.hpp>

#include <boost/geometry/algorithms/detail/disjoint/linear_linear.hpp>
#include <boost/geometry/algorithms/detail/overlay/get_turn_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/turn_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/self_turn_points.hpp>
#include <boost/geometry/algorithms/detail/is_valid/has_duplicates.hpp>
#include <boost/geometry/algorithms/detail/is_valid/has_spikes.hpp>

#include <boost/geometry/algorithms/detail/is_simple/debug_print_boundary_points.hpp>
#include <boost/geometry/algorithms/detail/is_simple/failure_policy.hpp>
#include <boost/geometry/algorithms/detail/is_valid/debug_print_turns.hpp>

#include <boost/geometry/algorithms/dispatch/is_simple.hpp>


namespace boost { namespace geometry
{


#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace is_simple
{


template <typename Turn>
inline bool check_segment_indices(Turn const& turn,
                                  signed_index_type last_index)
{
    return
        (turn.operations[0].seg_id.segment_index == 0
         && turn.operations[1].seg_id.segment_index == last_index)
        ||
        (turn.operations[0].seg_id.segment_index == 0
         && turn.operations[1].seg_id.segment_index == last_index);
}


template <typename Geometry, typename Tag = typename tag<Geometry>::type>
class is_acceptable_turn
    : not_implemented<Geometry>
{};

template <typename Linestring>
class is_acceptable_turn<Linestring, linestring_tag>
{
public:
    is_acceptable_turn(Linestring const& linestring)
        : m_linestring(linestring)
        , m_is_closed(geometry::equals(range::front(linestring),
                                       range::back(linestring)))
    {}

    template <typename Turn>
    inline bool apply(Turn const& turn) const
    {
        BOOST_ASSERT(boost::size(m_linestring) > 1);
        return m_is_closed
            && turn.method == overlay::method_none
            && check_segment_indices(turn, boost::size(m_linestring) - 2)
            && turn.operations[0].fraction.is_zero();
    }

private:
    Linestring const& m_linestring;
    bool const m_is_closed;
};

template <typename MultiLinestring>
class is_acceptable_turn<MultiLinestring, multi_linestring_tag>
{
private:
    typedef typename boost::range_value<MultiLinestring>::type linestring_type;
    typedef is_acceptable_turn<linestring_type> base_type;

    template <typename Point, typename Linestring>
    static inline bool is_boundary_point_of(Point const& point,
                                            Linestring const& linestring)
    {
        BOOST_ASSERT(boost::size(linestring) > 1);
        return
            ! geometry::equals(range::front(linestring),
                               range::back(linestring))
            &&
            (geometry::equals(point, range::front(linestring))
             || geometry::equals(point, range::back(linestring)));
    }

    template <typename Turn, typename Linestring>
    static inline bool is_closing_point_of(Turn const& turn,
                                           Linestring const& linestring)
    {
        BOOST_ASSERT(boost::size(linestring) > 1);
        return
            turn.method == overlay::method_none
            &&
            check_segment_indices(turn, boost::size(linestring) - 2)
            &&
            geometry::equals(range::front(linestring), range::back(linestring))
            &&
            turn.operations[0].fraction.is_zero();
            ;
    }

    template <typename Linestring1, typename Linestring2>
    static inline bool have_same_boundary_points(Linestring1 const& ls1,
                                                 Linestring2 const& ls2)
    {
        return
            geometry::equals(range::front(ls1), range::front(ls2))
            ?
            geometry::equals(range::back(ls1), range::back(ls2))
            :
            (geometry::equals(range::front(ls1), range::back(ls2))
             &&
             geometry::equals(range::back(ls1), range::front(ls2)))
            ;
    }

public:
    is_acceptable_turn(MultiLinestring const& multilinestring)
        : m_multilinestring(multilinestring)
    {}

    template <typename Turn>
    inline bool apply(Turn const& turn) const
    {
        linestring_type const& ls1 =
            range::at(m_multilinestring, turn.operations[0].seg_id.multi_index);

        linestring_type const& ls2 =
            range::at(m_multilinestring, turn.operations[1].seg_id.multi_index);

        if (turn.operations[0].seg_id.multi_index
            == turn.operations[1].seg_id.multi_index)
        {
            return is_closing_point_of(turn, ls1);
        }

        return
            is_boundary_point_of(turn.point, ls1)
            && is_boundary_point_of(turn.point, ls2)
            &&
            ( boost::size(ls1) != 2
              || boost::size(ls2) != 2
              || ! have_same_boundary_points(ls1, ls2) );
    }

private:
    MultiLinestring const& m_multilinestring;
};


template <typename Linear>
inline bool has_self_intersections(Linear const& linear)
{
    typedef typename point_type<Linear>::type point_type;

    // compute self turns
    typedef detail::overlay::turn_info
        <
            point_type,
            geometry::segment_ratio
                <
                    typename geometry::coordinate_type<point_type>::type
                >
        > turn_info;

    std::deque<turn_info> turns;

    typedef detail::overlay::get_turn_info
        <
            detail::disjoint::assign_disjoint_policy
        > turn_policy;

    is_acceptable_turn<Linear> predicate(linear);
    detail::overlay::predicate_based_interrupt_policy
        <
            is_acceptable_turn<Linear>
        > interrupt_policy(predicate);

    detail::self_get_turn_points::get_turns
        <
            turn_policy
        >::apply(linear,
                 detail::no_rescale_policy(),
                 turns,
                 interrupt_policy);

    detail::is_valid::debug_print_turns(turns.begin(), turns.end());
    debug_print_boundary_points(linear);

    return interrupt_policy.has_intersections;
}


template <typename Linestring, bool CheckSelfIntersections = true>
struct is_simple_linestring
{
    static inline bool apply(Linestring const& linestring)
    {
        simplicity_failure_policy policy;
        return ! detail::is_valid::has_duplicates
                    <
                        Linestring, closed
                    >::apply(linestring, policy)
            && ! detail::is_valid::has_spikes
                    <
                        Linestring, closed
                    >::apply(linestring, policy)
            && ! (CheckSelfIntersections && has_self_intersections(linestring));
    }
};


template <typename MultiLinestring>
struct is_simple_multilinestring
{
    static inline bool apply(MultiLinestring const& multilinestring)
    {
        // check each of the linestrings for simplicity
        // but do not compute self-intersections yet; these will be
        // computed for the entire multilinestring
        if ( ! detail::check_iterator_range
                 <
                     is_simple_linestring
                         <
                             typename boost::range_value<MultiLinestring>::type,
                             false // do not compute self-intersections
                         >,
                     false // do not allow empty multilinestring
                 >::apply(boost::begin(multilinestring),
                          boost::end(multilinestring))
             )
        {
            return false;
        }

        return ! has_self_intersections(multilinestring);
    }
};



}} // namespace detail::is_simple
#endif // DOXYGEN_NO_DETAIL



#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{

// A linestring is a curve.
// A curve is simple if it does not pass through the same point twice,
// with the possible exception of its two endpoints
//
// Reference: OGC 06-103r4 (6.1.6.1)
template <typename Linestring>
struct is_simple<Linestring, linestring_tag>
    : detail::is_simple::is_simple_linestring<Linestring>
{};


// A MultiLinestring is a MultiCurve
// A MultiCurve is simple if all of its elements are simple and the
// only intersections between any two elements occur at Points that
// are on the boundaries of both elements.
//
// Reference: OGC 06-103r4 (6.1.8.1; Fig. 9)
template <typename MultiLinestring>
struct is_simple<MultiLinestring, multi_linestring_tag>
    : detail::is_simple::is_simple_multilinestring<MultiLinestring>
{};


} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH


}} // namespace boost::geometry


#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_IS_SIMPLE_LINEAR_HPP