///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Olaf Krzikalla 2004-2006. // (C) Copyright Ion Gaztanaga 2006-2014 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_LIST_HPP #define BOOST_INTRUSIVE_LIST_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //std::less #include //std::size_t, etc. #if defined(BOOST_HAS_PRAGMA_ONCE) # pragma once #endif namespace boost { namespace intrusive { /// @cond struct default_list_hook_applier { template struct apply{ typedef typename T::default_list_hook type; }; }; template<> struct is_default_hook_tag { static const bool value = true; }; struct list_defaults { typedef default_list_hook_applier proto_value_traits; static const bool constant_time_size = true; typedef std::size_t size_type; typedef void header_holder_type; }; /// @endcond //! The class template list is an intrusive container that mimics most of the //! interface of std::list as described in the C++ standard. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<> and \c size_type<>. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif class list_impl { //Public typedefs public: typedef ValueTraits value_traits; typedef typename value_traits::pointer pointer; typedef typename value_traits::const_pointer const_pointer; typedef typename pointer_traits::element_type value_type; typedef typename pointer_traits::reference reference; typedef typename pointer_traits::reference const_reference; typedef typename pointer_traits::difference_type difference_type; typedef SizeType size_type; typedef list_iterator iterator; typedef list_iterator const_iterator; typedef boost::intrusive::reverse_iterator reverse_iterator; typedef boost::intrusive::reverse_iterator const_reverse_iterator; typedef typename value_traits::node_traits node_traits; typedef typename node_traits::node node; typedef typename node_traits::node_ptr node_ptr; typedef typename node_traits::const_node_ptr const_node_ptr; typedef circular_list_algorithms node_algorithms; typedef typename detail::get_header_holder_type < value_traits, HeaderHolder >::type header_holder_type; static const bool constant_time_size = ConstantTimeSize; static const bool stateful_value_traits = detail::is_stateful_value_traits::value; static const bool has_container_from_iterator = detail::is_same< header_holder_type, detail::default_header_holder< node_traits > >::value; /// @cond private: typedef detail::size_holder size_traits; //noncopyable BOOST_MOVABLE_BUT_NOT_COPYABLE(list_impl) static const bool safemode_or_autounlink = is_safe_autounlink::value; //Constant-time size is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(constant_time_size && ((int)value_traits::link_mode == (int)auto_unlink) )); node_ptr get_root_node() { return data_.root_plus_size_.m_header.get_node(); } const_node_ptr get_root_node() const { return data_.root_plus_size_.m_header.get_node(); } struct root_plus_size : public size_traits { header_holder_type m_header; }; struct data_t : public value_traits { typedef typename list_impl::value_traits value_traits; explicit data_t(const value_traits &val_traits) : value_traits(val_traits) {} root_plus_size root_plus_size_; } data_; size_traits &priv_size_traits() { return data_.root_plus_size_; } const size_traits &priv_size_traits() const { return data_.root_plus_size_; } const value_traits &priv_value_traits() const { return data_; } value_traits &priv_value_traits() { return data_; } typedef typename boost::intrusive::value_traits_pointers ::const_value_traits_ptr const_value_traits_ptr; const_value_traits_ptr priv_value_traits_ptr() const { return pointer_traits::pointer_to(this->priv_value_traits()); } /// @endcond public: //! Effects: constructs an empty list. //! //! Complexity: Constant //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks). explicit list_impl(const value_traits &v_traits = value_traits()) : data_(v_traits) { this->priv_size_traits().set_size(size_type(0)); node_algorithms::init_header(this->get_root_node()); } //! Requires: Dereferencing iterator must yield an lvalue of type value_type. //! //! Effects: Constructs a list equal to the range [first,last). //! //! Complexity: Linear in distance(b, e). No copy constructors are called. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks). template list_impl(Iterator b, Iterator e, const value_traits &v_traits = value_traits()) : data_(v_traits) { //nothrow, no need to rollback to release elements on exception this->priv_size_traits().set_size(size_type(0)); node_algorithms::init_header(this->get_root_node()); //nothrow, no need to rollback to release elements on exception this->insert(this->cend(), b, e); } //! Effects: to-do //! list_impl(BOOST_RV_REF(list_impl) x) : data_(::boost::move(x.priv_value_traits())) { this->priv_size_traits().set_size(size_type(0)); node_algorithms::init_header(this->get_root_node()); //nothrow, no need to rollback to release elements on exception this->swap(x); } //! Effects: to-do //! list_impl& operator=(BOOST_RV_REF(list_impl) x) { this->swap(x); return *this; } //! Effects: If it's not a safe-mode or an auto-unlink value_type //! the destructor does nothing //! (ie. no code is generated). Otherwise it detaches all elements from this. //! In this case the objects in the list are not deleted (i.e. no destructors //! are called), but the hooks according to the ValueTraits template parameter //! are set to their default value. //! //! Complexity: Linear to the number of elements in the list, if //! it's a safe-mode or auto-unlink value . Otherwise constant. ~list_impl() { if(is_safe_autounlink::value){ this->clear(); node_algorithms::init(this->get_root_node()); } } //! Requires: value must be an lvalue. //! //! Effects: Inserts the value in the back of the list. //! No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. void push_back(reference value) { node_ptr to_insert = priv_value_traits().to_node_ptr(value); BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(to_insert)); node_algorithms::link_before(this->get_root_node(), to_insert); this->priv_size_traits().increment(); } //! Requires: value must be an lvalue. //! //! Effects: Inserts the value in the front of the list. //! No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. void push_front(reference value) { node_ptr to_insert = priv_value_traits().to_node_ptr(value); BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(to_insert)); node_algorithms::link_before(node_traits::get_next(this->get_root_node()), to_insert); this->priv_size_traits().increment(); } //! Effects: Erases the last element of the list. //! No destructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators (but not the references) to the erased element. void pop_back() { return this->pop_back_and_dispose(detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the last element of the list. //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed element. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators to the erased element. template void pop_back_and_dispose(Disposer disposer) { node_ptr to_erase = node_traits::get_previous(this->get_root_node()); node_algorithms::unlink(to_erase); this->priv_size_traits().decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(priv_value_traits().to_value_ptr(to_erase)); } //! Effects: Erases the first element of the list. //! No destructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators (but not the references) to the erased element. void pop_front() { return this->pop_front_and_dispose(detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the first element of the list. //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed element. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators to the erased element. template void pop_front_and_dispose(Disposer disposer) { node_ptr to_erase = node_traits::get_next(this->get_root_node()); node_algorithms::unlink(to_erase); this->priv_size_traits().decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(priv_value_traits().to_value_ptr(to_erase)); } //! Effects: Returns a reference to the first element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. reference front() { return *priv_value_traits().to_value_ptr(node_traits::get_next(this->get_root_node())); } //! Effects: Returns a const_reference to the first element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference front() const { return *priv_value_traits().to_value_ptr(node_traits::get_next(this->get_root_node())); } //! Effects: Returns a reference to the last element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. reference back() { return *priv_value_traits().to_value_ptr(node_traits::get_previous(this->get_root_node())); } //! Effects: Returns a const_reference to the last element of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference back() const { return *priv_value_traits().to_value_ptr(detail::uncast(node_traits::get_previous(this->get_root_node()))); } //! Effects: Returns an iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return iterator(node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return this->cbegin(); } //! Effects: Returns a const_iterator to the first element contained in the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return const_iterator(node_traits::get_next(this->get_root_node()), this->priv_value_traits_ptr()); } //! Effects: Returns an iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return iterator(this->get_root_node(), this->priv_value_traits_ptr()); } //! Effects: Returns a const_iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return this->cend(); } //! Effects: Returns a constant iterator to the end of the list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return const_iterator(detail::uncast(this->get_root_node()), this->priv_value_traits_ptr()); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return reverse_iterator(this->end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return this->crbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return const_reverse_iterator(end()); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return reverse_iterator(begin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return this->crend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed list. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return const_reverse_iterator(this->begin()); } //! Precondition: end_iterator must be a valid end iterator //! of list. //! //! Effects: Returns a const reference to the list associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static list_impl &container_from_end_iterator(iterator end_iterator) { return list_impl::priv_container_from_end_iterator(end_iterator); } //! Precondition: end_iterator must be a valid end const_iterator //! of list. //! //! Effects: Returns a const reference to the list associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static const list_impl &container_from_end_iterator(const_iterator end_iterator) { return list_impl::priv_container_from_end_iterator(end_iterator); } //! Effects: Returns the number of the elements contained in the list. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements contained in the list. //! if constant-time size option is disabled. Constant time otherwise. //! //! Note: Does not affect the validity of iterators and references. size_type size() const { if(constant_time_size) return this->priv_size_traits().get_size(); else return node_algorithms::count(this->get_root_node()) - 1; } //! Effects: Returns true if the list contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. bool empty() const { return node_algorithms::unique(this->get_root_node()); } //! Effects: Swaps the elements of x and *this. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Does not affect the validity of iterators and references. void swap(list_impl& other) { node_algorithms::swap_nodes(this->get_root_node(), other.get_root_node()); if(constant_time_size){ size_type backup = this->priv_size_traits().get_size(); this->priv_size_traits().set_size(other.priv_size_traits().get_size()); other.priv_size_traits().set_size(backup); } } //! Effects: Moves backwards all the elements, so that the first //! element becomes the second, the second becomes the third... //! the last element becomes the first one. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of shifts. //! //! Note: Does not affect the validity of iterators and references. void shift_backwards(size_type n = 1) { node_algorithms::move_forward(this->get_root_node(), n); } //! Effects: Moves forward all the elements, so that the second //! element becomes the first, the third becomes the second... //! the first element becomes the last one. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of shifts. //! //! Note: Does not affect the validity of iterators and references. void shift_forward(size_type n = 1) { node_algorithms::move_backwards(this->get_root_node(), n); } //! Effects: Erases the element pointed by i of the list. //! No destructors are called. //! //! Returns: the first element remaining beyond the removed element, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators (but not the references) to the //! erased element. iterator erase(const_iterator i) { return this->erase_and_dispose(i, detail::null_disposer()); } //! Requires: b and e must be valid iterators to elements in *this. //! //! Effects: Erases the element range pointed by b and e //! No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of erased elements if it's a safe-mode //! or auto-unlink value, or constant-time size is enabled. Constant-time otherwise. //! //! Note: Invalidates the iterators (but not the references) to the //! erased elements. iterator erase(const_iterator b, const_iterator e) { if(safemode_or_autounlink || constant_time_size){ return this->erase_and_dispose(b, e, detail::null_disposer()); } else{ node_algorithms::unlink(b.pointed_node(), e.pointed_node()); return e.unconst(); } } //! Requires: b and e must be valid iterators to elements in *this. //! n must be distance(b, e). //! //! Effects: Erases the element range pointed by b and e //! No destructors are called. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of erased elements if it's a safe-mode //! or auto-unlink value is enabled. Constant-time otherwise. //! //! Note: Invalidates the iterators (but not the references) to the //! erased elements. iterator erase(const_iterator b, const_iterator e, size_type n) { BOOST_INTRUSIVE_INVARIANT_ASSERT(node_algorithms::distance(b.pointed_node(), e.pointed_node()) == n); if(safemode_or_autounlink || constant_time_size){ return this->erase_and_dispose(b, e, detail::null_disposer()); } else{ if(constant_time_size){ this->priv_size_traits().decrease(n); } node_algorithms::unlink(b.pointed_node(), e.pointed_node()); return e.unconst(); } } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element pointed by i of the list. //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed element. //! //! Returns: the first element remaining beyond the removed element, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Invalidates the iterators to the erased element. template iterator erase_and_dispose(const_iterator i, Disposer disposer) { node_ptr to_erase(i.pointed_node()); ++i; node_algorithms::unlink(to_erase); this->priv_size_traits().decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(this->priv_value_traits().to_value_ptr(to_erase)); return i.unconst(); } #if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template iterator erase_and_dispose(iterator i, Disposer disposer) { return this->erase_and_dispose(const_iterator(i), disposer); } #endif //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element range pointed by b and e //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements erased. //! //! Note: Invalidates the iterators to the erased elements. template iterator erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) { node_ptr bp(b.pointed_node()), ep(e.pointed_node()); node_algorithms::unlink(bp, ep); while(bp != ep){ node_ptr to_erase(bp); bp = node_traits::get_next(bp); if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(priv_value_traits().to_value_ptr(to_erase)); this->priv_size_traits().decrement(); } return e.unconst(); } //! Effects: Erases all the elements of the container. //! No destructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of the list. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Note: Invalidates the iterators (but not the references) to the erased elements. void clear() { if(safemode_or_autounlink){ this->clear_and_dispose(detail::null_disposer()); } else{ node_algorithms::init_header(this->get_root_node()); this->priv_size_traits().set_size(size_type(0)); } } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements of the container. //! No destructors are called. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements of the list. //! //! Note: Invalidates the iterators to the erased elements. template void clear_and_dispose(Disposer disposer) { const_iterator it(this->begin()), itend(this->end()); while(it != itend){ node_ptr to_erase(it.pointed_node()); ++it; if(safemode_or_autounlink) node_algorithms::init(to_erase); disposer(priv_value_traits().to_value_ptr(to_erase)); } node_algorithms::init_header(this->get_root_node()); this->priv_size_traits().set_size(0); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! Cloner should yield to nodes equivalent to the original nodes. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws. Basic guarantee. template void clone_from(const list_impl &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); detail::exception_disposer rollback(*this, disposer); const_iterator b(src.begin()), e(src.end()); for(; b != e; ++b){ this->push_back(*cloner(*b)); } rollback.release(); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! Cloner should yield to nodes equivalent to the original nodes. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(reference) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws. Basic guarantee. template void clone_from(BOOST_RV_REF(list_impl) src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); detail::exception_disposer rollback(*this, disposer); iterator b(src.begin()), e(src.end()); for(; b != e; ++b){ this->push_back(*cloner(*b)); } rollback.release(); } //! Requires: value must be an lvalue and p must be a valid iterator of *this. //! //! Effects: Inserts the value before the position pointed by p. //! //! Returns: An iterator to the inserted element. //! //! Throws: Nothing. //! //! Complexity: Constant time. No copy constructors are called. //! //! Note: Does not affect the validity of iterators and references. iterator insert(const_iterator p, reference value) { node_ptr to_insert = this->priv_value_traits().to_node_ptr(value); BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!safemode_or_autounlink || node_algorithms::inited(to_insert)); node_algorithms::link_before(p.pointed_node(), to_insert); this->priv_size_traits().increment(); return iterator(to_insert, this->priv_value_traits_ptr()); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type and p must be a valid iterator of *this. //! //! Effects: Inserts the range pointed by b and e before the position p. //! No copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted. //! //! Note: Does not affect the validity of iterators and references. template void insert(const_iterator p, Iterator b, Iterator e) { for (; b != e; ++b) this->insert(p, *b); } //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type. //! //! Effects: Clears the list and inserts the range pointed by b and e. //! No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus //! linear to the elements contained in the list if it's a safe-mode //! or auto-unlink value. //! Linear to the number of elements inserted in the list otherwise. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. template void assign(Iterator b, Iterator e) { this->clear(); this->insert(this->cend(), b, e); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Requires: Dereferencing iterator must yield //! an lvalue of type value_type. //! //! Effects: Clears the list and inserts the range pointed by b and e. //! No destructors or copy constructors are called. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements inserted plus //! linear to the elements contained in the list. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. template void dispose_and_assign(Disposer disposer, Iterator b, Iterator e) { this->clear_and_dispose(disposer); this->insert(this->cend(), b, e); } //! Requires: p must be a valid iterator of *this. //! //! Effects: Transfers all the elements of list x to this list, before the //! the element pointed by p. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of //! this list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, list_impl& x) { if(!x.empty()){ node_algorithms::transfer (p.pointed_node(), x.begin().pointed_node(), x.end().pointed_node()); size_traits &thist = this->priv_size_traits(); size_traits &xt = x.priv_size_traits(); thist.increase(xt.get_size()); xt.set_size(size_type(0)); } } //! Requires: p must be a valid iterator of *this. //! new_ele must point to an element contained in list x. //! //! Effects: Transfers the value pointed by new_ele, from list x to this list, //! before the element pointed by p. No destructors or copy constructors are called. //! If p == new_ele or p == ++new_ele, this function is a null operation. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, list_impl&x, const_iterator new_ele) { node_algorithms::transfer(p.pointed_node(), new_ele.pointed_node()); x.priv_size_traits().decrement(); this->priv_size_traits().increment(); } //! Requires: p must be a valid iterator of *this. //! f and e must point to elements contained in list x. //! //! Effects: Transfers the range pointed by f and e from list x to this list, //! before the element pointed by p. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements transferred //! if constant-time size option is enabled. Constant-time otherwise. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, list_impl&x, const_iterator f, const_iterator e) { if(constant_time_size) this->splice(p, x, f, e, node_algorithms::distance(f.pointed_node(), e.pointed_node())); else this->splice(p, x, f, e, 1);//intrusive::iterator_distance is a dummy value } //! Requires: p must be a valid iterator of *this. //! f and e must point to elements contained in list x. //! n == distance(f, e) //! //! Effects: Transfers the range pointed by f and e from list x to this list, //! before the element pointed by p. No destructors or copy constructors are called. //! //! Throws: Nothing. //! //! Complexity: Constant. //! //! Note: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, list_impl&x, const_iterator f, const_iterator e, size_type n) { if(n){ if(constant_time_size){ BOOST_INTRUSIVE_INVARIANT_ASSERT(n == node_algorithms::distance(f.pointed_node(), e.pointed_node())); node_algorithms::transfer(p.pointed_node(), f.pointed_node(), e.pointed_node()); size_traits &thist = this->priv_size_traits(); size_traits &xt = x.priv_size_traits(); thist.increase(n); xt.decrease(n); } else{ node_algorithms::transfer(p.pointed_node(), f.pointed_node(), e.pointed_node()); } } } //! Effects: This function sorts the list *this according to std::less. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or std::less throws. Basic guarantee. //! //! Notes: Iterators and references are not invalidated. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. void sort() { this->sort(std::less()); } //! Requires: p must be a comparison function that induces a strict weak ordering //! //! Effects: This function sorts the list *this according to p. The sort is //! stable, that is, the relative order of equivalent elements is preserved. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the predicate throws. Basic guarantee. //! //! Notes: This won't throw if list_base_hook<> or //! list_member_hook are used. //! Iterators and references are not invalidated. //! //! Complexity: The number of comparisons is approximately N log N, where N //! is the list's size. template void sort(Predicate p) { if(node_traits::get_next(this->get_root_node()) != node_traits::get_previous(this->get_root_node())){ list_impl carry(this->priv_value_traits()); detail::array_initializer counter(this->priv_value_traits()); int fill = 0; while(!this->empty()){ carry.splice(carry.cbegin(), *this, this->cbegin()); int i = 0; while(i < fill && !counter[i].empty()) { counter[i].merge(carry, p); carry.swap(counter[i++]); } carry.swap(counter[i]); if(i == fill) ++fill; } for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1], p); this->swap(counter[fill-1]); } } //! Effects: This function removes all of x's elements and inserts them //! in order into *this according to std::less. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! Throws: If std::less throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated void merge(list_impl& x) { this->merge(x, std::less()); } //! Requires: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! Effects: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! Throws: If the predicate throws. Basic guarantee. //! //! Complexity: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! Note: Iterators and references are not invalidated. template void merge(list_impl& x, Predicate p) { const_iterator e(this->cend()), ex(x.cend()); const_iterator b(this->cbegin()); while(!x.empty()){ const_iterator ix(x.cbegin()); while (b != e && !p(*ix, *b)){ ++b; } if(b == e){ //Now transfer the rest to the end of the container this->splice(e, x); break; } else{ size_type n(0); do{ ++ix; ++n; } while(ix != ex && p(*ix, *b)); this->splice(b, x, x.begin(), ix, n); } } } //! Effects: Reverses the order of elements in the list. //! //! Throws: Nothing. //! //! Complexity: This function is linear time. //! //! Note: Iterators and references are not invalidated void reverse() { node_algorithms::reverse(this->get_root_node()); } //! Effects: Removes all the elements that compare equal to value. //! No destructors are called. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void remove(const_reference value) { this->remove_if(detail::equal_to_value(value)); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes all the elements that compare equal to value. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If std::equal_to throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_and_dispose(const_reference value, Disposer disposer) { this->remove_and_dispose_if(detail::equal_to_value(value), disposer); } //! Effects: Removes all the elements for which a specified //! predicate is satisfied. No destructors are called. //! //! Throws: If pred throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() calls to the predicate. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_if(Pred pred) { const node_ptr root_node = this->get_root_node(); typename node_algorithms::stable_partition_info info; node_algorithms::stable_partition (node_traits::get_next(root_node), root_node, detail::key_nodeptr_comp(pred, &this->priv_value_traits()), info); //Invariants preserved by stable_partition so erase can be safely called //The first element might have changed so calculate it again this->erase( const_iterator(node_traits::get_next(root_node), this->priv_value_traits_ptr()) , const_iterator(info.beg_2st_partition, this->priv_value_traits_ptr()) , info.num_1st_partition); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes all the elements for which a specified //! predicate is satisfied. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If pred throws. Basic guarantee. //! //! Complexity: Linear time. It performs exactly size() comparisons for equality. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void remove_and_dispose_if(Pred pred, Disposer disposer) { const node_ptr root_node = this->get_root_node(); typename node_algorithms::stable_partition_info info; node_algorithms::stable_partition (node_traits::get_next(root_node), root_node, detail::key_nodeptr_comp(pred, &this->priv_value_traits()), info); //Invariants preserved by stable_partition so erase can be safely called //The first element might have changed so calculate it again this->erase_and_dispose( const_iterator(node_traits::get_next(root_node), this->priv_value_traits_ptr()) , const_iterator(info.beg_2st_partition, this->priv_value_traits_ptr()) , disposer); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that are equal from the list. No destructors are called. //! //! Throws: If std::equal_toComplexity: Linear time (size()-1 comparisons calls to pred()). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void unique() { this->unique_and_dispose(std::equal_to(), detail::null_disposer()); } //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! No destructors are called. //! //! Throws: If pred throws. Basic guarantee. //! //! Complexity: Linear time (size()-1 comparisons equality comparisons). //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique(BinaryPredicate pred) { this->unique_and_dispose(pred, detail::null_disposer()); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes adjacent duplicate elements or adjacent //! elements that are equal from the list. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If std::equal_toComplexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique_and_dispose(Disposer disposer) { this->unique_and_dispose(std::equal_to(), disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! Disposer::operator()(pointer) is called for every removed element. //! //! Throws: If pred throws. Basic guarantee. //! //! Complexity: Linear time (size()-1) comparisons equality comparisons. //! //! Note: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template void unique_and_dispose(BinaryPredicate pred, Disposer disposer) { const_iterator itend(this->cend()); const_iterator cur(this->cbegin()); if(cur != itend){ const_iterator after(cur); ++after; while(after != itend){ if(pred(*cur, *after)){ after = this->erase_and_dispose(after, disposer); } else{ cur = after; ++after; } } } } //! Requires: value must be a reference to a value inserted in a list. //! //! Effects: This function returns a const_iterator pointing to the element //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. //! This static function is available only if the value traits //! is stateless. static iterator s_iterator_to(reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(value_traits::to_node_ptr(value))); return iterator(value_traits::to_node_ptr(value), const_value_traits_ptr()); } //! Requires: value must be a const reference to a value inserted in a list. //! //! Effects: This function returns an iterator pointing to the element. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. //! This static function is available only if the value traits //! is stateless. static const_iterator s_iterator_to(const_reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); reference r =*detail::uncast(pointer_traits::pointer_to(value)); BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(value_traits::to_node_ptr(r))); return const_iterator(value_traits::to_node_ptr(r), const_value_traits_ptr()); } //! Requires: value must be a reference to a value inserted in a list. //! //! Effects: This function returns a const_iterator pointing to the element //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. iterator iterator_to(reference value) { BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(this->priv_value_traits().to_node_ptr(value))); return iterator(this->priv_value_traits().to_node_ptr(value), this->priv_value_traits_ptr()); } //! Requires: value must be a const reference to a value inserted in a list. //! //! Effects: This function returns an iterator pointing to the element. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: Iterators and references are not invalidated. const_iterator iterator_to(const_reference value) const { reference r = *detail::uncast(pointer_traits::pointer_to(value)); BOOST_INTRUSIVE_INVARIANT_ASSERT(!node_algorithms::inited(this->priv_value_traits().to_node_ptr(r))); return const_iterator(this->priv_value_traits().to_node_ptr(r), this->priv_value_traits_ptr()); } //! Effects: Asserts the integrity of the container. //! //! Complexity: Linear time. //! //! Note: The method has no effect when asserts are turned off (e.g., with NDEBUG). //! Experimental function, interface might change in future versions. void check() const { const_node_ptr header_ptr = get_root_node(); // header's next and prev are never null BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_next(header_ptr)); BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_previous(header_ptr)); // header's next and prev either both point to header (empty list) or neither does BOOST_INTRUSIVE_INVARIANT_ASSERT((node_traits::get_next(header_ptr) == header_ptr) == (node_traits::get_previous(header_ptr) == header_ptr)); if (node_traits::get_next(header_ptr) == header_ptr) { if (constant_time_size) BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_size_traits().get_size() == 0); return; } size_t node_count = 0; const_node_ptr p = header_ptr; while (true) { const_node_ptr next_p = node_traits::get_next(p); BOOST_INTRUSIVE_INVARIANT_ASSERT(next_p); BOOST_INTRUSIVE_INVARIANT_ASSERT(node_traits::get_previous(next_p) == p); p = next_p; if (p == header_ptr) break; ++node_count; } if (constant_time_size) BOOST_INTRUSIVE_INVARIANT_ASSERT(this->priv_size_traits().get_size() == node_count); } friend bool operator==(const list_impl &x, const list_impl &y) { if(constant_time_size && x.size() != y.size()){ return false; } return ::boost::intrusive::algo_equal(x.cbegin(), x.cend(), y.cbegin(), y.cend()); } friend bool operator!=(const list_impl &x, const list_impl &y) { return !(x == y); } friend bool operator<(const list_impl &x, const list_impl &y) { return ::boost::intrusive::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } friend bool operator>(const list_impl &x, const list_impl &y) { return y < x; } friend bool operator<=(const list_impl &x, const list_impl &y) { return !(y < x); } friend bool operator>=(const list_impl &x, const list_impl &y) { return !(x < y); } friend void swap(list_impl &x, list_impl &y) { x.swap(y); } /// @cond private: static list_impl &priv_container_from_end_iterator(const const_iterator &end_iterator) { BOOST_STATIC_ASSERT((has_container_from_iterator)); node_ptr p = end_iterator.pointed_node(); header_holder_type* h = header_holder_type::get_holder(p); root_plus_size* r = detail::parent_from_member < root_plus_size, header_holder_type>(h, &root_plus_size::m_header); data_t *d = detail::parent_from_member ( r, &data_t::root_plus_size_); list_impl *s = detail::parent_from_member(d, &list_impl::data_); return *s; } /// @endcond }; //! Helper metafunction to define a \c list that yields to the same type when the //! same options (either explicitly or implicitly) are used. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif struct make_list { /// @cond typedef typename pack_options < list_defaults, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4 #else Options... #endif >::type packed_options; typedef typename detail::get_value_traits ::type value_traits; typedef list_impl < value_traits, typename packed_options::size_type, packed_options::constant_time_size, typename packed_options::header_holder_type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif class list : public make_list::type { typedef typename make_list ::type Base; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same::value)); BOOST_MOVABLE_BUT_NOT_COPYABLE(list) public: typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; explicit list(const value_traits &v_traits = value_traits()) : Base(v_traits) {} template list(Iterator b, Iterator e, const value_traits &v_traits = value_traits()) : Base(b, e, v_traits) {} list(BOOST_RV_REF(list) x) : Base(BOOST_MOVE_BASE(Base, x)) {} list& operator=(BOOST_RV_REF(list) x) { return static_cast(this->Base::operator=(BOOST_MOVE_BASE(Base, x))); } template void clone_from(const list &src, Cloner cloner, Disposer disposer) { Base::clone_from(src, cloner, disposer); } template void clone_from(BOOST_RV_REF(list) src, Cloner cloner, Disposer disposer) { Base::clone_from(BOOST_MOVE_BASE(Base, src), cloner, disposer); } static list &container_from_end_iterator(iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static const list &container_from_end_iterator(const_iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } }; #endif } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_LIST_HPP