summaryrefslogtreecommitdiff
path: root/boost/container/vector.hpp
blob: 765a2c6861c2bea7c67ed82b2a73cc7b0572023b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2014. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////

#ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP
#define BOOST_CONTAINER_CONTAINER_VECTOR_HPP

#if defined(_MSC_VER)
#  pragma once
#endif

#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>

//#include <cstddef> //Already included by container_fwd.hpp
#include <memory>    //for std::allocator
#include <iterator>  //for std::random_access_iterator_tag
#include <utility>   //for std::pair,std::distance
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
#include <initializer_list>   //for std::initializer_list
#endif

#include <boost/core/no_exceptions_support.hpp>
#include <boost/assert.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/algorithm.hpp>
#include <boost/move/detail/move_helpers.hpp>
#include <boost/move/traits.hpp>

#include <boost/container/detail/version_type.hpp>
#include <boost/container/detail/allocation_type.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/algorithms.hpp>
#include <boost/container/detail/destroyers.hpp>
#include <boost/container/allocator_traits.hpp>
#include <boost/container/detail/allocator_version_traits.hpp>
#include <boost/container/throw_exception.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/detail/type_traits.hpp>
#include <boost/container/detail/advanced_insert_int.hpp>

#include <boost/intrusive/pointer_traits.hpp>

#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/type_traits/has_trivial_copy.hpp>
#include <boost/type_traits/has_trivial_assign.hpp>
#include <boost/type_traits/has_nothrow_copy.hpp>
#include <boost/type_traits/has_nothrow_assign.hpp>
#include <boost/type_traits/has_nothrow_constructor.hpp>

namespace boost {
namespace container {

#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

//#define BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER

namespace container_detail {

#ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER

template <class Pointer, bool IsConst>
class vec_iterator
{
   public:
   typedef std::random_access_iterator_tag                                          iterator_category;
   typedef typename boost::intrusive::pointer_traits<Pointer>::element_type         value_type;
   typedef typename boost::intrusive::pointer_traits<Pointer>::difference_type      difference_type;
   typedef typename if_c
      < IsConst
      , typename boost::intrusive::pointer_traits<Pointer>::template
                                 rebind_pointer<const value_type>::type
      , Pointer
      >::type                                                                       pointer;
   typedef typename boost::intrusive::pointer_traits<Pointer>                       ptr_traits;
   typedef typename ptr_traits::reference                                           reference;

   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
   private:
   Pointer m_ptr;

   public:
   const Pointer &get_ptr() const BOOST_CONTAINER_NOEXCEPT
   {  return   m_ptr;  }

   Pointer &get_ptr() BOOST_CONTAINER_NOEXCEPT
   {  return   m_ptr;  }

   explicit vec_iterator(Pointer ptr) BOOST_CONTAINER_NOEXCEPT
      : m_ptr(ptr)
   {}
   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

   public:

   //Constructors
   vec_iterator() BOOST_CONTAINER_NOEXCEPT
      : m_ptr()   //Value initialization to achieve "null iterators" (N3644)
   {}

   vec_iterator(vec_iterator<Pointer, false> const& other) BOOST_CONTAINER_NOEXCEPT
      :  m_ptr(other.get_ptr())
   {}

   //Pointer like operators
   reference operator*()   const BOOST_CONTAINER_NOEXCEPT
   {  return *m_ptr;  }

   pointer operator->()  const BOOST_CONTAINER_NOEXCEPT
   {  return ::boost::intrusive::pointer_traits<pointer>::pointer_to(this->operator*());  }

   reference operator[](difference_type off) const BOOST_CONTAINER_NOEXCEPT
   {  return m_ptr[off];   }

   //Increment / Decrement
   vec_iterator& operator++() BOOST_CONTAINER_NOEXCEPT
   { ++m_ptr;  return *this; }

   vec_iterator operator++(int) BOOST_CONTAINER_NOEXCEPT
   {  return vec_iterator(m_ptr++); }

   vec_iterator& operator--() BOOST_CONTAINER_NOEXCEPT
   {  --m_ptr; return *this;  }

   vec_iterator operator--(int) BOOST_CONTAINER_NOEXCEPT
   {  return vec_iterator(m_ptr--); }

   //Arithmetic
   vec_iterator& operator+=(difference_type off) BOOST_CONTAINER_NOEXCEPT
   {  m_ptr += off; return *this;   }

   vec_iterator& operator-=(difference_type off) BOOST_CONTAINER_NOEXCEPT
   {  m_ptr -= off; return *this;   }

   friend vec_iterator operator+(const vec_iterator &x, difference_type off) BOOST_CONTAINER_NOEXCEPT
   {  return vec_iterator(x.m_ptr+off);  }

   friend vec_iterator operator+(difference_type off, vec_iterator right) BOOST_CONTAINER_NOEXCEPT
   {  right.m_ptr += off;  return right; }

   friend vec_iterator operator-(vec_iterator left, difference_type off) BOOST_CONTAINER_NOEXCEPT
   {  left.m_ptr -= off;  return left; }

   friend difference_type operator-(const vec_iterator &left, const vec_iterator& right) BOOST_CONTAINER_NOEXCEPT
   {  return left.m_ptr - right.m_ptr;   }

   //Comparison operators
   friend bool operator==   (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_ptr == r.m_ptr;  }

   friend bool operator!=   (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_ptr != r.m_ptr;  }

   friend bool operator<    (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_ptr < r.m_ptr;  }

   friend bool operator<=   (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_ptr <= r.m_ptr;  }

   friend bool operator>    (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_ptr > r.m_ptr;  }

   friend bool operator>=   (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_ptr >= r.m_ptr;  }
};

}  //namespace container_detail {

template<class Pointer, bool IsConst>
const Pointer &vector_iterator_get_ptr(const container_detail::vec_iterator<Pointer, IsConst> &it) BOOST_CONTAINER_NOEXCEPT
{  return   it.get_ptr();  }

template<class Pointer, bool IsConst>
Pointer &get_ptr(container_detail::vec_iterator<Pointer, IsConst> &it) BOOST_CONTAINER_NOEXCEPT
{  return  it.get_ptr();  }

namespace container_detail {

#else //ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER

template< class MaybeConstPointer
        , bool ElementTypeIsConst
            = is_const< typename boost::intrusive::pointer_traits<MaybeConstPointer>::element_type>::value >
struct vector_get_ptr_pointer_to_non_const
{
   typedef MaybeConstPointer                                         const_pointer;
   typedef boost::intrusive::pointer_traits<const_pointer>           pointer_traits_t;
   typedef typename pointer_traits_t::element_type                   element_type;
   typedef typename remove_const<element_type>::type                 non_const_element_type;
   typedef typename pointer_traits_t
      ::template rebind_pointer<non_const_element_type>::type        return_type;

   static return_type get_ptr(const const_pointer &ptr) BOOST_CONTAINER_NOEXCEPT
   {  return boost::intrusive::pointer_traits<return_type>::const_cast_from(ptr);  }
};

template<class Pointer>
struct vector_get_ptr_pointer_to_non_const<Pointer, false>
{
   typedef const Pointer & return_type;
   static return_type get_ptr(const Pointer &ptr) BOOST_CONTAINER_NOEXCEPT
   {  return ptr;  }
};

}  //namespace container_detail {

template<class MaybeConstPointer>
typename container_detail::vector_get_ptr_pointer_to_non_const<MaybeConstPointer>::return_type
   vector_iterator_get_ptr(const MaybeConstPointer &ptr) BOOST_CONTAINER_NOEXCEPT
{
   return container_detail::vector_get_ptr_pointer_to_non_const<MaybeConstPointer>::get_ptr(ptr);
}

namespace container_detail {

#endif   //#ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER

struct uninitialized_size_t {};
static const uninitialized_size_t uninitialized_size = uninitialized_size_t();

template <class T>
struct vector_value_traits_base
{
   static const bool trivial_dctr = boost::has_trivial_destructor<T>::value;
   static const bool trivial_dctr_after_move = ::boost::has_trivial_destructor_after_move<T>::value;
   static const bool trivial_copy = has_trivial_copy<T>::value;
   static const bool nothrow_copy = has_nothrow_copy<T>::value || trivial_copy;
   static const bool trivial_assign = has_trivial_assign<T>::value;
   static const bool nothrow_assign = has_nothrow_assign<T>::value || trivial_assign;
};


template <class Allocator>
struct vector_value_traits
   : public vector_value_traits_base<typename Allocator::value_type>
{
   typedef vector_value_traits_base<typename Allocator::value_type> base_t;
   //This is the anti-exception array destructor
   //to deallocate values already constructed
   typedef typename container_detail::if_c
      <base_t::trivial_dctr
      ,container_detail::null_scoped_destructor_n<Allocator>
      ,container_detail::scoped_destructor_n<Allocator>
      >::type   ArrayDestructor;
   //This is the anti-exception array deallocator
   typedef container_detail::scoped_array_deallocator<Allocator> ArrayDeallocator;
};

//!This struct deallocates and allocated memory
template < class Allocator
         , class AllocatorVersion = typename container_detail::version<Allocator>::type
         >
struct vector_alloc_holder
   : public Allocator
{
   private:
   BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)

   public:
   typedef boost::container::allocator_traits<Allocator> allocator_traits_type;
   typedef typename allocator_traits_type::pointer       pointer;
   typedef typename allocator_traits_type::size_type     size_type;
   typedef typename allocator_traits_type::value_type    value_type;

   //Constructor, does not throw
   vector_alloc_holder()
      BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor<Allocator>::value)
      : Allocator(), m_start(), m_size(), m_capacity()
   {}

   //Constructor, does not throw
   template<class AllocConvertible>
   explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_CONTAINER_NOEXCEPT
      : Allocator(boost::forward<AllocConvertible>(a)), m_start(), m_size(), m_capacity()
   {}

   //Constructor, does not throw
   template<class AllocConvertible>
   vector_alloc_holder(uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)
      : Allocator(boost::forward<AllocConvertible>(a))
      , m_start()
      , m_size(initial_size)  //Size is initialized here so vector should only call uninitialized_xxx after this
      , m_capacity()
   {
      if(initial_size){
         m_start = this->allocation_command(allocate_new, initial_size, initial_size, m_capacity, m_start).first;
      }
   }

   //Constructor, does not throw
   vector_alloc_holder(uninitialized_size_t, size_type initial_size)
      : Allocator()
      , m_start()
      , m_size(initial_size)  //Size is initialized here so vector should only call uninitialized_xxx after this
      , m_capacity()
   {
      if(initial_size){
         m_start = this->allocation_command
               (allocate_new, initial_size, initial_size, m_capacity, m_start).first;
      }
   }

   vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder) BOOST_CONTAINER_NOEXCEPT
      : Allocator(boost::move(static_cast<Allocator&>(holder)))
      , m_start(holder.m_start)
      , m_size(holder.m_size)
      , m_capacity(holder.m_capacity)
   {
      holder.m_start = pointer();
      holder.m_size = holder.m_capacity = 0;
   }

   void first_allocation(size_type cap)
   {
      if(cap){
         m_start = this->allocation_command
               (allocate_new, cap, cap, m_capacity, m_start).first;
         #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
         ++this->num_alloc;
         #endif
      }
   }

   void first_allocation_same_allocator_type(size_type cap)
   {  this->first_allocation(cap);  }

   ~vector_alloc_holder() BOOST_CONTAINER_NOEXCEPT
   {
      if(this->m_capacity){
         this->alloc().deallocate(this->m_start, this->m_capacity);
      }
   }

   std::pair<pointer, bool>
      allocation_command(boost::container::allocation_type command,
                         size_type limit_size,
                         size_type preferred_size,
                         size_type &received_size, const pointer &reuse = pointer())
   {
      return allocator_version_traits<Allocator>::allocation_command
         (this->alloc(), command, limit_size, preferred_size, received_size, reuse);
   }

   size_type next_capacity(size_type additional_objects) const
   {
      return next_capacity_calculator
         <size_type, NextCapacityDouble //NextCapacity60Percent
         >::get( allocator_traits_type::max_size(this->alloc())
               , this->m_capacity, additional_objects );
   }

   pointer     m_start;
   size_type   m_size;
   size_type   m_capacity;

   void swap(vector_alloc_holder &x) BOOST_CONTAINER_NOEXCEPT
   {
      boost::container::swap_dispatch(this->m_start, x.m_start);
      boost::container::swap_dispatch(this->m_size, x.m_size);
      boost::container::swap_dispatch(this->m_capacity, x.m_capacity);
   }

   void move_from_empty(vector_alloc_holder &x) BOOST_CONTAINER_NOEXCEPT
   {
      //this->m_size was previously initialized
      this->m_start     = x.m_start;
      this->m_capacity  = x.m_capacity;
      x.m_start = pointer();
      x.m_size = x.m_capacity = 0;
   }

   Allocator &alloc() BOOST_CONTAINER_NOEXCEPT
   {  return *this;  }

   const Allocator &alloc() const BOOST_CONTAINER_NOEXCEPT
   {  return *this;  }

   const pointer   &start() const     BOOST_CONTAINER_NOEXCEPT {  return m_start;  }
   const size_type &capacity() const  BOOST_CONTAINER_NOEXCEPT {  return m_capacity;  }
   void start(const pointer &p)       BOOST_CONTAINER_NOEXCEPT {  m_start = p;  }
   void capacity(const size_type &c)  BOOST_CONTAINER_NOEXCEPT {  m_capacity = c;  }
};

//!This struct deallocates and allocated memory
template <class Allocator>
struct vector_alloc_holder<Allocator, container_detail::integral_constant<unsigned, 0> >
   : public Allocator
{
   private:
   BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)

   public:
   typedef boost::container::allocator_traits<Allocator> allocator_traits_type;
   typedef typename allocator_traits_type::pointer       pointer;
   typedef typename allocator_traits_type::size_type     size_type;
   typedef typename allocator_traits_type::value_type    value_type;

   template <class OtherAllocator, class OtherAllocatorVersion>
   friend struct vector_alloc_holder;

   //Constructor, does not throw
   vector_alloc_holder()
      BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor<Allocator>::value)
      : Allocator(), m_size()
   {}

   //Constructor, does not throw
   template<class AllocConvertible>
   explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_CONTAINER_NOEXCEPT
      : Allocator(boost::forward<AllocConvertible>(a)), m_size()
   {}

   //Constructor, does not throw
   template<class AllocConvertible>
   vector_alloc_holder(uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)
      : Allocator(boost::forward<AllocConvertible>(a))
      , m_size(initial_size)  //Size is initialized here...
   {
      //... and capacity here, so vector, must call uninitialized_xxx in the derived constructor
      this->first_allocation(initial_size);
   }

   //Constructor, does not throw
   vector_alloc_holder(uninitialized_size_t, size_type initial_size)
      : Allocator()
      , m_size(initial_size)  //Size is initialized here...
   {
      //... and capacity here, so vector, must call uninitialized_xxx in the derived constructor
      this->first_allocation(initial_size);
   }

   vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder)
      : Allocator(boost::move(static_cast<Allocator&>(holder)))
      , m_size(holder.m_size) //Size is initialized here so vector should only call uninitialized_xxx after this
   {
      ::boost::container::uninitialized_move_alloc_n
         (this->alloc(), container_detail::to_raw_pointer(holder.start()), m_size, container_detail::to_raw_pointer(this->start()));
   }

   template<class OtherAllocator, class OtherAllocatorVersion>
   vector_alloc_holder(BOOST_RV_REF_BEG vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> BOOST_RV_REF_END holder)
      : Allocator()
      , m_size(holder.m_size) //Initialize it to m_size as first_allocation can only succeed or abort
   {
      //Different allocator type so we must check we have enough storage
      const size_type n = holder.m_size;
      this->first_allocation(n);
      ::boost::container::uninitialized_move_alloc_n
         (this->alloc(), container_detail::to_raw_pointer(holder.start()), n, container_detail::to_raw_pointer(this->start()));
   }

   void first_allocation(size_type cap)
   {
      if(cap > Allocator::internal_capacity){
         throw_bad_alloc();
      }
   }

   void first_allocation_same_allocator_type(size_type) BOOST_CONTAINER_NOEXCEPT
   {}

   //Destructor
   ~vector_alloc_holder() BOOST_CONTAINER_NOEXCEPT
   {}

   void swap(vector_alloc_holder &x)
   {
      this->priv_swap_members_impl(x);
   }

   template<class OtherAllocator, class OtherAllocatorVersion>
   void swap(vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> &x)
   {
      if(this->m_size > OtherAllocator::internal_capacity || x.m_size > Allocator::internal_capacity){
         throw_bad_alloc();
      }
      this->priv_swap_members_impl(x);
   }

   void move_from_empty(vector_alloc_holder &)
   {  //Containers with version 0 allocators can't be moved without move elements one by one
      throw_bad_alloc();
   }

   Allocator &alloc() BOOST_CONTAINER_NOEXCEPT
   {  return *this;  }

   const Allocator &alloc() const BOOST_CONTAINER_NOEXCEPT
   {  return *this;  }

   pointer start() const       BOOST_CONTAINER_NOEXCEPT {  return Allocator::internal_storage();  }
   size_type  capacity() const BOOST_CONTAINER_NOEXCEPT {  return Allocator::internal_capacity;  }
   size_type   m_size;

   private:

   template<class OtherAllocator, class OtherAllocatorVersion>
   void priv_swap_members_impl(vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> &x)
   {
      const std::size_t MaxTmpStorage = sizeof(value_type)*Allocator::internal_capacity;
      value_type *const first_this = container_detail::to_raw_pointer(this->start());
      value_type *const first_x = container_detail::to_raw_pointer(x.start());

      if(this->m_size < x.m_size){
         boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_this, this->m_size, first_x, x.m_size);
      }
      else{
         boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_x, x.m_size, first_this, this->m_size);
      }
      boost::container::swap_dispatch(this->m_size, x.m_size);
   }
};

}  //namespace container_detail {

#endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

//! A vector is a sequence that supports random access to elements, constant
//! time insertion and removal of elements at the end, and linear time insertion
//! and removal of elements at the beginning or in the middle. The number of
//! elements in a vector may vary dynamically; memory management is automatic.
//!
//! \tparam T The type of object that is stored in the vector
//! \tparam Allocator The allocator used for all internal memory management
template <class T, class Allocator BOOST_CONTAINER_DOCONLY(= std::allocator<T>) >
class vector
{
   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

   typedef typename container_detail::version<Allocator>::type alloc_version;
   boost::container::container_detail::vector_alloc_holder
      <Allocator, alloc_version>                            m_holder;
   typedef allocator_traits<Allocator>                      allocator_traits_type;
   template <class U, class UAllocator>
   friend class vector;

   typedef typename ::boost::container::allocator_traits
      <Allocator>::pointer                                     pointer_impl;
   typedef container_detail::vec_iterator<pointer_impl, false> iterator_impl;
   typedef container_detail::vec_iterator<pointer_impl, true > const_iterator_impl;

   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
   public:
   //////////////////////////////////////////////
   //
   //                    types
   //
   //////////////////////////////////////////////

   typedef T                                                                           value_type;
   typedef typename ::boost::container::allocator_traits<Allocator>::pointer           pointer;
   typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer     const_pointer;
   typedef typename ::boost::container::allocator_traits<Allocator>::reference         reference;
   typedef typename ::boost::container::allocator_traits<Allocator>::const_reference   const_reference;
   typedef typename ::boost::container::allocator_traits<Allocator>::size_type         size_type;
   typedef typename ::boost::container::allocator_traits<Allocator>::difference_type   difference_type;
   typedef Allocator                                                                   allocator_type;
   typedef Allocator                                                                   stored_allocator_type;
   #if defined BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
   typedef BOOST_CONTAINER_IMPDEF(pointer)                                             iterator;
   typedef BOOST_CONTAINER_IMPDEF(const_pointer)                                       const_iterator;
   #else
   typedef BOOST_CONTAINER_IMPDEF(iterator_impl)                                       iterator;
   typedef BOOST_CONTAINER_IMPDEF(const_iterator_impl)                                 const_iterator;
   #endif
   typedef BOOST_CONTAINER_IMPDEF(container_detail::reverse_iterator<iterator>)                          reverse_iterator;
   typedef BOOST_CONTAINER_IMPDEF(container_detail::reverse_iterator<const_iterator>)                    const_reverse_iterator;

   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
   private:
   BOOST_COPYABLE_AND_MOVABLE(vector)
   typedef container_detail::vector_value_traits<Allocator> value_traits;

   typedef container_detail::integral_constant<unsigned, 0> allocator_v0;
   typedef container_detail::integral_constant<unsigned, 1> allocator_v1;
   typedef container_detail::integral_constant<unsigned, 2> allocator_v2;

   typedef constant_iterator<T, difference_type>            cvalue_iterator;
   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

   public:
   //////////////////////////////////////////////
   //
   //          construct/copy/destroy
   //
   //////////////////////////////////////////////

   //! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor throws.
   //!
   //! <b>Complexity</b>: Constant.
   vector()
      BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor<Allocator>::value)
      : m_holder()
   {}

   //! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
   //!
   //! <b>Throws</b>: Nothing
   //!
   //! <b>Complexity</b>: Constant.
   explicit vector(const Allocator& a) BOOST_CONTAINER_NOEXCEPT
      : m_holder(a)
   {}

   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
   //!   and inserts n value initialized values.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor or allocation
   //!   throws or T's value initialization throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   explicit vector(size_type n)
      :  m_holder(container_detail::uninitialized_size, n)
   {
      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
      this->num_alloc += n != 0;
      #endif
      boost::container::uninitialized_value_init_alloc_n
         (this->m_holder.alloc(), n, container_detail::to_raw_pointer(this->m_holder.start()));
   }

   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
   //!   and inserts n default initialized values.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor or allocation
   //!   throws or T's default initialization throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   //!
   //! <b>Note</b>: Non-standard extension
   vector(size_type n, default_init_t)
      :  m_holder(container_detail::uninitialized_size, n)
   {
      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
      this->num_alloc += n != 0;
      #endif
      boost::container::uninitialized_default_init_alloc_n
         (this->m_holder.alloc(), n, container_detail::to_raw_pointer(this->m_holder.start()));
   }

   //! <b>Effects</b>: Constructs a vector
   //!   and inserts n copies of value.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor or allocation
   //!   throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   vector(size_type n, const T& value)
      :  m_holder(container_detail::uninitialized_size, n)
   {
      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
      this->num_alloc += n != 0;
      #endif
      boost::container::uninitialized_fill_alloc_n
         (this->m_holder.alloc(), value, n, container_detail::to_raw_pointer(this->m_holder.start()));
   }

   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
   //!   and inserts n copies of value.
   //!
   //! <b>Throws</b>: If allocation
   //!   throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   vector(size_type n, const T& value, const allocator_type& a)
      :  m_holder(container_detail::uninitialized_size, a, n)
   {
      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
      this->num_alloc += n != 0;
      #endif
      boost::container::uninitialized_fill_alloc_n
         (this->m_holder.alloc(), value, n, container_detail::to_raw_pointer(this->m_holder.start()));
   }

   //! <b>Effects</b>: Constructs a vector
   //!   and inserts a copy of the range [first, last) in the vector.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor or allocation
   //!   throws or T's constructor taking a dereferenced InIt throws.
   //!
   //! <b>Complexity</b>: Linear to the range [first, last).
   template <class InIt>
   vector(InIt first, InIt last)
      :  m_holder()
   {  this->insert(this->cend(), first, last); }

   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
   //!   and inserts a copy of the range [first, last) in the vector.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor or allocation
   //!   throws or T's constructor taking a dereferenced InIt throws.
   //!
   //! <b>Complexity</b>: Linear to the range [first, last).
   template <class InIt>
   vector(InIt first, InIt last, const allocator_type& a)
      :  m_holder(a)
   {  this->insert(this->cend(), first, last); }

   //! <b>Effects</b>: Copy constructs a vector.
   //!
   //! <b>Postcondition</b>: x == *this.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor or allocation
   //!   throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the elements x contains.
   vector(const vector &x)
      :  m_holder( container_detail::uninitialized_size
                 , allocator_traits_type::select_on_container_copy_construction(x.m_holder.alloc())
                 , x.size())
   {
      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
      this->num_alloc += x.size() != 0;
      #endif
      ::boost::container::uninitialized_copy_alloc_n
         ( this->m_holder.alloc(), container_detail::to_raw_pointer(x.m_holder.start())
         , x.size(), container_detail::to_raw_pointer(this->m_holder.start()));
   }

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
   //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
   //!  and inserts a copy of the range [il.begin(), il.last()) in the vector
   //!
   //! <b>Throws</b>: If allocator_type's default constructor
   //!   throws or T's constructor taking a dereferenced initializer_list iterator throws.
   //!
   //! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).
   vector(std::initializer_list<value_type> il, const allocator_type& a = allocator_type())
      : m_holder(a)
   {
      insert(cend(), il.begin(), il.end());
   }
#endif


   //! <b>Effects</b>: Move constructor. Moves x's resources to *this.
   //!
   //! <b>Throws</b>: Nothing
   //!
   //! <b>Complexity</b>: Constant.
   vector(BOOST_RV_REF(vector) x) BOOST_CONTAINER_NOEXCEPT
      :  m_holder(boost::move(x.m_holder))
   {}

   #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)

   //! <b>Effects</b>: Move constructor. Moves x's resources to *this.
   //!
   //! <b>Throws</b>: If T's move constructor or allocation throws
   //!
   //! <b>Complexity</b>: Linear.
   //!
   //! <b>Note</b>: Non-standard extension to support static_vector
   template<class OtherAllocator>
   vector(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
         , typename container_detail::enable_if_c
            < container_detail::is_version<OtherAllocator, 0>::value>::type * = 0
         )
      :  m_holder(boost::move(x.m_holder))
   {}

   #endif   //!defined(BOOST_CONTAINER_DOXYGEN_INVOKED)

   //! <b>Effects</b>: Copy constructs a vector using the specified allocator.
   //!
   //! <b>Postcondition</b>: x == *this.
   //!
   //! <b>Throws</b>: If allocation
   //!   throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the elements x contains.
   vector(const vector &x, const allocator_type &a)
      :  m_holder(container_detail::uninitialized_size, a, x.size())
   {
      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
      this->num_alloc += x.size() != 0;
      #endif
      ::boost::container::uninitialized_copy_alloc_n_source
         ( this->m_holder.alloc(), container_detail::to_raw_pointer(x.m_holder.start())
         , x.size(), container_detail::to_raw_pointer(this->m_holder.start()));
   }

   //! <b>Effects</b>: Move constructor using the specified allocator.
   //!                 Moves x's resources to *this if a == allocator_type().
   //!                 Otherwise copies values from x to *this.
   //!
   //! <b>Throws</b>: If allocation or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise.
   vector(BOOST_RV_REF(vector) x, const allocator_type &a)
      :  m_holder(container_detail::uninitialized_size, a, x.size())
   {
      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
      this->num_alloc += x.size() != 0;
      #endif
      if(x.m_holder.alloc() == a){
         this->m_holder.move_from_empty(x.m_holder);
      }
      else{
         const size_type n = x.size();
         this->m_holder.first_allocation_same_allocator_type(n);
         ::boost::container::uninitialized_move_alloc_n_source
            ( this->m_holder.alloc(), container_detail::to_raw_pointer(x.m_holder.start())
            , n, container_detail::to_raw_pointer(this->m_holder.start()));
      }
   }

   //! <b>Effects</b>: Destroys the vector. All stored values are destroyed
   //!   and used memory is deallocated.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements.
   ~vector() BOOST_CONTAINER_NOEXCEPT
   {
      boost::container::destroy_alloc_n
         (this->get_stored_allocator(), container_detail::to_raw_pointer(this->m_holder.start()), this->m_holder.m_size);
      //vector_alloc_holder deallocates the data
   }

   //! <b>Effects</b>: Makes *this contain the same elements as x.
   //!
   //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
   //! of each of x's elements.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.
   //!
   //! <b>Complexity</b>: Linear to the number of elements in x.
   vector& operator=(BOOST_COPY_ASSIGN_REF(vector) x)
   {
      if (&x != this){
         this->priv_copy_assign(x);
      }
      return *this;
   }

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
   //! <b>Effects</b>: Make *this container contains elements from il.
   //!
   //! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).
   vector& operator=(std::initializer_list<value_type> il)
   {
      assign(il.begin(), il.end());
      return *this;
   }
#endif

   //! <b>Effects</b>: Move assignment. All x's values are transferred to *this.
   //!
   //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
   //!   before the function.
   //!
   //! <b>Throws</b>: If allocator_traits_type::propagate_on_container_move_assignment
   //!   is false and (allocation throws or value_type's move constructor throws)
   //!
   //! <b>Complexity</b>: Constant if allocator_traits_type::
   //!   propagate_on_container_move_assignment is true or
   //!   this->get>allocator() == x.get_allocator(). Linear otherwise.
   vector& operator=(BOOST_RV_REF(vector) x)
      BOOST_CONTAINER_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value)
   {
      this->priv_move_assign(boost::move(x));
      return *this;
   }

   #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)

   //! <b>Effects</b>: Move assignment. All x's values are transferred to *this.
   //!
   //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
   //!   before the function.
   //!
   //! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws
   //!
   //! <b>Complexity</b>: Linear.
   //!
   //! <b>Note</b>: Non-standard extension to support static_vector
   template<class OtherAllocator>
   typename container_detail::enable_if_c
                           < container_detail::is_version<OtherAllocator, 0>::value &&
                            !container_detail::is_same<OtherAllocator, allocator_type>::value
                           , vector& >::type
      operator=(BOOST_RV_REF_BEG vector<value_type, OtherAllocator> BOOST_RV_REF_END x)
   {
      this->priv_move_assign(boost::move(x));
      return *this;
   }

   //! <b>Effects</b>: Copy assignment. All x's values are copied to *this.
   //!
   //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
   //!   before the function.
   //!
   //! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws
   //!
   //! <b>Complexity</b>: Linear.
   //!
   //! <b>Note</b>: Non-standard extension to support static_vector
   template<class OtherAllocator>
   typename container_detail::enable_if_c
                           < container_detail::is_version<OtherAllocator, 0>::value &&
                            !container_detail::is_same<OtherAllocator, allocator_type>::value
                           , vector& >::type
      operator=(const vector<value_type, OtherAllocator> &x)
   {
      this->priv_copy_assign(x);
      return *this;
   }

   #endif

   //! <b>Effects</b>: Assigns the the range [first, last) to *this.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or
   //!   T's constructor/assignment from dereferencing InpIt throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   template <class InIt>
   void assign(InIt first, InIt last
      BOOST_CONTAINER_DOCIGN(BOOST_CONTAINER_I typename container_detail::enable_if_c
         < !container_detail::is_convertible<InIt BOOST_CONTAINER_I size_type>::value &&
            ( container_detail::is_input_iterator<InIt>::value ||
              container_detail::is_same<alloc_version BOOST_CONTAINER_I allocator_v0>::value )
         >::type * = 0) )
   {
      //Overwrite all elements we can from [first, last)
      iterator cur = this->begin();
      const iterator end_it = this->end();
      for ( ; first != last && cur != end_it; ++cur, ++first){
         *cur = *first;
      }

      if (first == last){
         //There are no more elements in the sequence, erase remaining
         T* const end_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
         const size_type n = static_cast<size_type>(end_pos - container_detail::iterator_to_raw_pointer(cur));
         this->priv_destroy_last_n(n);
      }
      else{
         //There are more elements in the range, insert the remaining ones
         this->insert(this->cend(), first, last);
      }
   }

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
   //! <b>Effects</b>: Assigns the the range [il.begin(), il.end()) to *this.
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's constructor from dereferencing iniializer_list iterator throws.
   //!
   void assign(std::initializer_list<T> il)
   {
      assign(il.begin(), il.end());
   }
#endif

   //! <b>Effects</b>: Assigns the the range [first, last) to *this.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or
   //!   T's constructor/assignment from dereferencing InpIt throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   template <class FwdIt>
   void assign(FwdIt first, FwdIt last
      BOOST_CONTAINER_DOCIGN(BOOST_CONTAINER_I typename container_detail::enable_if_c
         < !container_detail::is_convertible<FwdIt BOOST_CONTAINER_I size_type>::value &&
            ( !container_detail::is_input_iterator<FwdIt>::value &&
              !container_detail::is_same<alloc_version BOOST_CONTAINER_I allocator_v0>::value )
         >::type * = 0)
      )
   {
      //For Fwd iterators the standard only requires EmplaceConstructible and assignable from *first
      //so we can't do any backwards allocation
      const size_type input_sz = static_cast<size_type>(std::distance(first, last));
      const size_type old_capacity = this->capacity();
      if(input_sz > old_capacity){  //If input range is too big, we need to reallocate
         size_type real_cap = 0;
         std::pair<pointer, bool> ret =
            this->m_holder.allocation_command(allocate_new|expand_fwd, input_sz, input_sz, real_cap, this->m_holder.start());
         if(!ret.second){  //New allocation, just emplace new values
            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
            ++this->num_alloc;
            #endif
            pointer const old_p = this->m_holder.start();
            if(old_p){
               this->priv_destroy_all();
               this->m_holder.alloc().deallocate(old_p, old_capacity);
            }
            this->m_holder.start(ret.first);
            this->m_holder.capacity(real_cap);
            this->m_holder.m_size = 0;
            this->priv_uninitialized_construct_at_end(first, last);
            return;
         }
         else{
            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
            ++this->num_expand_fwd;
            #endif
            this->m_holder.capacity(real_cap);
            //Forward expansion, use assignment + back deletion/construction that comes later
         }
      }
      //Overwrite all elements we can from [first, last)
      iterator cur = this->begin();
      const iterator end_it = this->end();
      for ( ; first != last && cur != end_it; ++cur, ++first){
         *cur = *first;
      }

      if (first == last){
         //There are no more elements in the sequence, erase remaining
         this->priv_destroy_last_n(this->size() - input_sz);
      }
      else{
         //Uninitialized construct at end the remaining range
         this->priv_uninitialized_construct_at_end(first, last);
      }
   }

   //! <b>Effects</b>: Assigns the n copies of val to *this.
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's copy/move constructor/assignment throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   void assign(size_type n, const value_type& val)
   {  this->assign(cvalue_iterator(val, n), cvalue_iterator());   }

   //! <b>Effects</b>: Returns a copy of the internal allocator.
   //!
   //! <b>Throws</b>: If allocator's copy constructor throws.
   //!
   //! <b>Complexity</b>: Constant.
   allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT
   { return this->m_holder.alloc();  }

   //! <b>Effects</b>: Returns a reference to the internal allocator.
   //!
   //! <b>Throws</b>: Nothing
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Note</b>: Non-standard extension.
   stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
   {  return this->m_holder.alloc(); }

   //! <b>Effects</b>: Returns a reference to the internal allocator.
   //!
   //! <b>Throws</b>: Nothing
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Note</b>: Non-standard extension.
   const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
   {  return this->m_holder.alloc(); }

   //////////////////////////////////////////////
   //
   //                iterators
   //
   //////////////////////////////////////////////

   //! <b>Effects</b>: Returns an iterator to the first element contained in the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator begin() BOOST_CONTAINER_NOEXCEPT
   { return iterator(this->m_holder.start()); }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator begin() const BOOST_CONTAINER_NOEXCEPT
   { return const_iterator(this->m_holder.start()); }

   //! <b>Effects</b>: Returns an iterator to the end of the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator end() BOOST_CONTAINER_NOEXCEPT
   { return iterator(this->m_holder.start() + this->m_holder.m_size); }

   //! <b>Effects</b>: Returns a const_iterator to the end of the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator end() const BOOST_CONTAINER_NOEXCEPT
   { return this->cend(); }

   //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
   //! of the reversed vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT
   { return reverse_iterator(this->end());      }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
   //! of the reversed vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
   { return this->crbegin(); }

   //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
   //! of the reversed vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT
   { return reverse_iterator(this->begin());       }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
   //! of the reversed vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
   { return this->crend(); }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT
   { return const_iterator(this->m_holder.start()); }

   //! <b>Effects</b>: Returns a const_iterator to the end of the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator cend() const BOOST_CONTAINER_NOEXCEPT
   { return const_iterator(this->m_holder.start() + this->m_holder.m_size); }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
   //! of the reversed vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
   { return const_reverse_iterator(this->end());}

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
   //! of the reversed vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT
   { return const_reverse_iterator(this->begin()); }

   //////////////////////////////////////////////
   //
   //                capacity
   //
   //////////////////////////////////////////////

   //! <b>Effects</b>: Returns true if the vector contains no elements.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   bool empty() const BOOST_CONTAINER_NOEXCEPT
   { return !this->m_holder.m_size; }

   //! <b>Effects</b>: Returns the number of the elements contained in the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type size() const BOOST_CONTAINER_NOEXCEPT
   { return this->m_holder.m_size; }

   //! <b>Effects</b>: Returns the largest possible size of the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type max_size() const BOOST_CONTAINER_NOEXCEPT
   { return allocator_traits_type::max_size(this->m_holder.alloc()); }

   //! <b>Effects</b>: Inserts or erases elements at the end such that
   //!   the size becomes n. New elements are value initialized.
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy/move or value initialization throws.
   //!
   //! <b>Complexity</b>: Linear to the difference between size() and new_size.
   void resize(size_type new_size)
   {  this->priv_resize(new_size, value_init);  }

   //! <b>Effects</b>: Inserts or erases elements at the end such that
   //!   the size becomes n. New elements are default initialized.
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy/move or default initialization throws.
   //!
   //! <b>Complexity</b>: Linear to the difference between size() and new_size.
   //!
   //! <b>Note</b>: Non-standard extension
   void resize(size_type new_size, default_init_t)
   {  this->priv_resize(new_size, default_init);  }

   //! <b>Effects</b>: Inserts or erases elements at the end such that
   //!   the size becomes n. New elements are copy constructed from x.
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the difference between size() and new_size.
   void resize(size_type new_size, const T& x)
   {  this->priv_resize(new_size, x);  }

   //! <b>Effects</b>: Number of elements for which memory has been allocated.
   //!   capacity() is always greater than or equal to size().
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type capacity() const BOOST_CONTAINER_NOEXCEPT
   { return this->m_holder.capacity(); }

   //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
   //!   effect. Otherwise, it is a request for allocation of additional memory.
   //!   If the request is successful, then capacity() is greater than or equal to
   //!   n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
   //!
   //! <b>Throws</b>: If memory allocation allocation throws or T's copy/move constructor throws.
   void reserve(size_type new_cap)
   {
      if (this->capacity() < new_cap){
         this->priv_reserve(new_cap, alloc_version());
      }
   }

   //! <b>Effects</b>: Tries to deallocate the excess of memory created
   //!   with previous allocations. The size of the vector is unchanged
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.
   //!
   //! <b>Complexity</b>: Linear to size().
   void shrink_to_fit()
   {  this->priv_shrink_to_fit(alloc_version());   }

   //////////////////////////////////////////////
   //
   //               element access
   //
   //////////////////////////////////////////////

   //! <b>Requires</b>: !empty()
   //!
   //! <b>Effects</b>: Returns a reference to the first
   //!   element of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reference         front() BOOST_CONTAINER_NOEXCEPT
   { return *this->m_holder.start(); }

   //! <b>Requires</b>: !empty()
   //!
   //! <b>Effects</b>: Returns a const reference to the first
   //!   element of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reference   front() const BOOST_CONTAINER_NOEXCEPT
   { return *this->m_holder.start(); }

   //! <b>Requires</b>: !empty()
   //!
   //! <b>Effects</b>: Returns a reference to the last
   //!   element of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reference         back() BOOST_CONTAINER_NOEXCEPT
   { return this->m_holder.start()[this->m_holder.m_size - 1]; }

   //! <b>Requires</b>: !empty()
   //!
   //! <b>Effects</b>: Returns a const reference to the last
   //!   element of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reference   back()  const BOOST_CONTAINER_NOEXCEPT
   { return this->m_holder.start()[this->m_holder.m_size - 1]; }

   //! <b>Requires</b>: size() > n.
   //!
   //! <b>Effects</b>: Returns a reference to the nth element
   //!   from the beginning of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reference operator[](size_type n) BOOST_CONTAINER_NOEXCEPT
   { return this->m_holder.start()[n]; }

   //! <b>Requires</b>: size() > n.
   //!
   //! <b>Effects</b>: Returns a const reference to the nth element
   //!   from the beginning of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reference operator[](size_type n) const BOOST_CONTAINER_NOEXCEPT
   { return this->m_holder.start()[n]; }

   //! <b>Requires</b>: size() > n.
   //!
   //! <b>Effects</b>: Returns a reference to the nth element
   //!   from the beginning of the container.
   //!
   //! <b>Throws</b>: std::range_error if n >= size()
   //!
   //! <b>Complexity</b>: Constant.
   reference at(size_type n)
   { this->priv_check_range(n); return this->m_holder.start()[n]; }

   //! <b>Requires</b>: size() > n.
   //!
   //! <b>Effects</b>: Returns a const reference to the nth element
   //!   from the beginning of the container.
   //!
   //! <b>Throws</b>: std::range_error if n >= size()
   //!
   //! <b>Complexity</b>: Constant.
   const_reference at(size_type n) const
   { this->priv_check_range(n); return this->m_holder.start()[n]; }

   //////////////////////////////////////////////
   //
   //                 data access
   //
   //////////////////////////////////////////////

   //! <b>Returns</b>: Allocator pointer such that [data(),data() + size()) is a valid range.
   //!   For a non-empty vector, data() == &front().
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   T* data() BOOST_CONTAINER_NOEXCEPT
   { return container_detail::to_raw_pointer(this->m_holder.start()); }

   //! <b>Returns</b>: Allocator pointer such that [data(),data() + size()) is a valid range.
   //!   For a non-empty vector, data() == &front().
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const T * data()  const BOOST_CONTAINER_NOEXCEPT
   { return container_detail::to_raw_pointer(this->m_holder.start()); }

   //////////////////////////////////////////////
   //
   //                modifiers
   //
   //////////////////////////////////////////////

   #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... in the end of the vector.
   //!
   //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
   //!   T's copy/move constructor throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   template<class ...Args>
   void emplace_back(Args &&...args)
   {
      if (BOOST_LIKELY(this->m_holder.m_size < this->m_holder.capacity())){
         T* const back_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
         //There is more memory, just construct a new object at the end
         allocator_traits_type::construct(this->m_holder.alloc(), back_pos, ::boost::forward<Args>(args)...);
         ++this->m_holder.m_size;
      }
      else{
         typedef container_detail::insert_emplace_proxy<Allocator, T*, Args...> type;
         this->priv_forward_range_insert_no_capacity
            (vector_iterator_get_ptr(this->cend()), 1, type(::boost::forward<Args>(args)...), alloc_version());
      }
   }

   //! <b>Requires</b>: position must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... before position
   //!
   //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
   //!   T's copy/move constructor/assignment throws.
   //!
   //! <b>Complexity</b>: If position is end(), amortized constant time
   //!   Linear time otherwise.
   template<class ...Args>
   iterator emplace(const_iterator position, Args && ...args)
   {
      //Just call more general insert(pos, size, value) and return iterator
      typedef container_detail::insert_emplace_proxy<Allocator, T*, Args...> type;
      return this->priv_forward_range_insert( vector_iterator_get_ptr(position), 1
                                            , type(::boost::forward<Args>(args)...), alloc_version());
   }

   #else

   #define BOOST_PP_LOCAL_MACRO(n)                                                                    \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)             \
   void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                              \
   {                                                                                                  \
      T* const back_pos = container_detail::to_raw_pointer                                            \
         (this->m_holder.start()) + this->m_holder.m_size;                                            \
      if (BOOST_LIKELY(this->m_holder.m_size < this->m_holder.capacity())){                                         \
         allocator_traits_type::construct (this->m_holder.alloc()                                     \
            , back_pos BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) );              \
         ++this->m_holder.m_size;                                                                     \
      }                                                                                               \
      else{                                                                                           \
         typedef container_detail::BOOST_PP_CAT(insert_emplace_proxy_arg, n)                          \
            <Allocator, T* BOOST_PP_ENUM_TRAILING_PARAMS(n, P)> type;                                 \
         this->priv_forward_range_insert_no_capacity                                                  \
            ( vector_iterator_get_ptr(this->cend()), 1                                                \
            , type(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)), alloc_version());          \
      }                                                                                               \
   }                                                                                                  \
                                                                                                      \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)             \
   iterator emplace(const_iterator pos                                                                \
                    BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                      \
   {                                                                                                  \
      typedef container_detail::BOOST_PP_CAT(insert_emplace_proxy_arg, n)                             \
         <Allocator, T* BOOST_PP_ENUM_TRAILING_PARAMS(n, P)> type;                                    \
      return this->priv_forward_range_insert                                                          \
         ( container_detail::to_raw_pointer(vector_iterator_get_ptr(pos)), 1                          \
         , type(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)), alloc_version());             \
   }                                                                                                  \
   //!
   #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
   #include BOOST_PP_LOCAL_ITERATE()

   #endif   //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   //! <b>Effects</b>: Inserts a copy of x at the end of the vector.
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's copy/move constructor throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   void push_back(const T &x);

   //! <b>Effects</b>: Constructs a new element in the end of the vector
   //!   and moves the resources of x to this new element.
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's copy/move constructor throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   void push_back(T &&x);
   #else
   BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
   #endif

   #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   //! <b>Requires</b>: position must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert a copy of x before position.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.
   //!
   //! <b>Complexity</b>: If position is end(), amortized constant time
   //!   Linear time otherwise.
   iterator insert(const_iterator position, const T &x);

   //! <b>Requires</b>: position must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert a new element before position with x's resources.
   //!
   //! <b>Throws</b>: If memory allocation throws.
   //!
   //! <b>Complexity</b>: If position is end(), amortized constant time
   //!   Linear time otherwise.
   iterator insert(const_iterator position, T &&x);
   #else
   BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator)
   #endif

   //! <b>Requires</b>: p must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert n copies of x before pos.
   //!
   //! <b>Returns</b>: an iterator to the first inserted element or p if n is 0.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy/move constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   iterator insert(const_iterator p, size_type n, const T& x)
   {
      container_detail::insert_n_copies_proxy<Allocator, T*> proxy(x);
      return this->priv_forward_range_insert(vector_iterator_get_ptr(p), n, proxy, alloc_version());
   }

   //! <b>Requires</b>: p must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
   //!
   //! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.
   //!
   //! <b>Throws</b>: If memory allocation throws, T's constructor from a
   //!   dereferenced InpIt throws or T's copy/move constructor/assignment throws.
   //!
   //! <b>Complexity</b>: Linear to std::distance [first, last).
   template <class InIt>
   iterator insert(const_iterator pos, InIt first, InIt last
      BOOST_CONTAINER_DOCIGN(BOOST_CONTAINER_I typename container_detail::enable_if_c
         < !container_detail::is_convertible<InIt BOOST_CONTAINER_I size_type>::value
            && container_detail::is_input_iterator<InIt>::value
         >::type * = 0)
      )
   {
      const size_type n_pos = pos - this->cbegin();
      iterator it(vector_iterator_get_ptr(pos));
      for(;first != last; ++first){
         it = this->emplace(it, *first);
         ++it;
      }
      return iterator(this->m_holder.start() + n_pos);
   }

   #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   template <class FwdIt>
   iterator insert(const_iterator pos, FwdIt first, FwdIt last
      , typename container_detail::enable_if_c
         < !container_detail::is_convertible<FwdIt, size_type>::value
            && !container_detail::is_input_iterator<FwdIt>::value
         >::type * = 0
      )
   {
      container_detail::insert_range_proxy<Allocator, FwdIt, T*> proxy(first);
      return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), std::distance(first, last), proxy, alloc_version());
   }
   #endif

   //! <b>Requires</b>: p must be a valid iterator of *this. num, must
   //!   be equal to std::distance(first, last)
   //!
   //! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
   //!
   //! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.
   //!
   //! <b>Throws</b>: If memory allocation throws, T's constructor from a
   //!   dereferenced InpIt throws or T's copy/move constructor/assignment throws.
   //!
   //! <b>Complexity</b>: Linear to std::distance [first, last).
   //!
   //! <b>Note</b>: This function avoids a linear operation to calculate std::distance[first, last)
   //!   for forward and bidirectional iterators, and a one by one insertion for input iterators. This is a
   //!   a non-standard extension.
   #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   template <class InIt>
   iterator insert(const_iterator pos, size_type num, InIt first, InIt last)
   {
      BOOST_ASSERT(container_detail::is_input_iterator<InIt>::value ||
                   num == static_cast<size_type>(std::distance(first, last)));
      (void)last;
      container_detail::insert_range_proxy<Allocator, InIt, T*> proxy(first);
      return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), num, proxy, alloc_version());
   }
   #endif

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
   //! <b>Requires</b>: position must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert a copy of the [il.begin(), il.end()) range before position.
   //!
   //! <b>Returns</b>: an iterator to the first inserted element or position if first == last.
   //!
   //! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).
   iterator insert(const_iterator position, std::initializer_list<value_type> il)
   {
      return insert(position, il.begin(), il.end());
   }
#endif

   //! <b>Effects</b>: Removes the last element from the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant time.
   void pop_back() BOOST_CONTAINER_NOEXCEPT
   {
      //Destroy last element
      this->priv_destroy_last();
   }

   //! <b>Effects</b>: Erases the element at position pos.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the elements between pos and the
   //!   last element. Constant if pos is the last element.
   iterator erase(const_iterator position)
   {
      const pointer p = vector_iterator_get_ptr(position);
      T *const pos_ptr = container_detail::to_raw_pointer(p);
      T *const beg_ptr = container_detail::to_raw_pointer(this->m_holder.start());
      T *const new_end_ptr = ::boost::move(pos_ptr + 1, beg_ptr + this->m_holder.m_size, pos_ptr);
      //Move elements forward and destroy last
      this->priv_destroy_last(pos_ptr == new_end_ptr);
      return iterator(p);
   }

   //! <b>Effects</b>: Erases the elements pointed by [first, last).
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the distance between first and last
   //!   plus linear to the elements between pos and the last element.
   iterator erase(const_iterator first, const_iterator last)
   {
      if (first != last){
         T* const old_end_ptr = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
         T* const first_ptr = container_detail::to_raw_pointer(vector_iterator_get_ptr(first));
         T* const last_ptr = container_detail::to_raw_pointer(vector_iterator_get_ptr(last));
         T* const ptr = container_detail::to_raw_pointer(boost::move(last_ptr, old_end_ptr, first_ptr));
         this->priv_destroy_last_n(old_end_ptr - ptr, last_ptr == old_end_ptr);
      }
      return iterator(vector_iterator_get_ptr(first));
   }

   //! <b>Effects</b>: Swaps the contents of *this and x.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   void swap(vector& x) BOOST_CONTAINER_NOEXCEPT_IF((!container_detail::is_version<Allocator, 0>::value))
   {
      //Just swap internals in case of !allocator_v0. Otherwise, deep swap
      this->m_holder.swap(x.m_holder);
      //And now the allocator
      container_detail::bool_<allocator_traits_type::propagate_on_container_swap::value> flag;
      container_detail::swap_alloc(this->m_holder.alloc(), x.m_holder.alloc(), flag);
   }

   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

   //! <b>Effects</b>: Swaps the contents of *this and x.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear
   //!
   //! <b>Note</b>: Non-standard extension to support static_vector
   template<class OtherAllocator>
   void swap(vector<T, OtherAllocator> & x
            , typename container_detail::enable_if_c
                     < container_detail::is_version<OtherAllocator, 0>::value &&
                      !container_detail::is_same<OtherAllocator, allocator_type>::value >::type * = 0
            )
   {  this->m_holder.swap(x.m_holder); }

   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

   //! <b>Effects</b>: Erases all the elements of the vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   void clear() BOOST_CONTAINER_NOEXCEPT
   {  this->priv_destroy_all();  }

   //! <b>Effects</b>: Returns true if x and y are equal
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator==(const vector& x, const vector& y)
   {  
      if(x.size() != y.size()){
         return false;
      }
      else{
         const_iterator first1(x.cbegin()), first2(y.cbegin());
         const const_iterator last1(x.cend());
         for (; first1 != last1; ++first1, ++first2) {
            if (!(*first1 != *first2)) {
                  return false;
            }
         }
         return true;
      }
   }

   //! <b>Effects</b>: Returns true if x and y are unequal
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator!=(const vector& x, const vector& y)
   {  return !(x == y); }

   //! <b>Effects</b>: Returns true if x is less than y
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator<(const vector& x, const vector& y)
   {
      const_iterator first1(x.cbegin()), first2(y.cbegin());
      const const_iterator last1(x.cend()), last2(y.cend());
      for ( ; (first1 != last1) && (first2 != last2); ++first1, ++first2 ) {
         if (*first1 < *first2) return true;
         if (*first2 < *first1) return false;
      }
      return (first1 == last1) && (first2 != last2);
   }

   //! <b>Effects</b>: Returns true if x is greater than y
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator>(const vector& x, const vector& y)
   {  return y < x;  }

   //! <b>Effects</b>: Returns true if x is equal or less than y
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator<=(const vector& x, const vector& y)
   {  return !(y < x);  }

   //! <b>Effects</b>: Returns true if x is equal or greater than y
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator>=(const vector& x, const vector& y)
   {  return !(x < y);  }

   //! <b>Effects</b>: x.swap(y)
   //!
   //! <b>Complexity</b>: Constant.
   friend void swap(vector& x, vector& y)
   {  x.swap(y);  }

   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
   //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
   //!   effect. Otherwise, it is a request for allocation of additional memory
   //!   (memory expansion) that will not invalidate iterators.
   //!   If the request is successful, then capacity() is greater than or equal to
   //!   n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
   //!
   //! <b>Throws</b>: If memory allocation allocation throws or T's copy/move constructor throws.
   //!
   //! <b>Note</b>: Non-standard extension.
   bool stable_reserve(size_type new_cap)
   {
      const bool room_enough = this->capacity() < new_cap;
      if(!room_enough && alloc_version::value < 2){
         return false;
      }
      else{
         //There is not enough memory, try to expand the old one
         size_type real_cap = 0;
         std::pair<pointer, bool> ret = this->m_holder.allocation_command
            (expand_fwd, new_cap, new_cap, real_cap, this->m_holder.start());
         //Check for forward expansion
         if(ret.second){
            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
            ++this->num_expand_fwd;
            #endif
            this->m_holder.capacity(real_cap);
         }
         return ret.second;
      }
   }

   //Absolutely experimental. This function might change, disappear or simply crash!
   template<class BiDirPosConstIt, class BiDirValueIt>
   void insert_ordered_at(const size_type element_count, BiDirPosConstIt last_position_it, BiDirValueIt last_value_it)
   {
      const size_type old_size_pos = this->size();
      this->reserve(old_size_pos + element_count);
      T* const begin_ptr = container_detail::to_raw_pointer(this->m_holder.start());
      size_type insertions_left = element_count;
      size_type next_pos = old_size_pos;
      size_type hole_size = element_count;

      //Exception rollback. If any copy throws before the hole is filled, values
      //already inserted/copied at the end of the buffer will be destroyed.
      typename value_traits::ArrayDestructor past_hole_values_destroyer
         (begin_ptr + old_size_pos + element_count, this->m_holder.alloc(), size_type(0u));
      //Loop for each insertion backwards, first moving the elements after the insertion point,
      //then inserting the element.
      while(insertions_left){
         size_type pos = static_cast<size_type>(*(--last_position_it));
         while(pos == size_type(-1)){
            --last_value_it;
            pos = static_cast<size_type>(*(--last_position_it));
         }

         BOOST_ASSERT(pos != size_type(-1) && pos <= old_size_pos);
         //If needed shift the range after the insertion point and the previous insertion point.
         //Function will take care if the shift crosses the size() boundary, using copy/move
         //or uninitialized copy/move if necessary.
         size_type new_hole_size = (pos != next_pos)
            ? priv_insert_ordered_at_shift_range(pos, next_pos, this->size(), insertions_left)
            : hole_size
            ;
         if(new_hole_size > 0){
            //The hole was reduced by priv_insert_ordered_at_shift_range so expand exception rollback range backwards
            past_hole_values_destroyer.increment_size_backwards(next_pos - pos);
            //Insert the new value in the hole
            allocator_traits_type::construct(this->m_holder.alloc(), begin_ptr + pos + insertions_left - 1, *(--last_value_it));
            --new_hole_size;
            if(new_hole_size == 0){
               //Hole was just filled, disable exception rollback and change vector size
               past_hole_values_destroyer.release();
               this->m_holder.m_size += element_count;
            }
            else{
               //The hole was reduced by the new insertion by one
               past_hole_values_destroyer.increment_size_backwards(size_type(1u));
            }
         }
         else{
            if(hole_size){
               //Hole was just filled by priv_insert_ordered_at_shift_range, disable exception rollback and change vector size
               past_hole_values_destroyer.release();
               this->m_holder.m_size += element_count;
            }
            //Insert the new value in the already constructed range
            begin_ptr[pos + insertions_left - 1] = *(--last_value_it);
         }
         --insertions_left;
         hole_size = new_hole_size;
         next_pos = pos;
      }
   }

   #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... in the end of the vector.
   //!
   //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
   //!   T's copy/move constructor throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   template<class ...Args>
   bool stable_emplace_back(Args &&...args)
   {
      const bool room_enough = this->m_holder.m_size < this->m_holder.capacity();
      if (BOOST_LIKELY(room_enough)){
         T* const back_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
         //There is more memory, just construct a new object at the end
         allocator_traits_type::construct(this->m_holder.alloc(), back_pos, ::boost::forward<Args>(args)...);
         ++this->m_holder.m_size;
      }
      return room_enough;
   }

   #else

   #define BOOST_PP_LOCAL_MACRO(n)                                                           \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)    \
   bool stable_emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _))              \
   {                                                                                         \
      const bool room_enough = this->m_holder.m_size < this->m_holder.capacity();            \
      if (BOOST_LIKELY(room_enough)){                                                                      \
         T* const back_pos = container_detail::to_raw_pointer                                \
            (this->m_holder.start()) + this->m_holder.m_size;                                \
         allocator_traits_type::construct (this->m_holder.alloc()                            \
            , back_pos BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) );     \
         ++this->m_holder.m_size;                                                            \
      }                                                                                      \
      return room_enough;                                                                    \
   }                                                                                         \
   //!
   #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
   #include BOOST_PP_LOCAL_ITERATE()

   #endif   //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   private:

   template<class OtherAllocator>
   void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
      , typename container_detail::enable_if_c
         < container_detail::is_version<OtherAllocator, 0>::value >::type * = 0)
   {
      if(!container_detail::is_same<OtherAllocator, allocator_type>::value &&
          this->capacity() < x.size()){
         throw_bad_alloc();
      }
      T* const this_start  = container_detail::to_raw_pointer(m_holder.start());
      T* const other_start = container_detail::to_raw_pointer(x.m_holder.start());
      const size_type this_sz  = m_holder.m_size;
      const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);
      boost::container::move_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);
      this->m_holder.m_size = other_sz;
   }

   template<class OtherAllocator>
   void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
      , typename container_detail::enable_if_c
         < !container_detail::is_version<OtherAllocator, 0>::value &&
           container_detail::is_same<OtherAllocator, allocator_type>::value>::type * = 0)
   {
      //for move constructor, no aliasing (&x != this) is assummed.
      BOOST_ASSERT(this != &x);
      allocator_type &this_alloc = this->m_holder.alloc();
      allocator_type &x_alloc    = x.m_holder.alloc();
      const bool propagate_alloc = allocator_traits_type::
            propagate_on_container_move_assignment::value;
      container_detail::bool_<propagate_alloc> flag;
      const bool allocators_equal = this_alloc == x_alloc; (void)allocators_equal;
      //Resources can be transferred if both allocators are
      //going to be equal after this function (either propagated or already equal)
      if(propagate_alloc || allocators_equal){
         //Destroy objects but retain memory in case x reuses it in the future
         this->clear();
         //Move allocator if needed
         container_detail::move_alloc(this_alloc, x_alloc, flag);
         //Nothrow swap
         this->m_holder.swap(x.m_holder);
      }
      //Else do a one by one move
      else{
         this->assign( boost::make_move_iterator(x.begin())
                     , boost::make_move_iterator(x.end()));
      }
   }

   template<class OtherAllocator>
   void priv_copy_assign(const vector<T, OtherAllocator> &x
      , typename container_detail::enable_if_c
         < container_detail::is_version<OtherAllocator, 0>::value >::type * = 0)
   {
      if(!container_detail::is_same<OtherAllocator, allocator_type>::value &&
         this->capacity() < x.size()){
         throw_bad_alloc();
      }
      T* const this_start  = container_detail::to_raw_pointer(m_holder.start());
      T* const other_start = container_detail::to_raw_pointer(x.m_holder.start());
      const size_type this_sz  = m_holder.m_size;
      const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);
      boost::container::copy_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);
      this->m_holder.m_size = other_sz;
   }

   template<class OtherAllocator>
   void priv_copy_assign(const vector<T, OtherAllocator> &x
      , typename container_detail::enable_if_c
         < !container_detail::is_version<OtherAllocator, 0>::value &&
           container_detail::is_same<OtherAllocator, allocator_type>::value >::type * = 0)
   {
      allocator_type &this_alloc     = this->m_holder.alloc();
      const allocator_type &x_alloc  = x.m_holder.alloc();
      container_detail::bool_<allocator_traits_type::
         propagate_on_container_copy_assignment::value> flag;
      if(flag && this_alloc != x_alloc){
         this->clear();
         this->shrink_to_fit();
      }
      container_detail::assign_alloc(this_alloc, x_alloc, flag);
      this->assign( container_detail::to_raw_pointer(x.m_holder.start())
                  , container_detail::to_raw_pointer(x.m_holder.start() + x.m_holder.m_size));
   }

   void priv_reserve(size_type, allocator_v0)
   {  throw_bad_alloc();  }

   container_detail::insert_range_proxy<Allocator, boost::move_iterator<T*>, T*> priv_dummy_empty_proxy()
   {
      return container_detail::insert_range_proxy<Allocator, boost::move_iterator<T*>, T*>
         (::boost::make_move_iterator((T *)0));
   }

   void priv_reserve(size_type new_cap, allocator_v1)
   {
      //There is not enough memory, allocate a new buffer
      pointer p = this->m_holder.allocate(new_cap);
      //We will reuse insert code, so create a dummy input iterator
      this->priv_forward_range_insert_new_allocation
         ( container_detail::to_raw_pointer(p), new_cap
         , container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size
         , 0, this->priv_dummy_empty_proxy());
   }

   void priv_reserve(size_type new_cap, allocator_v2)
   {
      //There is not enough memory, allocate a new
      //buffer or expand the old one.
      bool same_buffer_start;
      size_type real_cap = 0;
      std::pair<pointer, bool> ret = this->m_holder.allocation_command
         (allocate_new | expand_fwd | expand_bwd, new_cap, new_cap, real_cap, this->m_holder.start());

      //Check for forward expansion
      same_buffer_start = ret.second && this->m_holder.start() == ret.first;
      if(same_buffer_start){
         #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
         ++this->num_expand_fwd;
         #endif
         this->m_holder.capacity(real_cap);
      }
      else{ //If there is no forward expansion, move objects, we will reuse insertion code
         T * const new_mem = container_detail::to_raw_pointer(ret.first);
         T * const ins_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
         if(ret.second){   //Backwards (and possibly forward) expansion
            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
            ++this->num_expand_bwd;
            #endif
            this->priv_forward_range_insert_expand_backwards
               ( new_mem , real_cap, ins_pos, 0, this->priv_dummy_empty_proxy());
         }
         else{ //New buffer
            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
            ++this->num_alloc;
            #endif
            this->priv_forward_range_insert_new_allocation
               ( new_mem, real_cap, ins_pos, 0, this->priv_dummy_empty_proxy());
         }
      }
   }

   void priv_destroy_last() BOOST_CONTAINER_NOEXCEPT
   {
      if(!value_traits::trivial_dctr){
         value_type* const p = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size - 1;
         allocator_traits_type::destroy(this->get_stored_allocator(), p);
      }
      --this->m_holder.m_size;
   }

   void priv_destroy_last(const bool moved) BOOST_CONTAINER_NOEXCEPT
   {
      (void)moved;
      if(!(value_traits::trivial_dctr || (value_traits::trivial_dctr_after_move && moved))){
         value_type* const p = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size - 1;
         allocator_traits_type::destroy(this->get_stored_allocator(), p);
      }
      --this->m_holder.m_size;
   }

   void priv_destroy_last_n(const size_type n) BOOST_CONTAINER_NOEXCEPT
   {
      BOOST_ASSERT(n <= this->m_holder.m_size);
      if(!value_traits::trivial_dctr){
         T* const destroy_pos = container_detail::to_raw_pointer(this->m_holder.start()) + (this->m_holder.m_size-n);
         boost::container::destroy_alloc_n(this->get_stored_allocator(), destroy_pos, n);
      }
      this->m_holder.m_size -= n;
   }

   void priv_destroy_last_n(const size_type n, const bool moved) BOOST_CONTAINER_NOEXCEPT
   {
      BOOST_ASSERT(n <= this->m_holder.m_size);
      (void)moved;
      if(!(value_traits::trivial_dctr || (value_traits::trivial_dctr_after_move && moved))){
         T* const destroy_pos = container_detail::to_raw_pointer(this->m_holder.start()) + (this->m_holder.m_size-n);
         boost::container::destroy_alloc_n(this->get_stored_allocator(), destroy_pos, n);
      }
      this->m_holder.m_size -= n;
   }

   template<class InpIt>
   void priv_uninitialized_construct_at_end(InpIt first, InpIt last)
   {
      T* const old_end_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
      T* const new_end_pos = boost::container::uninitialized_copy_alloc(this->m_holder.alloc(), first, last, old_end_pos);
      this->m_holder.m_size += new_end_pos - old_end_pos;
   }

   void priv_destroy_all() BOOST_CONTAINER_NOEXCEPT
   {
      boost::container::destroy_alloc_n
         (this->get_stored_allocator(), container_detail::to_raw_pointer(this->m_holder.start()), this->m_holder.m_size);
      this->m_holder.m_size = 0;
   }

   template<class U>
   iterator priv_insert(const const_iterator &p, BOOST_FWD_REF(U) x)
   {
      return this->priv_forward_range_insert
         ( vector_iterator_get_ptr(p), 1, container_detail::get_insert_value_proxy<T*, Allocator>
            (::boost::forward<U>(x)), alloc_version());
   }

   container_detail::insert_copy_proxy<Allocator, T*> priv_single_insert_proxy(const T &x)
   {  return container_detail::insert_copy_proxy<Allocator, T*> (x);  }

   container_detail::insert_move_proxy<Allocator, T*> priv_single_insert_proxy(BOOST_RV_REF(T) x)
   {  return container_detail::insert_move_proxy<Allocator, T*> (x);  }

   template <class U>
   void priv_push_back(BOOST_FWD_REF(U) u)
   {
      if (BOOST_LIKELY(this->m_holder.m_size < this->m_holder.capacity())){
         //There is more memory, just construct a new object at the end
         allocator_traits_type::construct
            ( this->m_holder.alloc()
            , container_detail::to_raw_pointer(this->m_holder.start() + this->m_holder.m_size)
            , ::boost::forward<U>(u) );
         ++this->m_holder.m_size;
      }
      else{
         this->priv_forward_range_insert_no_capacity
            ( vector_iterator_get_ptr(this->cend()), 1
            , this->priv_single_insert_proxy(::boost::forward<U>(u)), alloc_version());
      }
   }

   container_detail::insert_n_copies_proxy<Allocator, T*> priv_resize_proxy(const T &x)
   {  return container_detail::insert_n_copies_proxy<Allocator, T*>(x);   }

   container_detail::insert_default_initialized_n_proxy<Allocator, T*> priv_resize_proxy(default_init_t)
   {  return container_detail::insert_default_initialized_n_proxy<Allocator, T*>();  }

   container_detail::insert_value_initialized_n_proxy<Allocator, T*> priv_resize_proxy(value_init_t)
   {  return container_detail::insert_value_initialized_n_proxy<Allocator, T*>(); }

   template <class U>
   void priv_resize(size_type new_size, const U& u)
   {
      const size_type sz = this->size();
      if (new_size < sz){
         //Destroy last elements
         this->priv_destroy_last_n(sz - new_size);
      }
      else{
         const size_type n = new_size - this->size();
         this->priv_forward_range_insert_at_end(n, this->priv_resize_proxy(u), alloc_version());
      }
   }

   void priv_shrink_to_fit(allocator_v0) BOOST_CONTAINER_NOEXCEPT
   {}

   void priv_shrink_to_fit(allocator_v1)
   {
      const size_type cp = this->m_holder.capacity();
      if(cp){
         const size_type sz = this->size();
         if(!sz){
            this->m_holder.alloc().deallocate(this->m_holder.m_start, cp);
            this->m_holder.m_start     = pointer();
            this->m_holder.m_capacity  = 0;
         }
         else if(sz < cp){
            //Allocate a new buffer.
            pointer p = this->m_holder.allocate(sz);

            //We will reuse insert code, so create a dummy input iterator
            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
            ++this->num_alloc;
            #endif
            this->priv_forward_range_insert_new_allocation
               ( container_detail::to_raw_pointer(p), sz
               , container_detail::to_raw_pointer(this->m_holder.start())
               , 0, this->priv_dummy_empty_proxy());
         }
      }
   }

   void priv_shrink_to_fit(allocator_v2) BOOST_CONTAINER_NOEXCEPT
   {
      const size_type cp = this->m_holder.capacity();
      if(cp){
         const size_type sz = this->size();
         if(!sz){
            this->m_holder.alloc().deallocate(this->m_holder.m_start, cp);
            this->m_holder.m_start     = pointer();
            this->m_holder.m_capacity  = 0;
         }
         else{
            size_type received_size;
            if(this->m_holder.allocation_command
               ( shrink_in_place | nothrow_allocation
               , cp, sz, received_size, this->m_holder.start()).first){
               this->m_holder.capacity(received_size);
               #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
               ++this->num_shrink;
               #endif
            }
         }
      }
   }

   template <class InsertionProxy>
   iterator priv_forward_range_insert_no_capacity
      (const pointer &pos, const size_type, const InsertionProxy , allocator_v0)
   {
      throw_bad_alloc();
      return iterator(pos);
   }

   template <class InsertionProxy>
   iterator priv_forward_range_insert_no_capacity
      (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v1)
   {
      //Check if we have enough memory or try to expand current memory
      const size_type n_pos = pos - this->m_holder.start();
      T *const raw_pos = container_detail::to_raw_pointer(pos);

      const size_type new_cap = this->m_holder.next_capacity(n);
      T * new_buf = container_detail::to_raw_pointer(this->m_holder.alloc().allocate(new_cap));
      #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
      ++this->num_alloc;
      #endif
      this->priv_forward_range_insert_new_allocation
         ( new_buf, new_cap, raw_pos, n, insert_range_proxy);
      return iterator(this->m_holder.start() + n_pos);
   }

   template <class InsertionProxy>
   iterator priv_forward_range_insert_no_capacity
      (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v2)
   {
      //Check if we have enough memory or try to expand current memory
      T *const raw_pos = container_detail::to_raw_pointer(pos);
      const size_type n_pos = raw_pos - container_detail::to_raw_pointer(this->m_holder.start());

      size_type real_cap = 0;
      //There is not enough memory, allocate a new
      //buffer or expand the old one.
      std::pair<pointer, bool> ret = (this->m_holder.allocation_command
            (allocate_new | expand_fwd | expand_bwd,
               this->m_holder.m_size + n, this->m_holder.next_capacity(n), real_cap, this->m_holder.start()));

      //Buffer reallocated
      if(ret.second){
         //Forward expansion, delay insertion
         if(this->m_holder.start() == ret.first){
            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
            ++this->num_expand_fwd;
            #endif
            this->m_holder.capacity(real_cap);
            //Expand forward
            this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
         }
         //Backwards (and possibly forward) expansion
         else{
            #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
            ++this->num_expand_bwd;
            #endif
            this->priv_forward_range_insert_expand_backwards
               ( container_detail::to_raw_pointer(ret.first)
               , real_cap, raw_pos, n, insert_range_proxy);
         }
      }
      //New buffer
      else{
         #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
         ++this->num_alloc;
         #endif
         this->priv_forward_range_insert_new_allocation
            ( container_detail::to_raw_pointer(ret.first)
            , real_cap, raw_pos, n, insert_range_proxy);
      }

      return iterator(this->m_holder.start() + n_pos);
   }

   template <class InsertionProxy>
   iterator priv_forward_range_insert
      (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v0)
   {
      //Check if we have enough memory or try to expand current memory
      const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;

      if (n > remaining){
         //This will trigger an error
         throw_bad_alloc();
      }
      const size_type n_pos = pos - this->m_holder.start();
      T *const raw_pos = container_detail::to_raw_pointer(pos);
      this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
      return iterator(this->m_holder.start() + n_pos);
   }

   template <class InsertionProxy>
   iterator priv_forward_range_insert
      (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v1)
   {
      //Check if we have enough memory or try to expand current memory
      const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
      T *const raw_pos = container_detail::to_raw_pointer(pos);

      if (n <= remaining){
         const size_type n_pos = raw_pos - container_detail::to_raw_pointer(this->m_holder.start());
         this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
         return iterator(this->m_holder.start() + n_pos);
      }
      else{
         return this->priv_forward_range_insert_no_capacity(pos, n, insert_range_proxy, alloc_version());
      }
   }

   template <class InsertionProxy>
   iterator priv_forward_range_insert
      (const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v2)
   {
      BOOST_ASSERT(this->m_holder.capacity() >= this->m_holder.m_size);
      //Check if we have enough memory or try to expand current memory
      const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;

      bool same_buffer_start = n <= remaining;
      if (!same_buffer_start){
         return priv_forward_range_insert_no_capacity(pos, n, insert_range_proxy, alloc_version());
      }
      else{
         //Expand forward
         T *const raw_pos = container_detail::to_raw_pointer(pos);
         const size_type n_pos = raw_pos - container_detail::to_raw_pointer(this->m_holder.start());
         this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
         return iterator(this->m_holder.start() + n_pos);
      }
   }

   template <class InsertionProxy>
   iterator priv_forward_range_insert_at_end
      (const size_type n, const InsertionProxy insert_range_proxy, allocator_v0)
   {
      //Check if we have enough memory or try to expand current memory
      const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;

      if (n > remaining){
         //This will trigger an error
         throw_bad_alloc();
      }
      this->priv_forward_range_insert_at_end_expand_forward(n, insert_range_proxy);
      return this->end();
   }

   template <class InsertionProxy>
   iterator priv_forward_range_insert_at_end
      (const size_type n, const InsertionProxy insert_range_proxy, allocator_v1)
   {
      return this->priv_forward_range_insert(vector_iterator_get_ptr(this->cend()), n, insert_range_proxy, allocator_v1());
   }

   template <class InsertionProxy>
   iterator priv_forward_range_insert_at_end
      (const size_type n, const InsertionProxy insert_range_proxy, allocator_v2)
   {
      return this->priv_forward_range_insert(vector_iterator_get_ptr(this->cend()), n, insert_range_proxy, allocator_v2());
   }

   //Absolutely experimental. This function might change, disappear or simply crash!
   template<class BiDirPosConstIt, class BiDirSkipConstIt, class BiDirValueIt>
   void priv_insert_ordered_at( size_type element_count, BiDirPosConstIt last_position_it
                              , bool do_skip, BiDirSkipConstIt last_skip_it, BiDirValueIt last_value_it)
   {
      const size_type old_size_pos = this->size();
      this->reserve(old_size_pos + element_count);
      T* const begin_ptr = container_detail::to_raw_pointer(this->m_holder.start());
      size_type insertions_left = element_count;
      size_type next_pos = old_size_pos;
      size_type hole_size = element_count;

      //Exception rollback. If any copy throws before the hole is filled, values
      //already inserted/copied at the end of the buffer will be destroyed.
      typename value_traits::ArrayDestructor past_hole_values_destroyer
         (begin_ptr + old_size_pos + element_count, this->m_holder.alloc(), size_type(0u));
      //Loop for each insertion backwards, first moving the elements after the insertion point,
      //then inserting the element.
      while(insertions_left){
         if(do_skip){
            size_type n = *(--last_skip_it);
            std::advance(last_value_it, -difference_type(n));
         }
         const size_type pos = static_cast<size_type>(*(--last_position_it));
         BOOST_ASSERT(pos <= old_size_pos);
         //If needed shift the range after the insertion point and the previous insertion point.
         //Function will take care if the shift crosses the size() boundary, using copy/move
         //or uninitialized copy/move if necessary.
         size_type new_hole_size = (pos != next_pos)
            ? priv_insert_ordered_at_shift_range(pos, next_pos, this->size(), insertions_left)
            : hole_size
            ;
         if(new_hole_size > 0){
            //The hole was reduced by priv_insert_ordered_at_shift_range so expand exception rollback range backwards
            past_hole_values_destroyer.increment_size_backwards(next_pos - pos);
            //Insert the new value in the hole
            allocator_traits_type::construct(this->m_holder.alloc(), begin_ptr + pos + insertions_left - 1, *(--last_value_it));
            --new_hole_size;
            if(new_hole_size == 0){
               //Hole was just filled, disable exception rollback and change vector size
               past_hole_values_destroyer.release();
               this->m_holder.m_size += element_count;
            }
            else{
               //The hole was reduced by the new insertion by one
               past_hole_values_destroyer.increment_size_backwards(size_type(1u));
            }
         }
         else{
            if(hole_size){
               //Hole was just filled by priv_insert_ordered_at_shift_range, disable exception rollback and change vector size
               past_hole_values_destroyer.release();
               this->m_holder.m_size += element_count;
            }
            //Insert the new value in the already constructed range
            begin_ptr[pos + insertions_left - 1] = *(--last_value_it);
         }
         --insertions_left;
         hole_size = new_hole_size;
         next_pos = pos;
      }
   }

   //Takes the range pointed by [first_pos, last_pos) and shifts it to the right
   //by 'shift_count'. 'limit_pos' marks the end of constructed elements.
   //
   //Precondition: first_pos <= last_pos <= limit_pos
   //
   //The shift operation might cross limit_pos so elements to moved beyond limit_pos
   //are uninitialized_moved with an allocator. Other elements are moved.
   //
   //The shift operation might left uninitialized elements after limit_pos
   //and the number of uninitialized elements is returned by the function.
   //
   //Old situation:
   //       first_pos   last_pos         old_limit
   //             |       |                  |
   // ____________V_______V__________________V_____________
   //|   prefix   | range |     suffix       |raw_mem      ~
   //|____________|_______|__________________|_____________~
   //
   //New situation in Case Allocator (hole_size == 0):
   // range is moved through move assignments
   //
   //       first_pos   last_pos         limit_pos
   //             |       |                  |
   // ____________V_______V__________________V_____________
   //|   prefix'  |       |  | range |suffix'|raw_mem      ~
   //|________________+______|___^___|_______|_____________~
   //                 |          |
   //                 |_>_>_>_>_>^
   //
   //
   //New situation in Case B (hole_size > 0):
   // range is moved through uninitialized moves
   //
   //       first_pos   last_pos         limit_pos
   //             |       |                  |
   // ____________V_______V__________________V________________
   //|    prefix' |       |                  | [hole] | range |
   //|_______________________________________|________|___^___|
   //                 |                                   |
   //                 |_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_^
   //
   //New situation in Case C (hole_size == 0):
   // range is moved through move assignments and uninitialized moves
   //
   //       first_pos   last_pos         limit_pos
   //             |       |                  |
   // ____________V_______V__________________V___
   //|   prefix'  |       |              | range |
   //|___________________________________|___^___|
   //                 |                      |
   //                 |_>_>_>_>_>_>_>_>_>_>_>^
   size_type priv_insert_ordered_at_shift_range
      (size_type first_pos, size_type last_pos, size_type limit_pos, size_type shift_count)
   {
      BOOST_ASSERT(first_pos <= last_pos);
      BOOST_ASSERT(last_pos <= limit_pos);
      //
      T* const begin_ptr = container_detail::to_raw_pointer(this->m_holder.start());
      T* const first_ptr = begin_ptr + first_pos;
      T* const last_ptr  = begin_ptr + last_pos;

      size_type hole_size = 0;
      //Case A:
      if((last_pos + shift_count) <= limit_pos){
         //All move assigned
         boost::move_backward(first_ptr, last_ptr, last_ptr + shift_count);
      }
      //Case B:
      else if((first_pos + shift_count) >= limit_pos){
         //All uninitialized_moved
         ::boost::container::uninitialized_move_alloc
            (this->m_holder.alloc(), first_ptr, last_ptr, first_ptr + shift_count);
         hole_size = last_pos + shift_count - limit_pos;
      }
      //Case C:
      else{
         //Some uninitialized_moved
         T* const limit_ptr    = begin_ptr + limit_pos;
         T* const boundary_ptr = limit_ptr - shift_count;
         ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), boundary_ptr, last_ptr, limit_ptr);
         //The rest is move assigned
         boost::move_backward(first_ptr, boundary_ptr, limit_ptr);
      }
      return hole_size;
   }

   private:
   template <class InsertionProxy>
   void priv_forward_range_insert_at_end_expand_forward(const size_type n, InsertionProxy insert_range_proxy)
   {
      T* const old_finish = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
      insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);
      this->m_holder.m_size += n;
   }

   template <class InsertionProxy>
   void priv_forward_range_insert_expand_forward(T* const pos, const size_type n, InsertionProxy insert_range_proxy)
   {
      //n can't be 0, because there is nothing to do in that case
      if(!n) return;
      //There is enough memory
      T* const old_finish = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
      const size_type elems_after = old_finish - pos;

      if (!elems_after){
         insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);
         this->m_holder.m_size += n;
      }
      else if (elems_after >= n){
         //New elements can be just copied.
         //Move to uninitialized memory last objects
         ::boost::container::uninitialized_move_alloc
            (this->m_holder.alloc(), old_finish - n, old_finish, old_finish);
         this->m_holder.m_size += n;
         //Copy previous to last objects to the initialized end
         boost::move_backward(pos, old_finish - n, old_finish);
         //Insert new objects in the pos
         insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, n);
      }
      else {
         //The new elements don't fit in the [pos, end()) range.

         //Copy old [pos, end()) elements to the uninitialized memory (a gap is created)
         ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), pos, old_finish, pos + n);
         BOOST_TRY{
            //Copy first new elements in pos (gap is still there)
            insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, elems_after);
            //Copy to the beginning of the unallocated zone the last new elements (the gap is closed).
            insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n - elems_after);
            this->m_holder.m_size += n;
         }
         BOOST_CATCH(...){
            boost::container::destroy_alloc_n(this->get_stored_allocator(), pos + n, elems_after);
            BOOST_RETHROW
         }
         BOOST_CATCH_END
      }
   }

   template <class InsertionProxy>
   void priv_forward_range_insert_new_allocation
      (T* const new_start, size_type new_cap, T* const pos, const size_type n, InsertionProxy insert_range_proxy)
   {
      //n can be zero, if we want to reallocate!
      T *new_finish = new_start;
      T *old_finish;
      //Anti-exception rollbacks
      typename value_traits::ArrayDeallocator new_buffer_deallocator(new_start, this->m_holder.alloc(), new_cap);
      typename value_traits::ArrayDestructor  new_values_destroyer(new_start, this->m_holder.alloc(), 0u);

      //Initialize with [begin(), pos) old buffer
      //the start of the new buffer
      T * const old_buffer = container_detail::to_raw_pointer(this->m_holder.start());
      if(old_buffer){
         new_finish = ::boost::container::uninitialized_move_alloc
            (this->m_holder.alloc(), container_detail::to_raw_pointer(this->m_holder.start()), pos, old_finish = new_finish);
         new_values_destroyer.increment_size(new_finish - old_finish);
      }
      //Initialize new objects, starting from previous point
      old_finish = new_finish;
      insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);
      new_finish += n;
      new_values_destroyer.increment_size(new_finish - old_finish);
      //Initialize from the rest of the old buffer,
      //starting from previous point
      if(old_buffer){
         new_finish = ::boost::container::uninitialized_move_alloc
            (this->m_holder.alloc(), pos, old_buffer + this->m_holder.m_size, new_finish);
         //Destroy and deallocate old elements
         //If there is allocated memory, destroy and deallocate
         if(!value_traits::trivial_dctr_after_move)
            boost::container::destroy_alloc_n(this->get_stored_allocator(), old_buffer, this->m_holder.m_size);
         this->m_holder.alloc().deallocate(this->m_holder.start(), this->m_holder.capacity());
      }
      this->m_holder.start(new_start);
      this->m_holder.m_size = new_finish - new_start;
      this->m_holder.capacity(new_cap);
      //All construction successful, disable rollbacks
      new_values_destroyer.release();
      new_buffer_deallocator.release();
   }

   template <class InsertionProxy>
   void priv_forward_range_insert_expand_backwards
         (T* const new_start, const size_type new_capacity,
          T* const pos, const size_type n, InsertionProxy insert_range_proxy)
   {
      //n can be zero to just expand capacity
      //Backup old data
      T* const old_start  = container_detail::to_raw_pointer(this->m_holder.start());
      const size_type old_size = this->m_holder.m_size;
      T* const old_finish = old_start + old_size;

      //We can have 8 possibilities:
      const size_type elemsbefore = static_cast<size_type>(pos - old_start);
      const size_type s_before    = static_cast<size_type>(old_start - new_start);
      const size_type before_plus_new = elemsbefore + n;

      //Update the vector buffer information to a safe state
      this->m_holder.start(new_start);
      this->m_holder.capacity(new_capacity);
      this->m_holder.m_size = 0;

      //If anything goes wrong, this object will destroy
      //all the old objects to fulfill previous vector state
      typename value_traits::ArrayDestructor old_values_destroyer(old_start, this->m_holder.alloc(), old_size);
      //Check if s_before is big enough to hold the beginning of old data + new data
      if(s_before >= before_plus_new){
         //Copy first old values before pos, after that the new objects
         T *const new_elem_pos =
            ::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), old_start, pos, new_start);
         this->m_holder.m_size = elemsbefore;
         insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), new_elem_pos, n);
         this->m_holder.m_size = before_plus_new;
         const size_type new_size = old_size + n;
         //Check if s_before is so big that even copying the old data + new data
         //there is a gap between the new data and the old data
         if(s_before >= new_size){
            //Old situation:
            // _________________________________________________________
            //|            raw_mem                | old_begin | old_end |
            //| __________________________________|___________|_________|
            //
            //New situation:
            // _________________________________________________________
            //| old_begin |    new   | old_end |         raw_mem        |
            //|___________|__________|_________|________________________|
            //
            //Now initialize the rest of memory with the last old values
            if(before_plus_new != new_size){ //Special case to avoid operations in back insertion
               ::boost::container::uninitialized_move_alloc
                  (this->m_holder.alloc(), pos, old_finish, new_start + before_plus_new);
               //All new elements correctly constructed, avoid new element destruction
               this->m_holder.m_size = new_size;
            }
            //Old values destroyed automatically with "old_values_destroyer"
            //when "old_values_destroyer" goes out of scope unless the have trivial
            //destructor after move.
            if(value_traits::trivial_dctr_after_move)
               old_values_destroyer.release();
         }
         //s_before is so big that divides old_end
         else{
            //Old situation:
            // __________________________________________________
            //|            raw_mem         | old_begin | old_end |
            //| ___________________________|___________|_________|
            //
            //New situation:
            // __________________________________________________
            //| old_begin |   new    | old_end |  raw_mem        |
            //|___________|__________|_________|_________________|
            //
            //Now initialize the rest of memory with the last old values
            //All new elements correctly constructed, avoid new element destruction
            const size_type raw_gap = s_before - before_plus_new;
            if(!value_traits::trivial_dctr){
               //Now initialize the rest of s_before memory with the
               //first of elements after new values
               ::boost::container::uninitialized_move_alloc_n
                  (this->m_holder.alloc(), pos, raw_gap, new_start + before_plus_new);
               //Now we have a contiguous buffer so program trailing element destruction
               //and update size to the final size.
               old_values_destroyer.shrink_forward(new_size-s_before);
               this->m_holder.m_size = new_size;
               //Now move remaining last objects in the old buffer begin
               ::boost::move(pos + raw_gap, old_finish, old_start);
               //Once moved, avoid calling the destructors if trivial after move
               if(value_traits::trivial_dctr_after_move){
                  old_values_destroyer.release();
               }
            }
            else{ //If trivial destructor, we can uninitialized copy + copy in a single uninitialized copy
               ::boost::container::uninitialized_move_alloc_n
                  (this->m_holder.alloc(), pos, old_finish - pos, new_start + before_plus_new);
               this->m_holder.m_size = new_size;
               old_values_destroyer.release();
            }
         }
      }
      else{
         //Check if we have to do the insertion in two phases
         //since maybe s_before is not big enough and
         //the buffer was expanded both sides
         //
         //Old situation:
         // _________________________________________________
         //| raw_mem | old_begin + old_end |  raw_mem        |
         //|_________|_____________________|_________________|
         //
         //New situation with do_after:
         // _________________________________________________
         //|     old_begin + new + old_end     |  raw_mem    |
         //|___________________________________|_____________|
         //
         //New without do_after:
         // _________________________________________________
         //| old_begin + new + old_end  |  raw_mem           |
         //|____________________________|____________________|
         //
         const bool do_after = n > s_before;

         //Now we can have two situations: the raw_mem of the
         //beginning divides the old_begin, or the new elements:
         if (s_before <= elemsbefore) {
            //The raw memory divides the old_begin group:
            //
            //If we need two phase construction (do_after)
            //new group is divided in new = new_beg + new_end groups
            //In this phase only new_beg will be inserted
            //
            //Old situation:
            // _________________________________________________
            //| raw_mem | old_begin | old_end |  raw_mem        |
            //|_________|___________|_________|_________________|
            //
            //New situation with do_after(1):
            //This is not definitive situation, the second phase
            //will include
            // _________________________________________________
            //| old_begin | new_beg | old_end |  raw_mem        |
            //|___________|_________|_________|_________________|
            //
            //New situation without do_after:
            // _________________________________________________
            //| old_begin | new | old_end |  raw_mem            |
            //|___________|_____|_________|_____________________|
            //
            //Copy the first part of old_begin to raw_mem
            ::boost::container::uninitialized_move_alloc_n
               (this->m_holder.alloc(), old_start, s_before, new_start);
            //The buffer is all constructed until old_end,
            //so program trailing destruction and assign final size
            //if !do_after, s_before+n otherwise.
            size_type new_1st_range;
            if(do_after){
               new_1st_range = s_before;
               //release destroyer and update size
               old_values_destroyer.release();
            }
            else{
               new_1st_range = n;
               if(value_traits::trivial_dctr_after_move)
                  old_values_destroyer.release();
               else{
                  old_values_destroyer.shrink_forward(old_size - (s_before - n));
               }
            }
            this->m_holder.m_size = old_size + new_1st_range;
            //Now copy the second part of old_begin overwriting itself
            T *const next = ::boost::move(old_start + s_before, pos, old_start);
            //Now copy the new_beg elements
            insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), next, new_1st_range);

            //If there is no after work and the last old part needs to be moved to front, do it
            if(!do_after && (n != s_before)){
               //Now displace old_end elements
               ::boost::move(pos, old_finish, next + new_1st_range);
            }
         }
         else {
            //If we have to expand both sides,
            //we will play if the first new values so
            //calculate the upper bound of new values

            //The raw memory divides the new elements
            //
            //If we need two phase construction (do_after)
            //new group is divided in new = new_beg + new_end groups
            //In this phase only new_beg will be inserted
            //
            //Old situation:
            // _______________________________________________________
            //|   raw_mem     | old_begin | old_end |  raw_mem        |
            //|_______________|___________|_________|_________________|
            //
            //New situation with do_after():
            // ____________________________________________________
            //| old_begin |    new_beg    | old_end |  raw_mem     |
            //|___________|_______________|_________|______________|
            //
            //New situation without do_after:
            // ______________________________________________________
            //| old_begin | new | old_end |  raw_mem                 |
            //|___________|_____|_________|__________________________|
            //
            //First copy whole old_begin and part of new to raw_mem
            T * const new_pos = ::boost::container::uninitialized_move_alloc
               (this->m_holder.alloc(), old_start, pos, new_start);
            this->m_holder.m_size = elemsbefore;
            const size_type mid_n = s_before - elemsbefore;
            insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), new_pos, mid_n);
            //The buffer is all constructed until old_end,
            //release destroyer
            this->m_holder.m_size = old_size + s_before;
            old_values_destroyer.release();

            if(do_after){
               //Copy new_beg part
               insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), old_start, elemsbefore);
            }
            else{
               //Copy all new elements
               const size_type rest_new = n - mid_n;
               insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), old_start, rest_new);
               T* const move_start = old_start + rest_new;
               //Displace old_end
               T* const move_end = ::boost::move(pos, old_finish, move_start);
               //Destroy remaining moved elements from old_end except if they
               //have trivial destructor after being moved
               size_type n_destroy = s_before - n;
               if(!value_traits::trivial_dctr_after_move)
                  boost::container::destroy_alloc_n(this->get_stored_allocator(), move_end, n_destroy);
               this->m_holder.m_size -= n_destroy;
            }
         }

         //This is only executed if two phase construction is needed
         if(do_after){
            //The raw memory divides the new elements
            //
            //Old situation:
            // ______________________________________________________
            //|   raw_mem    | old_begin |  old_end   |  raw_mem     |
            //|______________|___________|____________|______________|
            //
            //New situation with do_after(1):
            // _______________________________________________________
            //| old_begin   +   new_beg  | new_end |old_end | raw_mem |
            //|__________________________|_________|________|_________|
            //
            //New situation with do_after(2):
            // ______________________________________________________
            //| old_begin      +       new            | old_end |raw |
            //|_______________________________________|_________|____|
            //
            const size_type n_after    = n - s_before;
            const size_type elemsafter = old_size - elemsbefore;

            //We can have two situations:
            if (elemsafter >= n_after){
               //The raw_mem from end will divide displaced old_end
               //
               //Old situation:
               // ______________________________________________________
               //|   raw_mem    | old_begin |  old_end   |  raw_mem     |
               //|______________|___________|____________|______________|
               //
               //New situation with do_after(1):
               // _______________________________________________________
               //| old_begin   +   new_beg  | new_end |old_end | raw_mem |
               //|__________________________|_________|________|_________|
               //
               //First copy the part of old_end raw_mem
               T* finish_n = old_finish - n_after;
               ::boost::container::uninitialized_move_alloc
                  (this->m_holder.alloc(), finish_n, old_finish, old_finish);
               this->m_holder.m_size += n_after;
               //Displace the rest of old_end to the new position
               boost::move_backward(pos, finish_n, old_finish);
               //Now overwrite with new_end
               //The new_end part is [first + (n - n_after), last)
               insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, n_after);
            }
            else {
               //The raw_mem from end will divide new_end part
               //
               //Old situation:
               // _____________________________________________________________
               //|   raw_mem    | old_begin |  old_end   |  raw_mem            |
               //|______________|___________|____________|_____________________|
               //
               //New situation with do_after(2):
               // _____________________________________________________________
               //| old_begin   +   new_beg  |     new_end   |old_end | raw_mem |
               //|__________________________|_______________|________|_________|
               //

               const size_type mid_last_dist = n_after - elemsafter;
               //First initialize data in raw memory

               //Copy to the old_end part to the uninitialized zone leaving a gap.
               ::boost::container::uninitialized_move_alloc
                  (this->m_holder.alloc(), pos, old_finish, old_finish + mid_last_dist);

               typename value_traits::ArrayDestructor old_end_destroyer
                  (old_finish + mid_last_dist, this->m_holder.alloc(), old_finish - pos);

               //Copy the first part to the already constructed old_end zone
               insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, elemsafter);
               //Copy the rest to the uninitialized zone filling the gap
               insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, mid_last_dist);
               this->m_holder.m_size += n_after;
               old_end_destroyer.release();
            }
         }
      }
   }

   void priv_check_range(size_type n) const
   {
      //If n is out of range, throw an out_of_range exception
      if (n >= this->size()){
         throw_out_of_range("vector::at out of range");
      }
   }

   #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
   public:
   unsigned int num_expand_fwd;
   unsigned int num_expand_bwd;
   unsigned int num_shrink;
   unsigned int num_alloc;
   void reset_alloc_stats()
   {  num_expand_fwd = num_expand_bwd = num_alloc = 0, num_shrink = 0;   }
   #endif
   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
};

}}

#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

namespace boost {

/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class Allocator>
struct has_trivial_destructor_after_move<boost::container::vector<T, Allocator> >
   : public ::boost::has_trivial_destructor_after_move<Allocator>
{};
*/
}

//#define BOOST_CONTAINER_PUT_SWAP_OVERLOAD_IN_NAMESPACE_STD

#ifdef BOOST_CONTAINER_PUT_SWAP_OVERLOAD_IN_NAMESPACE_STD

namespace std {

template <class T, class Allocator>
inline void swap(boost::container::vector<T, Allocator>& x, boost::container::vector<T, Allocator>& y)
{  x.swap(y);  }

}  //namespace std {

#endif

#endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

#include <boost/container/detail/config_end.hpp>

#endif //   #ifndef  BOOST_CONTAINER_CONTAINER_VECTOR_HPP