summaryrefslogtreecommitdiff
path: root/boost/geometry/algorithms/detail/buffer/buffered_piece_collection.hpp
blob: 8aa9493420befde6ce86ae8b977c18873ad5fb32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
// Boost.Geometry (aka GGL, Generic Geometry Library)

// Copyright (c) 2012-2014 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2017-2023 Adam Wulkiewicz, Lodz, Poland.

// This file was modified by Oracle on 2016-2022.
// Modifications copyright (c) 2016-2022 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_BUFFER_BUFFERED_PIECE_COLLECTION_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_BUFFER_BUFFERED_PIECE_COLLECTION_HPP

#include <algorithm>
#include <cstddef>
#include <set>

#include <boost/core/ignore_unused.hpp>
#include <boost/range/begin.hpp>
#include <boost/range/empty.hpp>
#include <boost/range/end.hpp>
#include <boost/range/size.hpp>
#include <boost/range/value_type.hpp>

#include <boost/geometry/core/assert.hpp>
#include <boost/geometry/core/coordinate_type.hpp>
#include <boost/geometry/core/point_type.hpp>

#include <boost/geometry/algorithms/covered_by.hpp>
#include <boost/geometry/algorithms/envelope.hpp>

#include <boost/geometry/strategies/buffer.hpp>

#include <boost/geometry/geometries/ring.hpp>

#include <boost/geometry/algorithms/detail/buffer/buffered_ring.hpp>
#include <boost/geometry/algorithms/detail/buffer/buffer_policies.hpp>
#include <boost/geometry/algorithms/detail/overlay/cluster_info.hpp>
#include <boost/geometry/algorithms/detail/buffer/get_piece_turns.hpp>
#include <boost/geometry/algorithms/detail/buffer/piece_border.hpp>
#include <boost/geometry/algorithms/detail/buffer/turn_in_piece_visitor.hpp>
#include <boost/geometry/algorithms/detail/buffer/turn_in_original_visitor.hpp>

#include <boost/geometry/algorithms/detail/disjoint/point_box.hpp>
#include <boost/geometry/algorithms/detail/overlay/add_rings.hpp>
#include <boost/geometry/algorithms/detail/overlay/assign_parents.hpp>
#include <boost/geometry/algorithms/detail/overlay/enrichment_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/enrich_intersection_points.hpp>
#include <boost/geometry/algorithms/detail/overlay/ring_properties.hpp>
#include <boost/geometry/algorithms/detail/overlay/select_rings.hpp>
#include <boost/geometry/algorithms/detail/overlay/traversal_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/traverse.hpp>
#include <boost/geometry/algorithms/detail/overlay/turn_info.hpp>
#include <boost/geometry/algorithms/detail/partition.hpp>
#include <boost/geometry/algorithms/detail/sections/sectionalize.hpp>
#include <boost/geometry/algorithms/detail/sections/section_box_policies.hpp>

#include <boost/geometry/views/detail/closed_clockwise_view.hpp>
#include <boost/geometry/util/for_each_with_index.hpp>
#include <boost/geometry/util/range.hpp>


namespace boost { namespace geometry
{


#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace buffer
{


/*
 *  Terminology
 *
 *  Suppose we make a buffer (using blocked corners) of this rectangle:
 *
 *         +-------+
 *         |       |
 *         |  rect |
 *         |       |
 *         +-------+
 *
 * For the sides we get these four buffered side-pieces (marked with s)
 * and four buffered corner pieces (marked with c)
 *
 *     c---+---s---+---c
 *     |   | piece |   |     <- see below for details of the middle top-side-piece
 *     +---+-------+---+
 *     |   |       |   |
 *     s   |  rect |   s     <- two side pieces left/right of rect
 *     |   |       |   |
 *     +---+-------+---+
 *     |   | piece |   |     <- one side-piece below, and two corner pieces
 *     c---+---s---+---c
 *
 *  The outer part of the picture above, using all pieces,
 *    form together the offsetted ring (marked with o below)
 *  The 8 pieces are part of the piece collection and use for inside-checks
 *  The inner parts form (using 1 or 2 points per piece, often co-located)
 *    form together the robust_polygons (marked with r below)
 *  The remaining piece-segments are helper-segments (marked with h)
 *
 *     ooooooooooooooooo
 *     o   h       h   o
 *     ohhhrrrrrrrrrhhho
 *     o   r       r   o
 *     o   r       r   o
 *     o   r       r   o
 *     ohhhrrrrrrrrrhhho
 *     o   h       h   o
 *     ooooooooooooooooo
 *
 */

template
<
    typename Ring,
    typename Strategy,
    typename DistanceStrategy,
    typename RobustPolicy
>
struct buffered_piece_collection
{
    typedef typename geometry::point_type<Ring>::type point_type;
    typedef typename geometry::coordinate_type<Ring>::type coordinate_type;

    // Ring/polygon type, always clockwise
    typedef geometry::model::ring<point_type> clockwise_ring_type;

    typedef geometry::model::box<point_type> box_type;

    typedef buffer_turn_info
    <
        point_type,
        typename segment_ratio_type<point_type, RobustPolicy>::type
    > buffer_turn_info_type;

    typedef buffer_turn_operation
    <
        point_type,
        typename segment_ratio_type<point_type, RobustPolicy>::type
    > buffer_turn_operation_type;

    typedef std::vector<buffer_turn_info_type> turn_vector_type;

    typedef piece_border<Ring, point_type> piece_border_type;

    struct piece
    {
        strategy::buffer::piece_type type;
        signed_size_type index;

        signed_size_type left_index; // points to previous piece of same ring
        signed_size_type right_index; // points to next piece of same ring

        // The next two members (1, 2) form together a complete clockwise ring
        // for each piece (with one dupped point)
        // The complete clockwise ring is also included as a robust ring (3)

        // 1: half, part of offsetted_rings

        // Segment identifier of this piece, including its start index
        segment_identifier first_seg_id;

        // One-beyond index of this piece, to iterate over a ring
        // from:                ring.begin() + pc.first_seg_id.segment_index;
        // to (not including):  ring.begin() + pc.beyond_last_segment_index;
        // Its ring_id etc are shared with first_seg_id
        signed_size_type beyond_last_segment_index;

        // part in offsetted ring which is part of offsetted ring
        signed_size_type offsetted_count;

        bool is_flat_start;
        bool is_flat_end;

        bool is_deflated;

        // Ring (parts) of this piece, always clockwise
        piece_border_type m_piece_border;

        point_type m_label_point;

        // For a point buffer
        point_type m_center;

        piece()
            : type(strategy::buffer::piece_type_unknown)
            , index(-1)
            , left_index(-1)
            , right_index(-1)
            , beyond_last_segment_index(-1)
            , offsetted_count(-1)
            , is_flat_start(false)
            , is_flat_end(false)
            , is_deflated(false)
        {
        }
    };

    struct original_ring
    {
        typedef geometry::sections<box_type, 1> sections_type;

        // Creates an empty instance
        inline original_ring()
            : m_is_interior(false)
            , m_has_interiors(false)
        {}

        inline original_ring(clockwise_ring_type const& ring,
                             bool is_interior, bool has_interiors,
                             Strategy const& strategy)
            : m_ring(ring)
            , m_is_interior(is_interior)
            , m_has_interiors(has_interiors)
        {
            geometry::envelope(m_ring, m_box, strategy);

            // create monotonic sections in x-dimension
            // The dimension is critical because the direction is later used
            // in the optimization for within checks using winding strategy
            // and this strategy is scanning in x direction.
            typedef std::integer_sequence<std::size_t, 0> dimensions;
            geometry::sectionalize
                <
                    false, dimensions
                >(m_ring, detail::no_rescale_policy(), m_sections, strategy);
        }

        clockwise_ring_type m_ring;
        box_type m_box;
        sections_type m_sections;

        bool m_is_interior;
        bool m_has_interiors;
    };

    typedef std::vector<piece> piece_vector_type;

    piece_vector_type m_pieces;
    turn_vector_type m_turns;
    signed_size_type m_first_piece_index;
    bool m_deflate;
    bool m_has_deflated;

    // Offsetted rings, and representations of original ring(s)
    // both indexed by multi_index
    buffered_ring_collection<buffered_ring<Ring> > offsetted_rings;
    std::vector<original_ring> original_rings;
    std::vector<point_type> m_linear_end_points;

    buffered_ring_collection<Ring> traversed_rings;
    segment_identifier current_segment_id;

    // Monotonic sections (used for offsetted rings around points)
    // are still using a robust type, to be comparable with turn calculations,
    // which is using rescaling.
    typedef geometry::model::box
    <
        typename geometry::robust_point_type<point_type, RobustPolicy>::type
    > robust_box_type;
    typedef geometry::sections <robust_box_type, 2> robust_sections_type;
    robust_sections_type monotonic_sections;

    // Define the clusters, mapping cluster_id -> turns
    typedef std::map
        <
            signed_size_type,
            detail::overlay::cluster_info
        > cluster_type;

    cluster_type m_clusters;

    Strategy m_strategy;
    DistanceStrategy m_distance_strategy;
    RobustPolicy const& m_robust_policy;

    buffered_piece_collection(Strategy const& strategy,
                              DistanceStrategy const& distance_strategy,
                              RobustPolicy const& robust_policy)
        : m_first_piece_index(-1)
        , m_deflate(false)
        , m_has_deflated(false)
        , m_strategy(strategy)
        , m_distance_strategy(distance_strategy)
        , m_robust_policy(robust_policy)
    {}

    inline void check_linear_endpoints(buffer_turn_info_type& turn) const
    {
        // TODO this is quadratic. But the #endpoints, expected, is low,
        // and only applicable for linear features
        // (in a multi linestring with many short lines, the #endpoints can be
        // much higher)
        for (auto const& p : m_linear_end_points)
        {
            if (detail::equals::equals_point_point(turn.point, p, m_strategy))
            {
                turn.is_linear_end_point = true;
            }
        }
    }

    inline void verify_turns()
    {
        typedef detail::overlay::indexed_turn_operation
            <
                buffer_turn_operation_type
            > indexed_turn_operation;
        typedef std::map
            <
                ring_identifier,
                std::vector<indexed_turn_operation>
            > mapped_vector_type;
        mapped_vector_type mapped_vector;

        detail::overlay::create_map(m_turns, mapped_vector,
                                    enriched_map_buffer_include_policy());

        // Sort turns over offsetted ring(s)
        for (auto& pair : mapped_vector)
        {
            std::sort(pair.second.begin(), pair.second.end(), buffer_less());
        }
    }

    inline void deflate_check_turns()
    {
        if (! m_has_deflated)
        {
            return;
        }

        // Deflated rings may not travel to themselves, there should at least
        // be three turns (which cannot be checked here - TODO: add to traverse)
        for (auto& turn : m_turns)
        {
            if (! turn.is_turn_traversable)
            {
                continue;
            }
            for (auto& op : turn.operations)
            {
                if (op.enriched.get_next_turn_index() == static_cast<signed_size_type>(turn.turn_index)
                    && m_pieces[op.seg_id.piece_index].is_deflated)
                {
                    // Keep traversable, but don't start here
                    op.enriched.startable = false;
                }
            }
        }
    }

    // Check if a turn is inside any of the originals
    inline void check_turn_in_original()
    {
        turn_in_original_visitor
            <
                turn_vector_type,
                Strategy
            > visitor(m_turns, m_strategy);

        geometry::partition
            <
                box_type,
                include_turn_policy,
                detail::partition::include_all_policy
            >::apply(m_turns, original_rings, visitor,
                     turn_get_box<Strategy>(m_strategy),
                     turn_in_original_overlaps_box<Strategy>(m_strategy),
                     original_get_box<Strategy>(m_strategy),
                     original_overlaps_box<Strategy>(m_strategy));

        bool const deflate = m_distance_strategy.negative();

        for (auto& turn : m_turns)
        {
            if (turn.is_turn_traversable)
            {
                if (deflate && turn.count_in_original <= 0)
                {
                    // For deflate/negative buffers:
                    // it is not in the original, so don't use it
                    turn.is_turn_traversable = false;
                }
                else if (! deflate && turn.count_in_original > 0)
                {
                    // For inflate: it is in original, so don't use it
                    turn.is_turn_traversable = false;
                }
            }
        }
    }

    inline void update_turn_administration()
    {
        for_each_with_index(m_turns, [this](std::size_t index, auto& turn)
        {
            turn.turn_index = index;

            // Verify if a turn is a linear endpoint
            if (! turn.is_linear_end_point)
            {
                this->check_linear_endpoints(turn);
            }
        });
    }

    // Calculate properties of piece borders which are not influenced
    // by turns themselves:
    // - envelopes (essential for partitioning during calc turns)
    // - convexity
    // - monotonicity
    // - min/max radius of point buffers
    // - (if pieces are reversed)
    inline void update_piece_administration()
    {
        for (auto& pc : m_pieces)
        {
            piece_border_type& border = pc.m_piece_border;
            buffered_ring<Ring> const& ring = offsetted_rings[pc.first_seg_id.multi_index];

            if (pc.offsetted_count > 0)
            {
                if (pc.type != strategy::buffer::buffered_concave)
                {
                    border.set_offsetted(ring, pc.first_seg_id.segment_index,
                                       pc.beyond_last_segment_index);
                }

                // Calculate envelopes for piece borders
                border.get_properties_of_border(pc.type == geometry::strategy::buffer::buffered_point,
                                                pc.m_center, m_strategy);
                if (! pc.is_flat_end && ! pc.is_flat_start)
                {
                    border.get_properties_of_offsetted_ring_part(m_strategy);
                }
            }
        }
    }

    inline void get_turns()
    {
        update_piece_administration();

        {
            // Calculate the turns
            piece_turn_visitor
                <
                    piece_vector_type,
                    buffered_ring_collection<buffered_ring<Ring> >,
                    turn_vector_type,
                    Strategy,
                    RobustPolicy
                > visitor(m_pieces, offsetted_rings, m_turns,
                          m_strategy, m_robust_policy);

            detail::sectionalize::enlarge_sections(monotonic_sections, m_strategy);

            geometry::partition
                <
                    robust_box_type
                >::apply(monotonic_sections, visitor,
                         detail::section::get_section_box<Strategy>(m_strategy),
                         detail::section::overlaps_section_box<Strategy>(m_strategy));
        }

        update_turn_administration();

        {
            // Check if turns are inside pieces
            turn_in_piece_visitor
                <
                    typename geometry::cs_tag<point_type>::type,
                    turn_vector_type, piece_vector_type, DistanceStrategy, Strategy
                > visitor(m_turns, m_pieces, m_distance_strategy, m_strategy);

            geometry::partition
                <
                    box_type
                >::apply(m_turns, m_pieces, visitor,
                         turn_get_box<Strategy>(m_strategy),
                         turn_overlaps_box<Strategy>(m_strategy),
                         piece_get_box<Strategy>(m_strategy),
                         piece_overlaps_box<Strategy>(m_strategy));
        }
    }

    inline void start_new_ring(bool deflate)
    {
        std::size_t const n = offsetted_rings.size();
        current_segment_id.source_index = 0;
        current_segment_id.multi_index = static_cast<signed_size_type>(n);
        current_segment_id.ring_index = -1;
        current_segment_id.segment_index = 0;

        offsetted_rings.resize(n + 1);
        original_rings.resize(n + 1);

        m_first_piece_index = static_cast<signed_size_type>(boost::size(m_pieces));
        m_deflate = deflate;
        if (deflate)
        {
            // Pieces contain either deflated exterior rings, or inflated
            // interior rings which are effectively deflated too
            m_has_deflated = true;
        }
    }

    inline void abort_ring()
    {
        // Remove all created pieces for this ring, sections, last offsetted
        while (! m_pieces.empty()
               && m_pieces.back().first_seg_id.multi_index
               == current_segment_id.multi_index)
        {
            m_pieces.pop_back();
        }

        offsetted_rings.pop_back();
        original_rings.pop_back();

        m_first_piece_index = -1;
    }

    inline void update_last_point(point_type const& p,
            buffered_ring<Ring>& ring)
    {
        // For the first point of a new piece, and there were already
        // points in the offsetted ring, for some piece types the first point
        // is a duplicate of the last point of the previous piece.

        // TODO: disable that, that point should not be added

        // For now, it is made equal because due to numerical instability,
        // it can be a tiny bit off, possibly causing a self-intersection

        BOOST_GEOMETRY_ASSERT(boost::size(m_pieces) > 0);
        if (! ring.empty()
            && current_segment_id.segment_index
                == m_pieces.back().first_seg_id.segment_index)
        {
            ring.back() = p;
        }
    }

    inline void set_piece_center(point_type const& center)
    {
        BOOST_GEOMETRY_ASSERT(! m_pieces.empty());
        m_pieces.back().m_center = center;
    }

    inline bool finish_ring(strategy::buffer::result_code code)
    {
        if (code == strategy::buffer::result_error_numerical)
        {
            abort_ring();
            return false;
        }

        if (m_first_piece_index == -1)
        {
            return false;
        }

        // Casted version
        std::size_t const first_piece_index
                = static_cast<std::size_t>(m_first_piece_index);
        signed_size_type const last_piece_index
                = static_cast<signed_size_type>(boost::size(m_pieces)) - 1;

        if (first_piece_index < boost::size(m_pieces))
        {
            // If pieces were added,
            // reassign left-of-first and right-of-last
            geometry::range::at(m_pieces, first_piece_index).left_index
                    = last_piece_index;
            geometry::range::back(m_pieces).right_index = m_first_piece_index;
        }

        buffered_ring<Ring>& added = offsetted_rings.back();
        if (! boost::empty(added))
        {
            // Make sure the closing point is identical (they are calculated
            // separately by different pieces)
            range::back(added) = range::front(added);
        }

        for (std::size_t i = first_piece_index; i < boost::size(m_pieces); i++)
        {
            sectionalize(m_pieces[i], added);
        }

        m_first_piece_index = -1;
        return true;
    }

    template <typename InputRing>
    inline void finish_ring(strategy::buffer::result_code code,
                            InputRing const& input_ring,
                            bool is_interior, bool has_interiors)
    {
        if (! finish_ring(code))
        {
            return;
        }

        if (! boost::empty(input_ring))
        {
            // Assign the ring to the original_ring collection
            // For rescaling, it is recalculated. Without rescaling, it
            // is just assigning (note that this Ring type is the
            // GeometryOut type, which might differ from the input ring type)
            clockwise_ring_type clockwise_ring;

            using view_type = detail::closed_clockwise_view<InputRing const>;
            view_type const view(input_ring);

            for (auto it = boost::begin(view); it != boost::end(view); ++it)
            {
                clockwise_ring.push_back(*it);
            }

            original_rings.back()
                = original_ring(clockwise_ring,
                    is_interior, has_interiors,
                    m_strategy);
        }
    }

    inline void set_current_ring_concave()
    {
        BOOST_GEOMETRY_ASSERT(boost::size(offsetted_rings) > 0);
        offsetted_rings.back().has_concave = true;
    }

    inline signed_size_type add_point(point_type const& p)
    {
        BOOST_GEOMETRY_ASSERT(boost::size(offsetted_rings) > 0);

        buffered_ring<Ring>& current_ring = offsetted_rings.back();
        update_last_point(p, current_ring);

        current_segment_id.segment_index++;
        current_ring.push_back(p);
        return static_cast<signed_size_type>(current_ring.size());
    }

    //-------------------------------------------------------------------------

    inline piece& create_piece(strategy::buffer::piece_type type,
            bool decrease_segment_index_by_one)
    {
        if (type == strategy::buffer::buffered_concave)
        {
            offsetted_rings.back().has_concave = true;
        }

        piece pc;
        pc.type = type;
        pc.index = static_cast<signed_size_type>(boost::size(m_pieces));
        pc.is_deflated = m_deflate;

        current_segment_id.piece_index = pc.index;

        pc.first_seg_id = current_segment_id;

        // Assign left/right (for first/last piece per ring they will be re-assigned later)
        pc.left_index = pc.index - 1;
        pc.right_index = pc.index + 1;

        std::size_t const n = boost::size(offsetted_rings.back());
        pc.first_seg_id.segment_index = decrease_segment_index_by_one ? n - 1 : n;
        pc.beyond_last_segment_index = pc.first_seg_id.segment_index;

        m_pieces.push_back(pc);
        return m_pieces.back();
    }

    inline void init_rescale_piece(piece& pc)
    {
        if (pc.first_seg_id.segment_index < 0)
        {
            // This indicates an error situation: an earlier piece was empty
            // It currently does not happen
            pc.offsetted_count = 0;
            return;
        }

        BOOST_GEOMETRY_ASSERT(pc.first_seg_id.multi_index >= 0);
        BOOST_GEOMETRY_ASSERT(pc.beyond_last_segment_index >= 0);

        pc.offsetted_count = pc.beyond_last_segment_index - pc.first_seg_id.segment_index;
        BOOST_GEOMETRY_ASSERT(pc.offsetted_count >= 0);
    }

    inline void add_piece_point(piece& pc, const point_type& point, bool add_to_original)
    {
        if (add_to_original && pc.type != strategy::buffer::buffered_concave)
        {
            pc.m_piece_border.add_original_point(point);
        }
        else
        {
            pc.m_label_point = point;
        }
    }

    inline void sectionalize(piece const& pc, buffered_ring<Ring> const& ring)
    {
        using sectionalizer = geometry::detail::sectionalize::sectionalize_part
        <
            std::integer_sequence<std::size_t, 0, 1> // x,y dimension
        >;

        // Create a ring-identifier. The source-index is the piece index
        // The multi_index is as in this collection (the ring), but not used here
        // The ring_index is not used
        ring_identifier const ring_id(pc.index, pc.first_seg_id.multi_index, -1);

        sectionalizer::apply(monotonic_sections,
            boost::begin(ring) + pc.first_seg_id.segment_index,
            boost::begin(ring) + pc.beyond_last_segment_index,
            m_robust_policy,
            m_strategy,
            ring_id, 10);
    }

    inline void finish_piece(piece& pc)
    {
        init_rescale_piece(pc);
    }

    inline void finish_piece(piece& pc,
                    point_type const& point1,
                    point_type const& point2,
                    point_type const& point3)
    {
        init_rescale_piece(pc);
        if (pc.offsetted_count == 0)
        {
            return;
        }

        add_piece_point(pc, point1, false);
        add_piece_point(pc, point2, true);
        add_piece_point(pc, point3, false);
    }

    inline void finish_piece(piece& pc,
                    point_type const& point1,
                    point_type const& point2,
                    point_type const& point3,
                    point_type const& point4)
    {
        init_rescale_piece(pc);

        // Add the four points. Note that points 2 and 3 are the originals,
        // and that they are already passed in reverse order
        // (because the offsetted ring is in clockwise order)
        add_piece_point(pc, point1, false);
        add_piece_point(pc, point2, true);
        add_piece_point(pc, point3, true);
        add_piece_point(pc, point4, false);
    }

    template <typename Range>
    inline void add_range_to_piece(piece& pc, Range const& range, bool add_front)
    {
        BOOST_GEOMETRY_ASSERT(boost::size(range) != 0u);

        auto it = boost::begin(range);

        // If it follows a non-join (so basically the same piece-type) point b1 should be added.
        // There should be two intersections later and it should be discarded.
        // But for now we need it to calculate intersections
        if (add_front)
        {
            add_point(*it);
        }

        for (++it; it != boost::end(range); ++it)
        {
            pc.beyond_last_segment_index = add_point(*it);
        }
    }

    inline void add_piece(strategy::buffer::piece_type type, point_type const& p,
            point_type const& b1, point_type const& b2)
    {
        piece& pc = create_piece(type, false);
        add_point(b1);
        pc.beyond_last_segment_index = add_point(b2);
        finish_piece(pc, b2, p, b1);
    }

    template <typename Range>
    inline void add_piece(strategy::buffer::piece_type type, Range const& range,
            bool decrease_segment_index_by_one)
    {
        piece& pc = create_piece(type, decrease_segment_index_by_one);

        if (boost::size(range) > 0u)
        {
            add_range_to_piece(pc, range, offsetted_rings.back().empty());
        }
        finish_piece(pc);
    }

    template <typename Range>
    inline void add_piece(strategy::buffer::piece_type type,
            point_type const& p, Range const& range)
    {
        piece& pc = create_piece(type, true);

        if (boost::size(range) > 0u)
        {
            add_range_to_piece(pc, range, offsetted_rings.back().empty());
            finish_piece(pc, range.back(), p, range.front());
        }
        else
        {
            finish_piece(pc);
        }
    }

    template <typename Range>
    inline void add_side_piece(point_type const& original_point1,
            point_type const& original_point2,
            Range const& range, bool is_first, bool is_empty)
    {
        BOOST_GEOMETRY_ASSERT(boost::size(range) >= 2u);

        auto const piece_type = is_empty
            ? strategy::buffer::buffered_empty_side
            : strategy::buffer::buffered_segment;

        piece& pc = create_piece(piece_type, ! is_first);
        add_range_to_piece(pc, range, is_first);

        // Add the four points of the side, starting with the last point of the
        // range, and reversing the order of the originals to keep it clockwise
        finish_piece(pc, range.back(), original_point2, original_point1, range.front());
    }

    template <typename EndcapStrategy, typename Range>
    inline void add_endcap(EndcapStrategy const& strategy, Range const& range,
            point_type const& end_point)
    {
        boost::ignore_unused(strategy);

        if (range.empty())
        {
            return;
        }
        strategy::buffer::piece_type pt = strategy.get_piece_type();
        if (pt == strategy::buffer::buffered_flat_end)
        {
            // It is flat, should just be added, without helper segments
            add_piece(pt, range, true);
        }
        else
        {
            // Normal case, it has an "inside", helper segments should be added
            add_piece(pt, end_point, range);
        }
    }

    inline void mark_flat_start(point_type const& point)
    {
        if (! m_pieces.empty())
        {
            piece& back = m_pieces.back();
            back.is_flat_start = true;

            // This happens to linear buffers, and it will be the very
            // first or last point. If that coincides with a turn,
            // and the turn was marked as ON_BORDER
            // the turn should NOT be within (even though it can be marked
            // as such)
            m_linear_end_points.push_back(point);
        }
    }

    inline void mark_flat_end(point_type const& point)
    {
        if (! m_pieces.empty())
        {
            piece& back = m_pieces.back();
            back.is_flat_end = true;
            m_linear_end_points.push_back(point);
        }
    }

    //-------------------------------------------------------------------------

    inline void enrich()
    {
        enrich_intersection_points<false, false, overlay_buffer>(m_turns,
            m_clusters, offsetted_rings, offsetted_rings,
            m_robust_policy,
            m_strategy);
    }

    // Discards all rings which do have not-OK intersection points only.
    // Those can never be traversed and should not be part of the output.
    inline void discard_rings()
    {
        for (auto const& turn : m_turns)
        {
            if (turn.is_turn_traversable)
            {
                offsetted_rings[turn.operations[0].seg_id.multi_index].has_accepted_intersections = true;
                offsetted_rings[turn.operations[1].seg_id.multi_index].has_accepted_intersections = true;
            }
            else
            {
                offsetted_rings[turn.operations[0].seg_id.multi_index].has_discarded_intersections = true;
                offsetted_rings[turn.operations[1].seg_id.multi_index].has_discarded_intersections = true;
            }
        }
    }

    inline bool point_coveredby_original(point_type const& point)
    {
        signed_size_type count_in_original = 0;

        // Check of the robust point of this outputted ring is in
        // any of the robust original rings
        // This can go quadratic if the input has many rings, and there
        // are many untouched deflated rings around
        for (auto const& original : original_rings)
        {
            if (original.m_ring.empty())
            {
                continue;
            }
            if (detail::disjoint::disjoint_point_box(point, original.m_box,m_strategy))
            {
                continue;
            }

            int const geometry_code
                = detail::within::point_in_geometry(point, original.m_ring, m_strategy);

            if (geometry_code == -1)
            {
                // Outside, continue
                continue;
            }

            // Apply for possibly nested interior rings
            if (original.m_is_interior)
            {
                count_in_original--;
            }
            else if (original.m_has_interiors)
            {
                count_in_original++;
            }
            else
            {
                // Exterior ring without interior rings
                return true;
            }
        }
        return count_in_original > 0;
    }

    // For a deflate, all rings around inner rings which are untouched
    // (no intersections/turns) and which are OUTSIDE the original should
    // be discarded
    inline void discard_nonintersecting_deflated_rings()
    {
        for (auto& ring : offsetted_rings)
        {
            if (! ring.has_intersections()
                && boost::size(ring) > 0u
                && geometry::area(ring, m_strategy) < 0)
            {
                if (! point_coveredby_original(geometry::range::front(ring)))
                {
                    ring.is_untouched_outside_original = true;
                }
            }
        }
    }

    inline void block_turns()
    {
        for (auto& turn : m_turns)
        {
            if (! turn.is_turn_traversable)
            {
                // Discard this turn (don't set it to blocked to avoid colocated
                // clusters being discarded afterwards
                turn.discarded = true;
            }
        }
    }

    inline void traverse()
    {
        typedef detail::overlay::traverse
            <
                false, false,
                buffered_ring_collection<buffered_ring<Ring> >,
                buffered_ring_collection<buffered_ring<Ring > >,
                overlay_buffer,
                backtrack_for_buffer
            > traverser;
        std::map<ring_identifier, overlay::ring_turn_info> turn_info_per_ring;

        traversed_rings.clear();
        buffer_overlay_visitor visitor;
        traverser::apply(offsetted_rings, offsetted_rings,
                        m_strategy, m_robust_policy,
                        m_turns, traversed_rings,
                        turn_info_per_ring,
                        m_clusters, visitor);
    }

    inline void reverse()
    {
        for (auto& ring : offsetted_rings)
        {
            if (! ring.has_intersections())
            {
                std::reverse(ring.begin(), ring.end());
            }
        }
        for (auto& ring : traversed_rings)
        {
            std::reverse(ring.begin(), ring.end());
        }
    }

    template <typename GeometryOutput, typename OutputIterator>
    inline OutputIterator assign(OutputIterator out) const
    {
        typedef typename geometry::area_result
            <
                buffered_ring<Ring>, Strategy
            >::type area_result_type;
        typedef detail::overlay::ring_properties
            <
                point_type, area_result_type
            > properties;

        std::map<ring_identifier, properties> selected;

        // Select all rings which do not have any self-intersection
        // Inner rings, for deflate, which do not have intersections, and
        // which are outside originals, are skipped
        // (other ones should be traversed)
        for_each_with_index(offsetted_rings, [&](std::size_t index, auto const& ring)
            {
                if (! ring.has_intersections()
                    && ! ring.is_untouched_outside_original)
                {
                    properties p = properties(ring, m_strategy);
                    if (p.valid)
                    {
                        ring_identifier id(0, index, -1);
                        selected[id] = p;
                    }
                }
            });

        // Select all created rings
        for_each_with_index(traversed_rings, [&](std::size_t index, auto const& ring)
            {
                properties p = properties(ring, m_strategy);
                if (p.valid)
                {
                    ring_identifier id(2, index, -1);
                    selected[id] = p;
                }
            });

        detail::overlay::assign_parents<overlay_buffer>(offsetted_rings, traversed_rings,
                selected, m_strategy);
        return detail::overlay::add_rings<GeometryOutput>(selected, offsetted_rings, traversed_rings, out,
                                                          m_strategy);
    }

};


}} // namespace detail::buffer
#endif // DOXYGEN_NO_DETAIL


}} // namespace boost::geometry

#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_BUFFER_BUFFERED_PIECE_COLLECTION_HPP