// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard. // Copyright (C) 2005-2011 Daniel James // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED #define BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED #if defined(_MSC_VER) && (_MSC_VER >= 1020) # pragma once #endif #include #include #include namespace boost { namespace unordered { namespace detail { template struct grouped_node; template struct grouped_ptr_node; template struct grouped_table_impl; template struct grouped_node : boost::unordered::detail::value_base { typedef typename ::boost::unordered::detail::rebind_wrap< A, grouped_node >::type::pointer link_pointer; link_pointer next_; link_pointer group_prev_; std::size_t hash_; grouped_node() : next_(), group_prev_(), hash_(0) {} void init(link_pointer self) { group_prev_ = self; } }; template struct grouped_ptr_node : boost::unordered::detail::value_base, boost::unordered::detail::ptr_bucket { typedef boost::unordered::detail::ptr_bucket bucket_base; typedef ptr_bucket* link_pointer; link_pointer group_prev_; std::size_t hash_; grouped_ptr_node() : bucket_base(), group_prev_(0), hash_(0) {} void init(link_pointer self) { group_prev_ = self; } }; // If the allocator uses raw pointers use grouped_ptr_node // Otherwise use grouped_node. template struct pick_grouped_node2 { typedef boost::unordered::detail::grouped_node node; typedef typename boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap::type >::pointer node_pointer; typedef boost::unordered::detail::bucket bucket; typedef node_pointer link_pointer; }; template struct pick_grouped_node2*, boost::unordered::detail::ptr_bucket*> { typedef boost::unordered::detail::grouped_ptr_node node; typedef boost::unordered::detail::ptr_bucket bucket; typedef bucket* link_pointer; }; template struct pick_grouped_node { typedef boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap >::type > tentative_node_traits; typedef boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap::type > tentative_bucket_traits; typedef pick_grouped_node2 pick; typedef typename pick::node node; typedef typename pick::bucket bucket; typedef typename pick::link_pointer link_pointer; }; template struct multiset { typedef boost::unordered::detail::multiset types; typedef T value_type; typedef H hasher; typedef P key_equal; typedef T key_type; typedef typename boost::unordered::detail::rebind_wrap< A, value_type>::type allocator; typedef boost::unordered::detail::allocator_traits traits; typedef boost::unordered::detail::pick_grouped_node pick; typedef typename pick::node node; typedef typename pick::bucket bucket; typedef typename pick::link_pointer link_pointer; typedef boost::unordered::detail::grouped_table_impl table; typedef boost::unordered::detail::set_extractor extractor; }; template struct multimap { typedef boost::unordered::detail::multimap types; typedef std::pair value_type; typedef H hasher; typedef P key_equal; typedef K key_type; typedef typename boost::unordered::detail::rebind_wrap< A, value_type>::type allocator; typedef boost::unordered::detail::allocator_traits traits; typedef boost::unordered::detail::pick_grouped_node pick; typedef typename pick::node node; typedef typename pick::bucket bucket; typedef typename pick::link_pointer link_pointer; typedef boost::unordered::detail::grouped_table_impl table; typedef boost::unordered::detail::map_extractor extractor; }; template struct grouped_table_impl : boost::unordered::detail::table { typedef boost::unordered::detail::table table; typedef typename table::value_type value_type; typedef typename table::bucket bucket; typedef typename table::buckets buckets; typedef typename table::node_pointer node_pointer; typedef typename table::node_allocator node_allocator; typedef typename table::node_allocator_traits node_allocator_traits; typedef typename table::bucket_pointer bucket_pointer; typedef typename table::link_pointer link_pointer; typedef typename table::previous_pointer previous_pointer; typedef typename table::hasher hasher; typedef typename table::key_equal key_equal; typedef typename table::key_type key_type; typedef typename table::node_constructor node_constructor; typedef typename table::extractor extractor; typedef typename table::iterator iterator; // Constructors grouped_table_impl(std::size_t n, hasher const& hf, key_equal const& eq, node_allocator const& a) : table(n, hf, eq, a) {} grouped_table_impl(grouped_table_impl const& x) : table(x, node_allocator_traits:: select_on_container_copy_construction(x.node_alloc())) {} grouped_table_impl(grouped_table_impl const& x, node_allocator const& a) : table(x, a) {} grouped_table_impl(grouped_table_impl& x, boost::unordered::detail::move_tag m) : table(x, m) {} grouped_table_impl(grouped_table_impl& x, node_allocator const& a, boost::unordered::detail::move_tag m) : table(x, a, m) {} // Accessors template node_pointer find_node_impl( std::size_t hash, Key const& k, Pred const& eq) const { std::size_t bucket_index = hash % this->bucket_count_; node_pointer n = this->get_start(bucket_index); for (;;) { if (!n) return n; std::size_t node_hash = n->hash_; if (hash == node_hash) { if (eq(k, this->get_key(n->value()))) return n; } else { if (node_hash % this->bucket_count_ != bucket_index) return node_pointer(); } n = static_cast( static_cast(n->group_prev_)->next_); } } std::size_t count(key_type const& k) const { node_pointer n = this->find_node(k); if (!n) return 0; std::size_t count = 0; node_pointer it = n; do { it = static_cast(it->group_prev_); ++count; } while(it != n); return count; } std::pair equal_range(key_type const& k) const { node_pointer n = this->find_node(k); return std::make_pair( iterator(n), iterator(n ? static_cast( static_cast(n->group_prev_)->next_) : n)); } // Equality bool equals(grouped_table_impl const& other) const { if(this->size_ != other.size_) return false; if(!this->size_) return true; for(node_pointer n1 = this->get_start(); n1;) { node_pointer n2 = other.find_matching_node(n1); if (!n2) return false; node_pointer end1 = static_cast( static_cast(n1->group_prev_)->next_); node_pointer end2 = static_cast( static_cast(n2->group_prev_)->next_); if (!group_equals(n1, end1, n2, end2)) return false; n1 = end1; } return true; } #if !defined(BOOST_UNORDERED_DEPRECATED_EQUALITY) static bool group_equals(node_pointer n1, node_pointer end1, node_pointer n2, node_pointer end2) { for(;;) { if (n1->value() != n2->value()) break; n1 = static_cast(n1->next_); n2 = static_cast(n2->next_); if (n1 == end1) return n2 == end2; if (n2 == end2) return false; } for(node_pointer n1a = n1, n2a = n2;;) { n1a = static_cast(n1a->next_); n2a = static_cast(n2a->next_); if (n1a == end1) { if (n2a == end2) break; else return false; } if (n2a == end2) return false; } node_pointer start = n1; for(;n1 != end2; n1 = static_cast(n1->next_)) { value_type const& v = n1->value(); if (find(start, n1, v)) continue; std::size_t matches = count_equal(n2, end2, v); if (!matches || matches != 1 + count_equal( static_cast(n1->next_), end1, v)) return false; } return true; } static bool find(node_pointer n, node_pointer end, value_type const& v) { for(;n != end; n = static_cast(n->next_)) if (n->value() == v) return true; return false; } static std::size_t count_equal(node_pointer n, node_pointer end, value_type const& v) { std::size_t count = 0; for(;n != end; n = static_cast(n->next_)) if (n->value() == v) ++count; return count; } #else static bool group_equals(node_pointer n1, node_pointer end1, node_pointer n2, node_pointer end2) { for(;;) { if(!extractor::compare_mapped( n1->value(), n2->value())) return false; n1 = static_cast(n1->next_); n2 = static_cast(n2->next_); if (n1 == end1) return n2 == end2; if (n2 == end2) return false; } } #endif // Emplace/Insert static inline void add_after_node( node_pointer n, node_pointer pos) { n->next_ = static_cast(pos->group_prev_)->next_; n->group_prev_ = pos->group_prev_; static_cast(pos->group_prev_)->next_ = static_cast(n); pos->group_prev_ = static_cast(n); } inline node_pointer add_node( node_constructor& a, std::size_t hash, node_pointer pos) { node_pointer n = a.release(); n->hash_ = hash; if(pos) { this->add_after_node(n, pos); if (n->next_) { std::size_t next_bucket = static_cast(n->next_)->hash_ % this->bucket_count_; if (next_bucket != hash % this->bucket_count_) { this->get_bucket(next_bucket)->next_ = n; } } } else { bucket_pointer b = this->get_bucket(hash % this->bucket_count_); if (!b->next_) { previous_pointer start_node = this->get_previous_start(); if (start_node->next_) { this->get_bucket( static_cast(start_node->next_)->hash_ % this->bucket_count_)->next_ = n; } b->next_ = start_node; n->next_ = start_node->next_; start_node->next_ = static_cast(n); } else { n->next_ = b->next_->next_; b->next_->next_ = static_cast(n); } } ++this->size_; return n; } node_pointer emplace_impl(node_constructor& a) { key_type const& k = this->get_key(a.value()); std::size_t hash = this->hash_function()(k); node_pointer position = this->find_node(hash, k); // reserve has basic exception safety if the hash function // throws, strong otherwise. this->reserve_for_insert(this->size_ + 1); return this->add_node(a, hash, position); } void emplace_impl_no_rehash(node_constructor& a) { key_type const& k = this->get_key(a.value()); std::size_t hash = this->hash_function()(k); this->add_node(a, hash, this->find_node(hash, k)); } #if defined(BOOST_NO_RVALUE_REFERENCES) iterator emplace(boost::unordered::detail::emplace_args1< boost::unordered::detail::please_ignore_this_overload> const&) { BOOST_ASSERT(false); return iterator(); } #endif template iterator emplace(BOOST_UNORDERED_EMPLACE_ARGS) { node_constructor a(this->node_alloc()); a.construct_node(); a.construct_value(BOOST_UNORDERED_EMPLACE_FORWARD); return iterator(emplace_impl(a)); } //////////////////////////////////////////////////////////////////////// // Insert range methods // if hash function throws, or inserting > 1 element, basic exception // safety. Strong otherwise template typename boost::unordered::detail::enable_if_forward::type insert_range(I i, I j) { if(i == j) return; std::size_t distance = boost::unordered::detail::distance(i, j); if(distance == 1) { node_constructor a(this->node_alloc()); a.construct_node(); a.construct_value2(*i); emplace_impl(a); } else { // Only require basic exception safety here this->reserve_for_insert(this->size_ + distance); node_constructor a(this->node_alloc()); for (; i != j; ++i) { a.construct_node(); a.construct_value2(*i); emplace_impl_no_rehash(a); } } } template typename boost::unordered::detail::disable_if_forward::type insert_range(I i, I j) { node_constructor a(this->node_alloc()); for (; i != j; ++i) { a.construct_node(); a.construct_value2(*i); emplace_impl(a); } } //////////////////////////////////////////////////////////////////////// // Erase // // no throw std::size_t erase_key(key_type const& k) { if(!this->size_) return 0; std::size_t hash = this->hash_function()(k); std::size_t bucket_index = hash % this->bucket_count_; bucket_pointer bucket = this->get_bucket(bucket_index); previous_pointer prev = bucket->next_; if (!prev) return 0; for (;;) { if (!prev->next_) return 0; std::size_t node_hash = static_cast(prev->next_)->hash_; if (node_hash % this->bucket_count_ != bucket_index) return 0; if (node_hash == hash && this->key_eq()(k, this->get_key( static_cast(prev->next_)->value()))) break; prev = static_cast( static_cast(prev->next_)->group_prev_); } node_pointer pos = static_cast(prev->next_); link_pointer end1 = static_cast(pos->group_prev_)->next_; node_pointer end = static_cast(end1); prev->next_ = end1; this->fix_buckets(bucket, prev, end); return this->delete_nodes(pos, end); } node_pointer erase(node_pointer r) { BOOST_ASSERT(r); node_pointer next = static_cast(r->next_); bucket_pointer bucket = this->get_bucket( r->hash_ % this->bucket_count_); previous_pointer prev = unlink_node(*bucket, r); this->fix_buckets(bucket, prev, next); this->delete_node(r); return next; } node_pointer erase_range(node_pointer r1, node_pointer r2) { if (r1 == r2) return r2; std::size_t bucket_index = r1->hash_ % this->bucket_count_; previous_pointer prev = unlink_nodes( *this->get_bucket(bucket_index), r1, r2); this->fix_buckets_range(bucket_index, prev, r1, r2); this->delete_nodes(r1, r2); return r2; } static previous_pointer unlink_node(bucket& b, node_pointer n) { node_pointer next = static_cast(n->next_); previous_pointer prev = static_cast(n->group_prev_); if(prev->next_ != n) { // The node is at the beginning of a group. // Find the previous node pointer: prev = b.next_; while(prev->next_ != n) { prev = static_cast( static_cast(prev->next_)->group_prev_); } // Remove from group if (next && next->group_prev_ == static_cast(n)) { next->group_prev_ = n->group_prev_; } } else if (next && next->group_prev_ == static_cast(n)) { // The deleted node is not at the end of the group, so // change the link from the next node. next->group_prev_ = n->group_prev_; } else { // The deleted node is at the end of the group, so the // first node in the group is pointing to it. // Find that to change its pointer. node_pointer x = static_cast(n->group_prev_); while(x->group_prev_ != static_cast(n)) { x = static_cast(x->group_prev_); } x->group_prev_ = n->group_prev_; } prev->next_ = static_cast(next); return prev; } static previous_pointer unlink_nodes(bucket& b, node_pointer begin, node_pointer end) { previous_pointer prev = static_cast( begin->group_prev_); if(prev->next_ != static_cast(begin)) { // The node is at the beginning of a group. // Find the previous node pointer: prev = b.next_; while(prev->next_ != static_cast(begin)) prev = static_cast( static_cast(prev->next_)->group_prev_); if (end) split_group(end); } else { node_pointer group1 = split_group(begin); if (end) { node_pointer group2 = split_group(end); if(begin == group2) { link_pointer end1 = group1->group_prev_; link_pointer end2 = group2->group_prev_; group1->group_prev_ = end2; group2->group_prev_ = end1; } } } prev->next_ = static_cast(end); return prev; } // Break a ciruclar list into two, with split as the beginning // of the second group (if split is at the beginning then don't // split). static node_pointer split_group(node_pointer split) { // Find first node in group. node_pointer first = split; while (static_cast(first->group_prev_)->next_ == static_cast(first)) first = static_cast(first->group_prev_); if(first == split) return split; link_pointer last = first->group_prev_; first->group_prev_ = split->group_prev_; split->group_prev_ = last; return first; } //////////////////////////////////////////////////////////////////////// // copy_buckets_to // // Basic exception safety. If an exception is thrown this will // leave dst partially filled and the buckets unset. static void copy_buckets_to(buckets const& src, buckets& dst) { BOOST_ASSERT(!dst.buckets_); dst.create_buckets(); node_constructor a(dst.node_alloc()); node_pointer n = src.get_start(); previous_pointer prev = dst.get_previous_start(); while(n) { std::size_t hash = n->hash_; node_pointer group_end = static_cast( static_cast(n->group_prev_)->next_); a.construct_node(); a.construct_value2(n->value()); node_pointer first_node = a.release(); node_pointer end = first_node; first_node->hash_ = hash; prev->next_ = static_cast(first_node); ++dst.size_; for(n = static_cast(n->next_); n != group_end; n = static_cast(n->next_)) { a.construct_node(); a.construct_value2(n->value()); end = a.release(); end->hash_ = hash; add_after_node(end, first_node); ++dst.size_; } prev = place_in_bucket(dst, prev, end); } } //////////////////////////////////////////////////////////////////////// // move_buckets_to // // Basic exception safety. The source nodes are left in an unusable // state if an exception throws. static void move_buckets_to(buckets& src, buckets& dst) { BOOST_ASSERT(!dst.buckets_); dst.create_buckets(); node_constructor a(dst.node_alloc()); node_pointer n = src.get_start(); previous_pointer prev = dst.get_previous_start(); while(n) { std::size_t hash = n->hash_; node_pointer group_end = static_cast( static_cast(n->group_prev_)->next_); a.construct_node(); a.construct_value2(boost::move(n->value())); node_pointer first_node = a.release(); node_pointer end = first_node; first_node->hash_ = hash; prev->next_ = static_cast(first_node); ++dst.size_; for(n = static_cast(n->next_); n != group_end; n = static_cast(n->next_)) { a.construct_node(); a.construct_value2(boost::move(n->value())); end = a.release(); end->hash_ = hash; add_after_node(end, first_node); ++dst.size_; } prev = place_in_bucket(dst, prev, end); } } // strong otherwise exception safety void rehash_impl(std::size_t num_buckets) { BOOST_ASSERT(this->size_); buckets dst(this->node_alloc(), num_buckets); dst.create_buckets(); previous_pointer src_start = this->get_previous_start(); previous_pointer dst_start = dst.get_previous_start(); dst_start->next_ = src_start->next_; src_start->next_ = link_pointer(); dst.size_ = this->size_; this->size_ = 0; previous_pointer prev = dst_start; while (prev->next_) prev = place_in_bucket(dst, prev, static_cast( static_cast(prev->next_)->group_prev_)); // Swap the new nodes back into the container and setup the // variables. dst.swap(*this); // no throw } // Iterate through the nodes placing them in the correct buckets. // pre: prev->next_ is not null. static previous_pointer place_in_bucket(buckets& dst, previous_pointer prev, node_pointer end) { bucket_pointer b = dst.get_bucket(end->hash_ % dst.bucket_count_); if (!b->next_) { b->next_ = static_cast(prev); return static_cast(end); } else { link_pointer next = end->next_; end->next_ = b->next_->next_; b->next_->next_ = prev->next_; prev->next_ = next; return prev; } } }; }}} #endif