///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Olaf Krzikalla 2004-2006. // (C) Copyright Ion Gaztanaga 2006-2014 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_SLIST_HPP #define BOOST_INTRUSIVE_SLIST_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //std::less #include //std::size_t #include //std::pair #if defined(BOOST_HAS_PRAGMA_ONCE) # pragma once #endif namespace boost { namespace intrusive { /// @cond template struct header_holder_plus_last { HeaderHolder header_holder_; NodePtr last_; }; template struct header_holder_plus_last { HeaderHolder header_holder_; }; struct default_slist_hook_applier { template struct apply{ typedef typename T::default_slist_hook type; }; }; template<> struct is_default_hook_tag { static const bool value = true; }; struct slist_defaults { typedef default_slist_hook_applier proto_value_traits; static const bool constant_time_size = true; static const bool linear = false; typedef std::size_t size_type; static const bool cache_last = false; typedef void header_holder_type; }; struct slist_bool_flags { static const std::size_t linear_pos = 1u; static const std::size_t constant_time_size_pos = 2u; static const std::size_t cache_last_pos = 4u; }; /// @endcond //! The class template slist is an intrusive container, that encapsulates //! a singly-linked list. You can use such a list to squeeze the last bit //! of performance from your application. Unfortunately, the little gains //! come with some huge drawbacks. A lot of member functions can't be //! implemented as efficiently as for standard containers. To overcome //! this limitation some other member functions with rather unusual semantics //! have to be introduced. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<>, //! \c linear<> and \c cache_last<>. //! //! The iterators of slist are forward iterators. slist provides a static //! function called "previous" to compute the previous iterator of a given iterator. //! This function has linear complexity. To improve the usability esp. with //! the '*_after' functions, ++end() == begin() and previous(begin()) == end() //! are defined. An new special function "before_begin()" is defined, which returns //! an iterator that points one less the beginning of the list: ++before_begin() == begin() #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif class slist_impl { //Public typedefs public: typedef ValueTraits value_traits; typedef typename value_traits::pointer pointer; typedef typename value_traits::const_pointer const_pointer; typedef typename pointer_traits::element_type value_type; typedef typename pointer_traits::reference reference; typedef typename pointer_traits::reference const_reference; typedef typename pointer_traits::difference_type difference_type; typedef SizeType size_type; typedef slist_iterator iterator; typedef slist_iterator const_iterator; typedef typename value_traits::node_traits node_traits; typedef typename node_traits::node node; typedef typename node_traits::node_ptr node_ptr; typedef typename node_traits::const_node_ptr const_node_ptr; typedef typename detail::get_header_holder_type < value_traits, HeaderHolder >::type header_holder_type; static const bool constant_time_size = 0 != (BoolFlags & slist_bool_flags::constant_time_size_pos); static const bool stateful_value_traits = detail::is_stateful_value_traits::value; static const bool linear = 0 != (BoolFlags & slist_bool_flags::linear_pos); static const bool cache_last = 0 != (BoolFlags & slist_bool_flags::cache_last_pos); static const bool has_container_from_iterator = detail::is_same< header_holder_type, detail::default_header_holder< node_traits > >::value; typedef typename detail::if_c < linear , linear_slist_algorithms , circular_slist_algorithms >::type node_algorithms; /// @cond private: typedef detail::size_holder size_traits; //noncopyable BOOST_MOVABLE_BUT_NOT_COPYABLE(slist_impl) static const bool safemode_or_autounlink = is_safe_autounlink::value; //Constant-time size is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(constant_time_size && ((int)value_traits::link_mode == (int)auto_unlink))); //Linear singly linked lists are incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(linear && ((int)value_traits::link_mode == (int)auto_unlink))); //A list with cached last node is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(cache_last && ((int)value_traits::link_mode == (int)auto_unlink))); node_ptr get_end_node() { return node_ptr(linear ? node_ptr() : this->get_root_node()); } const_node_ptr get_end_node() const { return const_node_ptr (linear ? const_node_ptr() : this->get_root_node()); } node_ptr get_root_node() { return data_.root_plus_size_.header_holder_.get_node(); } const_node_ptr get_root_node() const { return data_.root_plus_size_.header_holder_.get_node(); } node_ptr get_last_node() { return this->get_last_node(detail::bool_()); } const_node_ptr get_last_node() const { return this->get_last_node(detail::bool_()); } void set_last_node(const node_ptr &n) { return this->set_last_node(n, detail::bool_()); } static node_ptr get_last_node(detail::bool_) { //This function shall not be used if cache_last is not true BOOST_INTRUSIVE_INVARIANT_ASSERT(cache_last); return node_ptr(); } static void set_last_node(const node_ptr &, detail::bool_) { //This function shall not be used if cache_last is not true BOOST_INTRUSIVE_INVARIANT_ASSERT(cache_last); } node_ptr get_last_node(detail::bool_) { return node_ptr(data_.root_plus_size_.last_); } const_node_ptr get_last_node(detail::bool_) const { return const_node_ptr(data_.root_plus_size_.last_); } void set_last_node(const node_ptr & n, detail::bool_) { data_.root_plus_size_.last_ = n; } void set_default_constructed_state() { node_algorithms::init_header(this->get_root_node()); this->priv_size_traits().set_size(size_type(0)); if(cache_last){ this->set_last_node(this->get_root_node()); } } typedef header_holder_plus_last header_holder_plus_last_t; struct root_plus_size : public size_traits , public header_holder_plus_last_t {}; struct data_t : public slist_impl::value_traits { typedef typename slist_impl::value_traits value_traits; explicit data_t(const value_traits &val_traits) : value_traits(val_traits) {} root_plus_size root_plus_size_; } data_; size_traits &priv_size_traits() { return data_.root_plus_size_; } const size_traits &priv_size_traits() const { return data_.root_plus_size_; } const value_traits &priv_value_traits() const { return data_; } value_traits &priv_value_traits() { return data_; } typedef typename boost::intrusive::value_traits_pointers ::const_value_traits_ptr const_value_traits_ptr; const_value_traits_ptr priv_value_traits_ptr() const { return pointer_traits::pointer_to(this->priv_value_traits()); } /// @endcond public: ///@cond //! Requires: f and before_l belong to another slist. //! //! Effects: Transfers the range [f, before_l] to this //! list, after the element pointed by prev_pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements transferred //! if constant_time_size is true. Constant-time otherwise. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. //! //! Warning: Experimental function, don't use it! slist_impl( const node_ptr & f, const node_ptr & before_l , size_type n, const value_traits &v_traits = value_traits()) : data_(v_traits) { if(n){ this->priv_size_traits().set_size(n); if(cache_last){ this->set_last_node(before_l); } node_traits::set_next(this->get_root_node(), f); node_traits::set_next(before_l, this->get_end_node()); } else{ this->set_default_constructed_state(); } } ///@endcond //! Effects: constructs an empty list. //! //! Complexity: Constant //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks). explicit slist_impl(const value_traits &v_traits = value_traits()) : data_(v_traits) { this->set_default_constructed_state(); } //! Requires: Dereferencing iterator must yield an lvalue of type value_type. //! //! Effects: Constructs a list equal to [b ,e). //! //! Complexity: Linear in distance(b, e). No copy constructors are called. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks). template slist_impl(Iterator b, Iterator e, const value_traits &v_traits = value_traits()) : data_(v_traits) { this->set_default_constructed_state(); //nothrow, no need to rollback to release elements on exception this->insert_after(this->cbefore_begin(), b, e); } //! Effects: to-do //! slist_impl(BOOST_RV_REF(slist_impl) x) : data_(::boost::move(x.priv_value_traits())) { this->priv_size_traits().set_size(size_type(0)); node_algorithms::init_header(this->get_root_node()); //nothrow, no need to rollback to release elements on exception this->swap(x); } //! Effects: to-do //! slist_impl& operator=(BOOST_RV_REF(slist_impl) x) { this->swap(x); return *this; } //! Effects: If it's a safe-mode //! or auto-unlink value, the destructor does nothing //! (ie. no code is generated). Otherwise it detaches all elements from this. //! In this case the objects in the list are not deleted (i.e. no destructors //! are called), but the hooks according to the value_traits template parameter //! are set to their default value. //! //! Complexity: Linear to the number of elements in the list, if //! it's a safe-mode or auto-unlink value. Otherwise constant. ~slist_impl() { if(is_safe_autounlink::value){ this->clear(); node_algorithms::init(this->get_root_node()); } } //! Effects: Erases all the elements of the container. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of the list. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Note: Invalidates the iterators (but not the references) to the erased elements. void clear() { if(safemode_or_autounlink){ this->clear_and_dispose(detail::null_disposer()); } else{ this->set_default_constructed_state(); } } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements of the container //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of the list. //! //! Note: Invalidates the iterators to the erased elements. template void clear_and_dispose(Disposer disposer) { const_iterator it(this->begin()), itend(this->end()); while(it != itend){ node_ptr to_erase(it.pointed_node()); ++it; if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(priv_value_traits().to_value_ptr(to_erase)); } this->set_default_constructed_state(); } //! Requires: value must be an lvalue. //! //! Effects: Inserts the value in the front of the list. //! No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. void push_front(reference value) { node_ptr to_insert = priv_value_traits().to_node_ptr(value); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::inited(to_insert)); if(cache_last){ if(this->empty()){ this->set_last_node(to_insert); } } node_algorithms::link_after(this->get_root_node(), to_insert); this->priv_size_traits().increment(); } //! Requires: value must be an lvalue. //! //! Effects: Inserts the value in the back of the list. //! No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. //! This function is only available is cache_last<> is true. void push_back(reference value) { BOOST_STATIC_ASSERT((cache_last)); node_ptr n = priv_value_traits().to_node_ptr(value); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::inited(n)); node_algorithms::link_after(this->get_last_node(), n); if(cache_last){ this->set_last_node(n); } this->priv_size_traits().increment(); } //! Effects: Erases the first element of the list. //! No destructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators (but not the references) to the erased element. void pop_front() { return this->pop_front_and_dispose(detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the first element of the list. //! Disposer::operator()(pointer) is called for the removed element. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators to the erased element. template void pop_front_and_dispose(Disposer disposer) { node_ptr to_erase = node_traits::get_next(this->get_root_node()); node_algorithms::unlink_after(this->get_root_node()); this->priv_size_traits().decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(priv_value_traits().to_value_ptr(to_erase)); if(cache_last){ if(this->empty()){ this->set_last_node(this->get_root_node()); } } } //! Effects: Returns a reference to the first element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. reference front() { return *this->priv_value_traits().to_value_ptr(node_traits::get_next(this->get_root_node())); } //! Effects: Returns a const_reference to the first element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference front() const { return *this->priv_value_traits().to_value_ptr(detail::uncast(node_traits::get_next(this->get_root_node()))); } //! Effects: Returns a reference to the last element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. //! This function is only available is cache_last<> is true. reference back() { BOOST_STATIC_ASSERT((cache_last)); return *this->priv_value_traits().to_value_ptr(this->get_last_node()); } //! Effects: Returns a const_reference to the last element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. //! This function is only available is cache_last<> is true. const_reference back() const { BOOST_STATIC_ASSERT((cache_last)); return *this->priv_value_traits().to_value_ptr(this->get_last_node()); } //! Effects: Returns an iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return iterator (node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return const_iterator (node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return const_iterator(node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); } //! Effects: Returns an iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return iterator(this->get_end_node(), this->priv_value_traits_ptr()); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return const_iterator(detail::uncast(this->get_end_node()), this->priv_value_traits_ptr()); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return this->end(); } //! Effects: Returns an iterator that points to a position //! before the first element. Equivalent to "end()" //! //! Throws: Nothing. //! //! Complexity: Constant. iterator before_begin() { return iterator(this->get_root_node(), this->priv_value_traits_ptr()); } //! Effects: Returns an iterator that points to a position //! before the first element. Equivalent to "end()" //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator before_begin() const { return const_iterator(detail::uncast(this->get_root_node()), this->priv_value_traits_ptr()); } //! Effects: Returns an iterator that points to a position //! before the first element. Equivalent to "end()" //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbefore_begin() const { return this->before_begin(); } //! Effects: Returns an iterator to the last element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: This function is present only if cached_last<> option is true. iterator last() { //This function shall not be used if cache_last is not true BOOST_INTRUSIVE_INVARIANT_ASSERT(cache_last); return iterator (this->get_last_node(), this->priv_value_traits_ptr()); } //! Effects: Returns a const_iterator to the last element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: This function is present only if cached_last<> option is true. const_iterator last() const { //This function shall not be used if cache_last is not true BOOST_INTRUSIVE_INVARIANT_ASSERT(cache_last); return const_iterator (this->get_last_node(), this->priv_value_traits_ptr()); } //! Effects: Returns a const_iterator to the last element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: This function is present only if cached_last<> option is true. const_iterator clast() const { return const_iterator(this->get_last_node(), this->priv_value_traits_ptr()); } //! Precondition: end_iterator must be a valid end iterator //! of slist. //! //! Effects: Returns a const reference to the slist associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static slist_impl &container_from_end_iterator(iterator end_iterator) { return slist_impl::priv_container_from_end_iterator(end_iterator); } //! Precondition: end_iterator must be a valid end const_iterator //! of slist. //! //! Effects: Returns a const reference to the slist associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static const slist_impl &container_from_end_iterator(const_iterator end_iterator) { return slist_impl::priv_container_from_end_iterator(end_iterator); } //! Effects: Returns the number of the elements contained in the list. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements contained in the list. //! if constant_time_size is false. Constant time otherwise. //! //! Note: Does not affect the validity of iterators and references. size_type size() const { if(constant_time_size) return this->priv_size_traits().get_size(); else return node_algorithms::count(this->get_root_node()) - 1; } //! Effects: Returns true if the list contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. bool empty() const { return node_algorithms::unique(this->get_root_node()); } //! Effects: Swaps the elements of x and *this. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of both lists. //! Constant-time if linear<> and/or cache_last<> options are used. //! //! Note: Does not affect the validity of iterators and references. void swap(slist_impl& other) { if(cache_last){ priv_swap_cache_last(this, &other); } else{ this->priv_swap_lists(this->get_root_node(), other.get_root_node(), detail::bool_()); } if(constant_time_size){ size_type backup = this->priv_size_traits().get_size(); this->priv_size_traits().set_size(other.priv_size_traits().get_size()); other.priv_size_traits().set_size(backup); } } //! Effects: Moves backwards all the elements, so that the first //! element becomes the second, the second becomes the third... //! the last element becomes the first one. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements plus the number shifts. //! //! Note: Iterators Does not affect the validity of iterators and references. void shift_backwards(size_type n = 1) { this->priv_shift_backwards(n, detail::bool_()); } //! Effects: Moves forward all the elements, so that the second //! element becomes the first, the third becomes the second... //! the first element becomes the last one. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements plus the number shifts. //! //! Note: Does not affect the validity of iterators and references. void shift_forward(size_type n = 1) { this->priv_shift_forward(n, detail::bool_()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! Cloner should yield to nodes equivalent to the original nodes. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws. template void clone_from(const slist_impl &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); detail::exception_disposer rollback(*this, disposer); const_iterator prev(this->cbefore_begin()); const_iterator b(src.begin()), e(src.end()); for(; b != e; ++b){ prev = this->insert_after(prev, *cloner(*b)); } rollback.release(); } //! Requires: value must be an lvalue and prev_p must point to an element //! contained by the list or to end(). //! //! Effects: Inserts the value after the position pointed by prev_p. //! No copy constructor is called. //! //! Returns: An iterator to the inserted element. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. iterator insert_after(const_iterator prev_p, reference value) { node_ptr n = priv_value_traits().to_node_ptr(value); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::inited(n)); node_ptr prev_n(prev_p.pointed_node()); node_algorithms::link_after(prev_n, n); if(cache_last && (this->get_last_node() == prev_n)){ this->set_last_node(n); } this->priv_size_traits().increment(); return iterator (n, this->priv_value_traits_ptr()); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type and prev_p must point to an element //! contained by the list or to the end node. //! //! Effects: Inserts the [f, l) //! after the position prev_p. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted. //! //! Note: Does not affect the validity of iterators and references. template void insert_after(const_iterator prev_p, Iterator f, Iterator l) { //Insert first nodes avoiding cache and size checks size_type count = 0; node_ptr prev_n(prev_p.pointed_node()); for (; f != l; ++f, ++count){ const node_ptr n = priv_value_traits().to_node_ptr(*f); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::inited(n)); node_algorithms::link_after(prev_n, n); prev_n = n; } //Now fix special cases if needed if(cache_last && (this->get_last_node() == prev_p.pointed_node())){ this->set_last_node(prev_n); } if(constant_time_size){ this->priv_size_traits().increase(count); } } //! Requires: value must be an lvalue and p must point to an element //! contained by the list or to end(). //! //! Effects: Inserts the value before the position pointed by p. //! No copy constructor is called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before p. //! Constant-time if cache_last<> is true and p == end(). //! //! Note: Does not affect the validity of iterators and references. iterator insert(const_iterator p, reference value) { return this->insert_after(this->previous(p), value); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type and p must point to an element //! contained by the list or to the end node. //! //! Effects: Inserts the pointed by b and e //! before the position p. No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus linear //! to the elements before b. //! Linear to the number of elements to insert if cache_last<> option is true and p == end(). //! //! Note: Does not affect the validity of iterators and references. template void insert(const_iterator p, Iterator b, Iterator e) { return this->insert_after(this->previous(p), b, e); } //! Effects: Erases the element after the element pointed by prev of //! the list. No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase_after(const_iterator prev) { return this->erase_after_and_dispose(prev, detail::null_disposer()); } //! Effects: Erases the range (before_f, l) from //! the list. No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of erased elements if it's a safe-mode //! , auto-unlink value or constant-time size is activated. Constant time otherwise. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase_after(const_iterator before_f, const_iterator l) { if(safemode_or_autounlink || constant_time_size){ return this->erase_after_and_dispose(before_f, l, detail::null_disposer()); } else{ const node_ptr bfp = before_f.pointed_node(); const node_ptr lp = l.pointed_node(); if(cache_last){ if(lp == this->get_end_node()){ this->set_last_node(bfp); } } node_algorithms::unlink_after(bfp, lp); return l.unconst(); } } //! Effects: Erases the range (before_f, l) from //! the list. n must be distance(before_f, l) - 1. //! No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: constant-time if link_mode is normal_link. //! Linear to the elements (l - before_f) otherwise. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase_after(const_iterator before_f, const_iterator l, size_type n) { BOOST_INTRUSIVE_INVARIANT_ASSERT(node_algorithms::distance((++const_iterator(before_f)).pointed_node(), l.pointed_node()) == n); if(safemode_or_autounlink){ return this->erase_after(before_f, l); } else{ const node_ptr bfp = before_f.pointed_node(); const node_ptr lp = l.pointed_node(); if(cache_last){ if((lp == this->get_end_node())){ this->set_last_node(bfp); } } node_algorithms::unlink_after(bfp, lp); if(constant_time_size){ this->priv_size_traits().decrease(n); } return l.unconst(); } } //! Effects: Erases the element pointed by i of the list. //! No destructors are called. //! //! Returns: the first element remaining beyond the removed element, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements before i. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase(const_iterator i) { return this->erase_after(this->previous(i)); } //! Requires: f and l must be valid iterator to elements in *this. //! //! Effects: Erases the range pointed by b and e. //! No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements before l. //! //! Note: Invalidates the iterators (but not the references) to the //! erased elements. iterator erase(const_iterator f, const_iterator l) { return this->erase_after(this->previous(f), l); } //! Effects: Erases the range [f, l) from //! the list. n must be distance(f, l). //! No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: linear to the elements before f if link_mode is normal_link //! and constant_time_size is activated. Linear to the elements before l otherwise. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase(const_iterator f, const_iterator l, size_type n) { return this->erase_after(this->previous(f), l, n); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element after the element pointed by prev of //! the list. //! Disposer::operator()(pointer) is called for the removed element. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators to the erased element. template iterator erase_after_and_dispose(const_iterator prev, Disposer disposer) { const_iterator it(prev); ++it; node_ptr to_erase(it.pointed_node()); ++it; node_ptr prev_n(prev.pointed_node()); node_algorithms::unlink_after(prev_n); if(cache_last && (to_erase == this->get_last_node())){ this->set_last_node(prev_n); } if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(priv_value_traits().to_value_ptr(to_erase)); this->priv_size_traits().decrement(); return it.unconst(); } /// @cond template static iterator s_erase_after_and_dispose(const_iterator prev, Disposer disposer) { BOOST_STATIC_ASSERT(((!cache_last)&&(!constant_time_size)&&(!stateful_value_traits))); const_iterator it(prev); ++it; node_ptr to_erase(it.pointed_node()); ++it; node_ptr prev_n(prev.pointed_node()); node_algorithms::unlink_after(prev_n); if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(value_traits::to_value_ptr(to_erase)); return it.unconst(); } static iterator s_erase_after(const_iterator prev) { return s_erase_after_and_dispose(prev, detail::null_disposer()); } /// @endcond //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range (before_f, l) from //! the list. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Lineal to the elements (l - before_f + 1). //! //! Note: Invalidates the iterators to the erased element. template iterator erase_after_and_dispose(const_iterator before_f, const_iterator l, Disposer disposer) { node_ptr bfp(before_f.pointed_node()), lp(l.pointed_node()); node_ptr fp(node_traits::get_next(bfp)); node_algorithms::unlink_after(bfp, lp); while(fp != lp){ node_ptr to_erase(fp); fp = node_traits::get_next(fp); if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(priv_value_traits().to_value_ptr(to_erase)); this->priv_size_traits().decrement(); } if(cache_last && (node_traits::get_next(bfp) == this->get_end_node())){ this->set_last_node(bfp); } return l.unconst(); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element pointed by i of the list. //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed element. //! //! Returns: the first element remaining beyond the removed element, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements before i. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. template iterator erase_and_dispose(const_iterator i, Disposer disposer) { return this->erase_after_and_dispose(this->previous(i), disposer); } #if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template iterator erase_and_dispose(iterator i, Disposer disposer) { return this->erase_and_dispose(const_iterator(i), disposer); } #endif //! Requires: f and l must be valid iterator to elements in *this. //! Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range pointed by b and e. //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of erased elements plus linear //! to the elements before f. //! //! Note: Invalidates the iterators (but not the references) to the //! erased elements. template iterator erase_and_dispose(const_iterator f, const_iterator l, Disposer disposer) { return this->erase_after_and_dispose(this->previous(f), l, disposer); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type. //! //! Effects: Clears the list and inserts the range pointed by b and e. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus //! linear to the elements contained in the list if it's a safe-mode //! or auto-unlink value. //! Linear to the number of elements inserted in the list otherwise. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. template void assign(Iterator b, Iterator e) { this->clear(); this->insert_after(this->cbefore_begin(), b, e); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type. //! //! Effects: Clears the list and inserts the range pointed by b and e. //! No destructors or copy constructors are called. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus //! linear to the elements contained in the list. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. template void dispose_and_assign(Disposer disposer, Iterator b, Iterator e) { this->clear_and_dispose(disposer); this->insert_after(this->cbefore_begin(), b, e, disposer); } //! Requires: prev must point to an element contained by this list or //! to the before_begin() element //! //! Effects: Transfers all the elements of list x to this list, after the //! the element pointed by prev. No destructors or copy constructors are called. //! //! Returns: Nothing. //! //! Throws: Nothing. //! //! Complexity: In general, linear to the elements contained in x. //! Constant-time if cache_last<> option is true and also constant-time if //! linear<> option is true "this" is empty and "l" is not used. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. //! //! Additional note: If the optional parameter "l" is provided, it will be //! assigned to the last spliced element or prev if x is empty. //! This iterator can be used as new "prev" iterator for a new splice_after call. //! that will splice new values after the previously spliced values. void splice_after(const_iterator prev, slist_impl &x, const_iterator *l = 0) { if(x.empty()){ if(l) *l = prev; } else if(linear && this->empty()){ this->swap(x); if(l) *l = this->previous(this->cend()); } else{ const_iterator last_x(x.previous(x.end())); //<- constant time if cache_last is active node_ptr prev_n(prev.pointed_node()); node_ptr last_x_n(last_x.pointed_node()); if(cache_last){ x.set_last_node(x.get_root_node()); if(node_traits::get_next(prev_n) == this->get_end_node()){ this->set_last_node(last_x_n); } } node_algorithms::transfer_after( prev_n, x.before_begin().pointed_node(), last_x_n); this->priv_size_traits().increase(x.priv_size_traits().get_size()); x.priv_size_traits().set_size(size_type(0)); if(l) *l = last_x; } } //! Requires: prev must point to an element contained by this list or //! to the before_begin() element. prev_ele must point to an element contained in list //! x or must be x.before_begin(). //! //! Effects: Transfers the element after prev_ele, from list x to this list, //! after the element pointed by prev. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, slist_impl &x, const_iterator prev_ele) { const_iterator elem = prev_ele; this->splice_after(prev_pos, x, prev_ele, ++elem, 1); } //! Requires: prev_pos must be a dereferenceable iterator in *this or be //! before_begin(), and before_f and before_l belong to x and //! ++before_f != x.end() && before_l != x.end(). //! //! Effects: Transfers the range (before_f, before_l] from list x to this //! list, after the element pointed by prev_pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements transferred //! if constant_time_size is true. Constant-time otherwise. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, slist_impl &x, const_iterator before_f, const_iterator before_l) { if(constant_time_size) this->splice_after(prev_pos, x, before_f, before_l, node_algorithms::distance(before_f.pointed_node(), before_l.pointed_node())); else this->priv_splice_after (prev_pos.pointed_node(), x, before_f.pointed_node(), before_l.pointed_node()); } //! Requires: prev_pos must be a dereferenceable iterator in *this or be //! before_begin(), and before_f and before_l belong to x and //! ++before_f != x.end() && before_l != x.end() and //! n == distance(before_f, before_l). //! //! Effects: Transfers the range (before_f, before_l] from list x to this //! list, after the element pointed by p. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, slist_impl &x, const_iterator before_f, const_iterator before_l, size_type n) { BOOST_INTRUSIVE_INVARIANT_ASSERT(node_algorithms::distance(before_f.pointed_node(), before_l.pointed_node()) == n); this->priv_splice_after (prev_pos.pointed_node(), x, before_f.pointed_node(), before_l.pointed_node()); if(constant_time_size){ this->priv_size_traits().increase(n); x.priv_size_traits().decrease(n); } } //! Requires: it is an iterator to an element in *this. //! //! Effects: Transfers all the elements of list x to this list, before the //! the element pointed by it. No destructors or copy constructors are called. //! //! Returns: Nothing. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements contained in x plus linear to //! the elements before it. //! Linear to the elements before it if cache_last<> option is true. //! Constant-time if cache_last<> option is true and it == end(). //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. //! //! Additional note: If the optional parameter "l" is provided, it will be //! assigned to the last spliced element or prev if x is empty. //! This iterator can be used as new "prev" iterator for a new splice_after call. //! that will splice new values after the previously spliced values. void splice(const_iterator it, slist_impl &x, const_iterator *l = 0) { this->splice_after(this->previous(it), x, l); } //! Requires: it p must be a valid iterator of *this. //! elem must point to an element contained in list //! x. //! //! Effects: Transfers the element elem, from list x to this list, //! before the element pointed by pos. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements before pos and before elem. //! Linear to the elements before elem if cache_last<> option is true and pos == end(). //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator pos, slist_impl &x, const_iterator elem) { return this->splice_after(this->previous(pos), x, x.previous(elem)); } //! Requires: pos must be a dereferenceable iterator in *this //! and f and f belong to x and f and f a valid range on x. //! //! Effects: Transfers the range [f, l) from list x to this //! list, before the element pointed by pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the sum of elements before pos, f, and l //! plus linear to the number of elements transferred if constant_time_size is true. //! Linear to the sum of elements before f, and l //! plus linear to the number of elements transferred if constant_time_size is true //! if cache_last<> is true and pos == end() //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator pos, slist_impl &x, const_iterator f, const_iterator l) { return this->splice_after(this->previous(pos), x, x.previous(f), x.previous(l)); } //! Requires: pos must be a dereferenceable iterator in *this //! and f and l belong to x and f and l a valid range on x. //! n == distance(f, l). //! //! Effects: Transfers the range [f, l) from list x to this //! list, before the element pointed by pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the sum of elements before pos, f, and l. //! Linear to the sum of elements before f and l //! if cache_last<> is true and pos == end(). //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator pos, slist_impl &x, const_iterator f, const_iterator l, size_type n) { return this->splice_after(this->previous(pos), x, x.previous(f), x.previous(l), n); } //! Effects: This function sorts the list *this according to std::less. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the predicate throws. Basic guarantee. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. //! //! Note: Iterators and references are not invalidated template void sort(Predicate p) { if (node_traits::get_next(node_traits::get_next(this->get_root_node())) != this->get_root_node()) { slist_impl carry(this->priv_value_traits()); detail::array_initializer counter(this->priv_value_traits()); int fill = 0; const_iterator last_inserted; while(!this->empty()){ last_inserted = this->cbegin(); carry.splice_after(carry.cbefore_begin(), *this, this->cbefore_begin()); int i = 0; while(i < fill && !counter[i].empty()) { carry.swap(counter[i]); carry.merge(counter[i++], p, &last_inserted); } BOOST_INTRUSIVE_INVARIANT_ASSERT(counter[i].empty()); const_iterator last_element(carry.previous(last_inserted, carry.end())); if(constant_time_size){ counter[i].splice_after( counter[i].cbefore_begin(), carry , carry.cbefore_begin(), last_element , carry.size()); } else{ counter[i].splice_after( counter[i].cbefore_begin(), carry , carry.cbefore_begin(), last_element); } if(i == fill) ++fill; } for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1], p, &last_inserted); --fill; const_iterator last_element(counter[fill].previous(last_inserted, counter[fill].end())); if(constant_time_size){ this->splice_after( cbefore_begin(), counter[fill], counter[fill].cbefore_begin() , last_element, counter[fill].size()); } else{ this->splice_after( cbefore_begin(), counter[fill], counter[fill].cbefore_begin() , last_element); } } } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or std::less throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated. void sort() { this->sort(std::less()); } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Returns: Nothing. //! //! Throws: If the predicate throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated. //! //! Additional note: If optional "l" argument is passed, it is assigned //! to an iterator to the last transferred value or end() is x is empty. template void merge(slist_impl& x, Predicate p, const_iterator *l = 0) { const_iterator e(this->cend()), ex(x.cend()), bb(this->cbefore_begin()), bb_next; if(l) *l = e.unconst(); while(!x.empty()){ const_iterator ibx_next(x.cbefore_begin()), ibx(ibx_next++); while (++(bb_next = bb) != e && !p(*ibx_next, *bb_next)){ bb = bb_next; } if(bb_next == e){ //Now transfer the rest to the end of the container this->splice_after(bb, x, l); break; } else{ size_type n(0); do{ ibx = ibx_next; ++n; } while(++(ibx_next = ibx) != ex && p(*ibx_next, *bb_next)); this->splice_after(bb, x, x.before_begin(), ibx, n); if(l) *l = ibx; } } } //! Effects: This function removes all of x's elements and inserts them //! in order into *this according to std::less. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! Throws: if std::less throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated void merge(slist_impl& x) { this->merge(x, std::less()); } //! Effects: Reverses the order of elements in the list. //! //! Throws: Nothing. //! //! Complexity: This function is linear to the contained elements. //! //! Note: Iterators and references are not invalidated void reverse() { if(cache_last && !this->empty()){ this->set_last_node(node_traits::get_next(this->get_root_node())); } this->priv_reverse(detail::bool_()); } //! Effects: Removes all the elements that compare equal to value. //! No destructors are called. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. This function is //! linear time: it performs exactly size() comparisons for equality. void remove(const_reference value) { this->remove_if(detail::equal_to_value(value)); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes all the elements that compare equal to value. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_and_dispose(const_reference value, Disposer disposer) { this->remove_and_dispose_if(detail::equal_to_value(value), disposer); } //! Effects: Removes all the elements for which a specified //! predicate is satisfied. No destructors are called. //! //! Throws: If pred throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() calls to the predicate. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_if(Pred pred) { const node_ptr bbeg = this->get_root_node(); typename node_algorithms::stable_partition_info info; node_algorithms::stable_partition (bbeg, this->get_end_node(), detail::key_nodeptr_comp(pred, &this->priv_value_traits()), info); //After cache last is set, slist invariants are preserved... if(cache_last){ this->set_last_node(info.new_last_node); } //...so erase can be safely called this->erase_after( const_iterator(bbeg, this->priv_value_traits_ptr()) , const_iterator(info.beg_2st_partition, this->priv_value_traits_ptr()) , info.num_1st_partition); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes all the elements for which a specified //! predicate is satisfied. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If pred throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_and_dispose_if(Pred pred, Disposer disposer) { const node_ptr bbeg = this->get_root_node(); typename node_algorithms::stable_partition_info info; node_algorithms::stable_partition (bbeg, this->get_end_node(), detail::key_nodeptr_comp(pred, &this->priv_value_traits()), info); //After cache last is set, slist invariants are preserved... if(cache_last){ this->set_last_node(info.new_last_node); } //...so erase can be safely called this->erase_after_and_dispose( const_iterator(bbeg, this->priv_value_traits_ptr()) , const_iterator(info.beg_2st_partition, this->priv_value_traits_ptr()) , disposer); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that are equal from the list. No destructors are called. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons calls to pred()). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void unique() { this->unique_and_dispose(std::equal_to(), detail::null_disposer()); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! No destructors are called. //! //! Throws: If the predicate throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique(BinaryPredicate pred) { this->unique_and_dispose(pred, detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique_and_dispose(Disposer disposer) { this->unique(std::equal_to(), disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If the predicate throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique_and_dispose(BinaryPredicate pred, Disposer disposer) { const_iterator end_n(this->cend()); const_iterator bcur(this->cbegin()); if(bcur != end_n){ const_iterator cur(bcur); ++cur; while(cur != end_n) { if (pred(*bcur, *cur)){ cur = this->erase_after_and_dispose(bcur, disposer); } else{ bcur = cur; ++cur; } } if(cache_last){ this->set_last_node(bcur.pointed_node()); } } } //! Requires: value must be a reference to a value inserted in a list. //! //! Effects: This function returns a const_iterator pointing to the element //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. //! This static function is available only if the value traits //! is stateless. static iterator s_iterator_to(reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); return iterator (value_traits::to_node_ptr(value), const_value_traits_ptr()); } //! Requires: value must be a const reference to a value inserted in a list. //! //! Effects: This function returns an iterator pointing to the element. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. //! This static function is available only if the value traits //! is stateless. static const_iterator s_iterator_to(const_reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); reference r =*detail::uncast(pointer_traits::pointer_to(value)); return const_iterator(value_traits::to_node_ptr(r), const_value_traits_ptr()); } //! Requires: value must be a reference to a value inserted in a list. //! //! Effects: This function returns a const_iterator pointing to the element //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. iterator iterator_to(reference value) { BOOST_INTRUSIVE_INVARIANT_ASSERT(linear || !node_algorithms::inited(this->priv_value_traits().to_node_ptr(value))); return iterator (this->priv_value_traits().to_node_ptr(value), this->priv_value_traits_ptr()); } //! Requires: value must be a const reference to a value inserted in a list. //! //! Effects: This function returns an iterator pointing to the element. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. const_iterator iterator_to(const_reference value) const { reference r =*detail::uncast(pointer_traits::pointer_to(value)); BOOST_INTRUSIVE_INVARIANT_ASSERT (linear || !node_algorithms::inited(this->priv_value_traits().to_node_ptr(r))); return const_iterator(this->priv_value_traits().to_node_ptr(r), this->priv_value_traits_ptr()); } //! Returns: The iterator to the element before i in the list. //! Returns the end-iterator, if either i is the begin-iterator or the //! list is empty. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before i. //! Constant if cache_last<> is true and i == end(). iterator previous(iterator i) { return this->previous(this->cbefore_begin(), i); } //! Returns: The const_iterator to the element before i in the list. //! Returns the end-const_iterator, if either i is the begin-const_iterator or //! the list is empty. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before i. //! Constant if cache_last<> is true and i == end(). const_iterator previous(const_iterator i) const { return this->previous(this->cbefore_begin(), i); } //! Returns: The iterator to the element before i in the list, //! starting the search on element after prev_from. //! Returns the end-iterator, if either i is the begin-iterator or the //! list is empty. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before i. //! Constant if cache_last<> is true and i == end(). iterator previous(const_iterator prev_from, iterator i) { return this->previous(prev_from, const_iterator(i)).unconst(); } //! Returns: The const_iterator to the element before i in the list, //! starting the search on element after prev_from. //! Returns the end-const_iterator, if either i is the begin-const_iterator or //! the list is empty. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements before i. //! Constant if cache_last<> is true and i == end(). const_iterator previous(const_iterator prev_from, const_iterator i) const { if(cache_last && (i.pointed_node() == this->get_end_node())){ return const_iterator(detail::uncast(this->get_last_node()), this->priv_value_traits_ptr()); } return const_iterator (node_algorithms::get_previous_node (prev_from.pointed_node(), i.pointed_node()), this->priv_value_traits_ptr()); } ///@cond //! Requires: prev_pos must be a dereferenceable iterator in *this or be //! before_begin(), and f and before_l belong to another slist. //! //! Effects: Transfers the range [f, before_l] to this //! list, after the element pointed by prev_pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements transferred //! if constant_time_size is true. Constant-time otherwise. //! //! Note: Iterators of values obtained from the list that owned f and before_l now //! point to elements of this list. Iterators of this list and all the references are not invalidated. //! //! Warning: Experimental function, don't use it! void incorporate_after(const_iterator prev_pos, const node_ptr & f, const node_ptr & before_l) { if(constant_time_size) this->incorporate_after(prev_pos, f, before_l, node_algorithms::distance(f.pointed_node(), before_l.pointed_node())+1); else this->priv_incorporate_after(prev_pos.pointed_node(), f, before_l); } //! Requires: prev_pos must be a dereferenceable iterator in *this or be //! before_begin(), and f and before_l belong to another slist. //! n == distance(f, before_l) + 1. //! //! Effects: Transfers the range [f, before_l] to this //! list, after the element pointed by prev_pos. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators of values obtained from the list that owned f and before_l now //! point to elements of this list. Iterators of this list and all the references are not invalidated. //! //! Warning: Experimental function, don't use it! void incorporate_after(const_iterator prev_pos, const node_ptr & f, const node_ptr & before_l, size_type n) { if(n){ BOOST_INTRUSIVE_INVARIANT_ASSERT(n > 0); BOOST_INTRUSIVE_INVARIANT_ASSERT (size_type(boost::intrusive::iterator_distance ( iterator(f, this->priv_value_traits_ptr()) , iterator(before_l, this->priv_value_traits_ptr()))) +1 == n); this->priv_incorporate_after(prev_pos.pointed_node(), f, before_l); if(constant_time_size){ this->priv_size_traits().increase(n); } } } ///@endcond //! Effects: Asserts the integrity of the container. //! //! Complexity: Linear time. //! //! Note: The method has no effect when asserts are turned off (e.g., with NDEBUG). //! Experimental function, interface might change in future versions. void check() const { const_node_ptr header_ptr = get_root_node(); // header's next is never null BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_next(header_ptr)); if (node_traits::get_next(header_ptr) == header_ptr) { if (constant_time_size) BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_size_traits().get_size() == 0); return; } size_t node_count = 0; const_node_ptr p = header_ptr; while (true) { const_node_ptr next_p = node_traits::get_next(p); if (!linear) { BOOST_INTRUSIVE_INVARIANT_ASSERT(next_p); } else { BOOST_INTRUSIVE_INVARIANT_ASSERT(next_p != header_ptr); } if ((!linear && next_p == header_ptr) || (linear && !next_p)) { if (cache_last) BOOST_INTRUSIVE_INVARIANT_ASSERT(get_last_node() == p); break; } p = next_p; ++node_count; } if (constant_time_size) BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_size_traits().get_size() == node_count); } private: void priv_splice_after(const node_ptr & prev_pos_n, slist_impl &x, const node_ptr & before_f_n, const node_ptr & before_l_n) { if (cache_last && (before_f_n != before_l_n)){ if(prev_pos_n == this->get_last_node()){ this->set_last_node(before_l_n); } if(&x != this && node_traits::get_next(before_l_n) == x.get_end_node()){ x.set_last_node(before_f_n); } } node_algorithms::transfer_after(prev_pos_n, before_f_n, before_l_n); } void priv_incorporate_after(const node_ptr & prev_pos_n, const node_ptr & first_n, const node_ptr & before_l_n) { if(cache_last){ if(prev_pos_n == this->get_last_node()){ this->set_last_node(before_l_n); } } node_algorithms::incorporate_after(prev_pos_n, first_n, before_l_n); } void priv_reverse(detail::bool_) { node_algorithms::reverse(this->get_root_node()); } void priv_reverse(detail::bool_) { node_ptr new_first = node_algorithms::reverse (node_traits::get_next(this->get_root_node())); node_traits::set_next(this->get_root_node(), new_first); } void priv_shift_backwards(size_type n, detail::bool_) { node_ptr l = node_algorithms::move_forward(this->get_root_node(), (std::size_t)n); if(cache_last && l){ this->set_last_node(l); } } void priv_shift_backwards(size_type n, detail::bool_) { std::pair ret( node_algorithms::move_first_n_forward (node_traits::get_next(this->get_root_node()), (std::size_t)n)); if(ret.first){ node_traits::set_next(this->get_root_node(), ret.first); if(cache_last){ this->set_last_node(ret.second); } } } void priv_shift_forward(size_type n, detail::bool_) { node_ptr l = node_algorithms::move_backwards(this->get_root_node(), (std::size_t)n); if(cache_last && l){ this->set_last_node(l); } } void priv_shift_forward(size_type n, detail::bool_) { std::pair ret( node_algorithms::move_first_n_backwards (node_traits::get_next(this->get_root_node()), (std::size_t)n)); if(ret.first){ node_traits::set_next(this->get_root_node(), ret.first); if(cache_last){ this->set_last_node(ret.second); } } } static void priv_swap_cache_last(slist_impl *this_impl, slist_impl *other_impl) { bool other_was_empty = false; if(this_impl->empty()){ //Check if both are empty or if(other_impl->empty()) return; //If this is empty swap pointers slist_impl *tmp = this_impl; this_impl = other_impl; other_impl = tmp; other_was_empty = true; } else{ other_was_empty = other_impl->empty(); } //Precondition: this is not empty node_ptr other_old_last(other_impl->get_last_node()); node_ptr other_bfirst(other_impl->get_root_node()); node_ptr this_bfirst(this_impl->get_root_node()); node_ptr this_old_last(this_impl->get_last_node()); //Move all nodes from this to other's beginning node_algorithms::transfer_after(other_bfirst, this_bfirst, this_old_last); other_impl->set_last_node(this_old_last); if(other_was_empty){ this_impl->set_last_node(this_bfirst); } else{ //Move trailing nodes from other to this node_algorithms::transfer_after(this_bfirst, this_old_last, other_old_last); this_impl->set_last_node(other_old_last); } } //circular version static void priv_swap_lists(const node_ptr & this_node, const node_ptr & other_node, detail::bool_) { node_algorithms::swap_nodes(this_node, other_node); } //linear version static void priv_swap_lists(const node_ptr & this_node, const node_ptr & other_node, detail::bool_) { node_algorithms::swap_trailing_nodes(this_node, other_node); } static slist_impl &priv_container_from_end_iterator(const const_iterator &end_iterator) { //Obtaining the container from the end iterator is not possible with linear //singly linked lists (because "end" is represented by the null pointer) BOOST_STATIC_ASSERT(!linear); BOOST_STATIC_ASSERT((has_container_from_iterator)); node_ptr p = end_iterator.pointed_node(); header_holder_type* h = header_holder_type::get_holder(p); header_holder_plus_last_t* hpl = detail::parent_from_member< header_holder_plus_last_t, header_holder_type> (h, &header_holder_plus_last_t::header_holder_); root_plus_size* r = static_cast< root_plus_size* >(hpl); data_t *d = detail::parent_from_member ( r, &data_t::root_plus_size_); slist_impl *s = detail::parent_from_member(d, &slist_impl::data_); return *s; } }; #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator< #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const slist_impl &x, const slist_impl &y) #else ( const slist_impl &x , const slist_impl &y) #endif { return ::boost::intrusive::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif bool operator== #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const slist_impl &x, const slist_impl &y) #else ( const slist_impl &x , const slist_impl &y) #endif { typedef slist_impl slist_type; const bool C = slist_type::constant_time_size; if(C && x.size() != y.size()){ return false; } return ::boost::intrusive::algo_equal(x.cbegin(), x.cend(), y.cbegin(), y.cend()); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator!= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const slist_impl &x, const slist_impl &y) #else ( const slist_impl &x , const slist_impl &y) #endif { return !(x == y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator> #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const slist_impl &x, const slist_impl &y) #else ( const slist_impl &x , const slist_impl &y) #endif { return y < x; } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator<= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const slist_impl &x, const slist_impl &y) #else ( const slist_impl &x , const slist_impl &y) #endif { return !(y < x); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator>= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const slist_impl &x, const slist_impl &y) #else ( const slist_impl &x , const slist_impl &y) #endif { return !(x < y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline void swap #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (slist_impl &x, slist_impl &y) #else ( slist_impl &x , slist_impl &y) #endif { x.swap(y); } //! Helper metafunction to define a \c slist that yields to the same type when the //! same options (either explicitly or implicitly) are used. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif struct make_slist { /// @cond typedef typename pack_options < slist_defaults, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4, O5, O6 #else Options... #endif >::type packed_options; typedef typename detail::get_value_traits ::type value_traits; typedef slist_impl < value_traits , typename packed_options::size_type , (std::size_t(packed_options::linear)*slist_bool_flags::linear_pos) |(std::size_t(packed_options::constant_time_size)*slist_bool_flags::constant_time_size_pos) |(std::size_t(packed_options::cache_last)*slist_bool_flags::cache_last_pos) , typename packed_options::header_holder_type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif class slist : public make_slist::type { typedef typename make_slist ::type Base; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same::value)); BOOST_MOVABLE_BUT_NOT_COPYABLE(slist) public: typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; typedef typename Base::size_type size_type; typedef typename Base::node_ptr node_ptr; explicit slist(const value_traits &v_traits = value_traits()) : Base(v_traits) {} struct incorporate_t{}; slist( const node_ptr & f, const node_ptr & before_l , size_type n, const value_traits &v_traits = value_traits()) : Base(f, before_l, n, v_traits) {} template slist(Iterator b, Iterator e, const value_traits &v_traits = value_traits()) : Base(b, e, v_traits) {} slist(BOOST_RV_REF(slist) x) : Base(BOOST_MOVE_BASE(Base, x)) {} slist& operator=(BOOST_RV_REF(slist) x) { return static_cast(this->Base::operator=(BOOST_MOVE_BASE(Base, x))); } static slist &container_from_end_iterator(iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static const slist &container_from_end_iterator(const_iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } }; #endif } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_SLIST_HPP