///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2013-2014 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_BSTREE_HPP #define BOOST_INTRUSIVE_BSTREE_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //size_t... #include //less, equal_to #if defined(BOOST_HAS_PRAGMA_ONCE) # pragma once #endif namespace boost { namespace intrusive { /// @cond struct default_bstree_hook_applier { template struct apply{ typedef typename T::default_bstree_hook type; }; }; template<> struct is_default_hook_tag { static const bool value = true; }; struct bstree_defaults { typedef default_bstree_hook_applier proto_value_traits; static const bool constant_time_size = true; typedef std::size_t size_type; typedef void compare; typedef void key_of_value; static const bool floating_point = true; //For sgtree typedef void priority; //For treap typedef void header_holder_type; }; template struct bstbase3 { typedef ValueTraits value_traits; typedef typename value_traits::node_traits node_traits; typedef typename node_traits::node node_type; typedef typename get_algo::type node_algorithms; typedef typename node_traits::node_ptr node_ptr; typedef typename node_traits::const_node_ptr const_node_ptr; typedef tree_iterator iterator; typedef tree_iterator const_iterator; typedef boost::intrusive::reverse_iterator reverse_iterator; typedef boost::intrusive::reverse_iterator const_reverse_iterator; typedef BOOST_INTRUSIVE_IMPDEF(typename value_traits::pointer) pointer; typedef BOOST_INTRUSIVE_IMPDEF(typename value_traits::const_pointer) const_pointer; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::element_type) value_type; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::reference) reference; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::reference) const_reference; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::difference_type) difference_type; typedef typename detail::get_header_holder_type < value_traits,HeaderHolder >::type header_holder_type; static const bool safemode_or_autounlink = is_safe_autounlink::value; static const bool stateful_value_traits = detail::is_stateful_value_traits::value; static const bool has_container_from_iterator = detail::is_same< header_holder_type, detail::default_header_holder< node_traits > >::value; struct holder_t : public ValueTraits { explicit holder_t(const ValueTraits &vtraits) : ValueTraits(vtraits) {} header_holder_type root; } holder; static bstbase3 &get_tree_base_from_end_iterator(const const_iterator &end_iterator) { BOOST_STATIC_ASSERT(has_container_from_iterator); node_ptr p = end_iterator.pointed_node(); header_holder_type* h = header_holder_type::get_holder(p); holder_t *holder = get_parent_from_member(h, &holder_t::root); bstbase3 *base = get_parent_from_member (holder, &bstbase3::holder); return *base; } bstbase3(const ValueTraits &vtraits) : holder(vtraits) { node_algorithms::init_header(this->header_ptr()); } node_ptr header_ptr() { return holder.root.get_node(); } const_node_ptr header_ptr() const { return holder.root.get_node(); } const value_traits &get_value_traits() const { return this->holder; } value_traits &get_value_traits() { return this->holder; } typedef typename boost::intrusive::value_traits_pointers ::const_value_traits_ptr const_value_traits_ptr; const_value_traits_ptr priv_value_traits_ptr() const { return pointer_traits::pointer_to(this->get_value_traits()); } iterator begin() { return iterator(node_algorithms::begin_node(this->header_ptr()), this->priv_value_traits_ptr()); } const_iterator begin() const { return cbegin(); } const_iterator cbegin() const { return const_iterator(node_algorithms::begin_node(this->header_ptr()), this->priv_value_traits_ptr()); } iterator end() { return iterator(node_algorithms::end_node(this->header_ptr()), this->priv_value_traits_ptr()); } const_iterator end() const { return cend(); } const_iterator cend() const { return const_iterator(node_algorithms::end_node(this->header_ptr()), this->priv_value_traits_ptr()); } iterator root() { return iterator(node_algorithms::root_node(this->header_ptr()), this->priv_value_traits_ptr()); } const_iterator root() const { return croot(); } const_iterator croot() const { return const_iterator(node_algorithms::root_node(this->header_ptr()), this->priv_value_traits_ptr()); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } const_reverse_iterator crbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } const_reverse_iterator crend() const { return const_reverse_iterator(begin()); } void replace_node(iterator replace_this, reference with_this) { node_algorithms::replace_node( get_value_traits().to_node_ptr(*replace_this) , this->header_ptr() , get_value_traits().to_node_ptr(with_this)); if(safemode_or_autounlink) node_algorithms::init(replace_this.pointed_node()); } void rebalance() { node_algorithms::rebalance(this->header_ptr()); } iterator rebalance_subtree(iterator root) { return iterator(node_algorithms::rebalance_subtree(root.pointed_node()), this->priv_value_traits_ptr()); } static iterator s_iterator_to(reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); return iterator (value_traits::to_node_ptr(value), const_value_traits_ptr()); } static const_iterator s_iterator_to(const_reference value) { BOOST_STATIC_ASSERT((!stateful_value_traits)); return const_iterator (value_traits::to_node_ptr(*pointer_traits::const_cast_from(pointer_traits::pointer_to(value))), const_value_traits_ptr()); } iterator iterator_to(reference value) { return iterator (this->get_value_traits().to_node_ptr(value), this->priv_value_traits_ptr()); } const_iterator iterator_to(const_reference value) const { return const_iterator (this->get_value_traits().to_node_ptr(*pointer_traits::const_cast_from(pointer_traits::pointer_to(value))), this->priv_value_traits_ptr()); } static void init_node(reference value) { node_algorithms::init(value_traits::to_node_ptr(value)); } }; template struct get_compare { typedef Less type; }; template struct get_compare { typedef ::std::less type; }; template struct get_key_of_value { typedef KeyOfValue type; }; template struct get_key_of_value { typedef ::boost::intrusive::detail::identity type; }; template struct bst_key_types { typedef typename get_key_of_value < VoidOrKeyOfValue, T>::type key_of_value; typedef typename key_of_value::type key_type; typedef typename get_compare< VoidOrKeyComp , key_type >::type key_compare; typedef tree_value_compare value_compare; }; template struct bstbase2 //Put the (possibly empty) functor in the first position to get EBO in MSVC //Use public inheritance to avoid MSVC bugs with closures : public detail::ebo_functor_holder < typename bst_key_types < typename ValueTraits::value_type , VoidOrKeyOfValue , VoidOrKeyComp >::value_compare > , public bstbase3 { typedef bstbase3 treeheader_t; typedef bst_key_types< typename ValueTraits::value_type , VoidOrKeyOfValue , VoidOrKeyComp> key_types; typedef typename treeheader_t::value_traits value_traits; typedef typename treeheader_t::node_algorithms node_algorithms; typedef typename ValueTraits::value_type value_type; typedef typename key_types::key_type key_type; typedef typename key_types::key_of_value key_of_value; typedef typename key_types::key_compare key_compare; typedef typename key_types::value_compare value_compare; typedef typename treeheader_t::iterator iterator; typedef typename treeheader_t::const_iterator const_iterator; typedef typename treeheader_t::node_ptr node_ptr; typedef typename treeheader_t::const_node_ptr const_node_ptr; bstbase2(const key_compare &comp, const ValueTraits &vtraits) : detail::ebo_functor_holder(value_compare(comp)), treeheader_t(vtraits) {} const value_compare &comp() const { return this->get(); } value_compare &comp() { return this->get(); } typedef BOOST_INTRUSIVE_IMPDEF(typename value_traits::pointer) pointer; typedef BOOST_INTRUSIVE_IMPDEF(typename value_traits::const_pointer) const_pointer; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::reference) reference; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::reference) const_reference; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::difference_type) difference_type; typedef typename node_algorithms::insert_commit_data insert_commit_data; value_compare value_comp() const { return this->comp(); } key_compare key_comp() const { return this->comp().key_comp(); } //lower_bound iterator lower_bound(const key_type &key) { return this->lower_bound(key, this->key_comp()); } const_iterator lower_bound(const key_type &key) const { return this->lower_bound(key, this->key_comp()); } template iterator lower_bound(const KeyType &key, KeyTypeKeyCompare comp) { return iterator(node_algorithms::lower_bound (this->header_ptr(), key, this->key_node_comp(comp)), this->priv_value_traits_ptr()); } template const_iterator lower_bound(const KeyType &key, KeyTypeKeyCompare comp) const { return const_iterator(node_algorithms::lower_bound (this->header_ptr(), key, this->key_node_comp(comp)), this->priv_value_traits_ptr()); } //upper_bound iterator upper_bound(const key_type &key) { return this->upper_bound(key, this->key_comp()); } template iterator upper_bound(const KeyType &key, KeyTypeKeyCompare comp) { return iterator(node_algorithms::upper_bound (this->header_ptr(), key, this->key_node_comp(comp)), this->priv_value_traits_ptr()); } const_iterator upper_bound(const key_type &key) const { return this->upper_bound(key, this->key_comp()); } template const_iterator upper_bound(const KeyType &key, KeyTypeKeyCompare comp) const { return const_iterator(node_algorithms::upper_bound (this->header_ptr(), key, this->key_node_comp(comp)), this->priv_value_traits_ptr()); } template detail::key_nodeptr_comp key_node_comp(KeyTypeKeyCompare comp) const { return detail::key_nodeptr_comp(comp, &this->get_value_traits()); } //find iterator find(const key_type &key) { return this->find(key, this->key_comp()); } template iterator find(const KeyType &key, KeyTypeKeyCompare comp) { return iterator (node_algorithms::find(this->header_ptr(), key, this->key_node_comp(comp)), this->priv_value_traits_ptr()); } const_iterator find(const key_type &key) const { return this->find(key, this->key_comp()); } template const_iterator find(const KeyType &key, KeyTypeKeyCompare comp) const { return const_iterator (node_algorithms::find(this->header_ptr(), key, this->key_node_comp(comp)), this->priv_value_traits_ptr()); } //equal_range std::pair equal_range(const key_type &key) { return this->equal_range(key, this->key_comp()); } template std::pair equal_range(const KeyType &key, KeyTypeKeyCompare comp) { std::pair ret (node_algorithms::equal_range(this->header_ptr(), key, this->key_node_comp(comp))); return std::pair( iterator(ret.first, this->priv_value_traits_ptr()) , iterator(ret.second, this->priv_value_traits_ptr())); } std::pair equal_range(const key_type &key) const { return this->equal_range(key, this->key_comp()); } template std::pair equal_range(const KeyType &key, KeyTypeKeyCompare comp) const { std::pair ret (node_algorithms::equal_range(this->header_ptr(), key, this->key_node_comp(comp))); return std::pair( const_iterator(ret.first, this->priv_value_traits_ptr()) , const_iterator(ret.second, this->priv_value_traits_ptr())); } //lower_bound_range std::pair lower_bound_range(const key_type &key) { return this->lower_bound_range(key, this->key_comp()); } template std::pair lower_bound_range(const KeyType &key, KeyTypeKeyCompare comp) { std::pair ret (node_algorithms::lower_bound_range(this->header_ptr(), key, this->key_node_comp(comp))); return std::pair( iterator(ret.first, this->priv_value_traits_ptr()) , iterator(ret.second, this->priv_value_traits_ptr())); } std::pair lower_bound_range(const key_type &key) const { return this->lower_bound_range(key, this->key_comp()); } template std::pair lower_bound_range(const KeyType &key, KeyTypeKeyCompare comp) const { std::pair ret (node_algorithms::lower_bound_range(this->header_ptr(), key, this->key_node_comp(comp))); return std::pair( const_iterator(ret.first, this->priv_value_traits_ptr()) , const_iterator(ret.second, this->priv_value_traits_ptr())); } //bounded_range std::pair bounded_range (const key_type &lower_key, const key_type &upper_key, bool left_closed, bool right_closed) { return this->bounded_range(lower_key, upper_key, this->key_comp(), left_closed, right_closed); } template std::pair bounded_range (const KeyType &lower_key, const KeyType &upper_key, KeyTypeKeyCompare comp, bool left_closed, bool right_closed) { std::pair ret (node_algorithms::bounded_range (this->header_ptr(), lower_key, upper_key, this->key_node_comp(comp), left_closed, right_closed)); return std::pair( iterator(ret.first, this->priv_value_traits_ptr()) , iterator(ret.second, this->priv_value_traits_ptr())); } std::pair bounded_range (const key_type &lower_key, const key_type &upper_key, bool left_closed, bool right_closed) const { return this->bounded_range(lower_key, upper_key, this->key_comp(), left_closed, right_closed); } template std::pair bounded_range (const KeyType &lower_key, const KeyType &upper_key, KeyTypeKeyCompare comp, bool left_closed, bool right_closed) const { std::pair ret (node_algorithms::bounded_range (this->header_ptr(), lower_key, upper_key, this->key_node_comp(comp), left_closed, right_closed)); return std::pair( const_iterator(ret.first, this->priv_value_traits_ptr()) , const_iterator(ret.second, this->priv_value_traits_ptr())); } //insert_unique_check template std::pair insert_unique_check (const KeyType &key, KeyTypeKeyCompare comp, insert_commit_data &commit_data) { std::pair ret = (node_algorithms::insert_unique_check (this->header_ptr(), key, this->key_node_comp(comp), commit_data)); return std::pair(iterator(ret.first, this->priv_value_traits_ptr()), ret.second); } template std::pair insert_unique_check (const_iterator hint, const KeyType &key ,KeyTypeKeyCompare comp, insert_commit_data &commit_data) { std::pair ret = (node_algorithms::insert_unique_check (this->header_ptr(), hint.pointed_node(), key, this->key_node_comp(comp), commit_data)); return std::pair(iterator(ret.first, this->priv_value_traits_ptr()), ret.second); } }; //Due to MSVC's EBO implementation, to save space and maintain the ABI, we must put the non-empty size member //in the first position, but if size is not going to be stored then we'll use an specialization //that doesn't inherit from size_holder template struct bstbase_hack : public detail::size_holder , public bstbase2 < ValueTraits, VoidOrKeyOfValue, VoidOrKeyComp, AlgoType, HeaderHolder> { typedef bstbase2< ValueTraits, VoidOrKeyOfValue, VoidOrKeyComp, AlgoType, HeaderHolder> base_type; typedef typename base_type::key_compare key_compare; typedef typename base_type::value_compare value_compare; typedef SizeType size_type; typedef typename base_type::node_traits node_traits; typedef typename get_algo ::type algo_type; bstbase_hack(const key_compare & comp, const ValueTraits &vtraits) : base_type(comp, vtraits) { this->sz_traits().set_size(size_type(0)); } typedef detail::size_holder size_traits; size_traits &sz_traits() { return static_cast(*this); } const size_traits &sz_traits() const { return static_cast(*this); } }; //Specialization for ConstantTimeSize == false template struct bstbase_hack : public bstbase2 < ValueTraits, VoidOrKeyOfValue, VoidOrKeyComp, AlgoType, HeaderHolder> { typedef bstbase2< ValueTraits, VoidOrKeyOfValue, VoidOrKeyComp, AlgoType, HeaderHolder> base_type; typedef typename base_type::value_compare value_compare; typedef typename base_type::key_compare key_compare; bstbase_hack(const key_compare & comp, const ValueTraits &vtraits) : base_type(comp, vtraits) {} typedef detail::size_holder size_traits; size_traits &sz_traits() { return s_size_traits; } const size_traits &sz_traits() const { return s_size_traits; } static size_traits s_size_traits; }; template detail::size_holder bstbase_hack::s_size_traits; //This class will template struct bstbase : public bstbase_hack< ValueTraits, VoidOrKeyOfValue, VoidOrKeyComp, ConstantTimeSize, SizeType, AlgoType, HeaderHolder> { typedef bstbase_hack< ValueTraits, VoidOrKeyOfValue, VoidOrKeyComp, ConstantTimeSize, SizeType, AlgoType, HeaderHolder> base_type; typedef ValueTraits value_traits; typedef typename base_type::value_compare value_compare; typedef typename base_type::key_compare key_compare; typedef typename base_type::const_reference const_reference; typedef typename base_type::reference reference; typedef typename base_type::iterator iterator; typedef typename base_type::const_iterator const_iterator; typedef typename base_type::node_traits node_traits; typedef typename get_algo ::type node_algorithms; typedef SizeType size_type; bstbase(const key_compare & comp, const ValueTraits &vtraits) : base_type(comp, vtraits) {} //Detach all inserted nodes. This will add exception safety to bstree_impl //constructors inserting elements. ~bstbase() { if(is_safe_autounlink::value){ node_algorithms::clear_and_dispose ( this->header_ptr() , detail::node_disposer (detail::null_disposer(), &this->get_value_traits())); node_algorithms::init(this->header_ptr()); } } }; /// @endcond //! The class template bstree is an unbalanced intrusive binary search tree //! container. The no-throw guarantee holds only, if the key_compare object //! doesn't throw. //! //! The complexity guarantees only hold if the tree is balanced, logarithmic //! complexity would increase to linear if the tree is totally unbalanced. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<> and //! \c compare<>. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif class bstree_impl : public bstbase { public: /// @cond typedef bstbase data_type; typedef tree_iterator iterator_type; typedef tree_iterator const_iterator_type; /// @endcond typedef BOOST_INTRUSIVE_IMPDEF(ValueTraits) value_traits; typedef BOOST_INTRUSIVE_IMPDEF(typename value_traits::pointer) pointer; typedef BOOST_INTRUSIVE_IMPDEF(typename value_traits::const_pointer) const_pointer; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::element_type) value_type; typedef BOOST_INTRUSIVE_IMPDEF(typename data_type::key_type) key_type; typedef BOOST_INTRUSIVE_IMPDEF(typename data_type::key_of_value) key_of_value; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::reference) reference; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::reference) const_reference; typedef BOOST_INTRUSIVE_IMPDEF(typename pointer_traits::difference_type) difference_type; typedef BOOST_INTRUSIVE_IMPDEF(SizeType) size_type; typedef BOOST_INTRUSIVE_IMPDEF(typename data_type::value_compare) value_compare; typedef BOOST_INTRUSIVE_IMPDEF(typename data_type::key_compare) key_compare; typedef BOOST_INTRUSIVE_IMPDEF(iterator_type) iterator; typedef BOOST_INTRUSIVE_IMPDEF(const_iterator_type) const_iterator; typedef BOOST_INTRUSIVE_IMPDEF(boost::intrusive::reverse_iterator) reverse_iterator; typedef BOOST_INTRUSIVE_IMPDEF(boost::intrusive::reverse_iterator) const_reverse_iterator; typedef BOOST_INTRUSIVE_IMPDEF(typename value_traits::node_traits) node_traits; typedef BOOST_INTRUSIVE_IMPDEF(typename node_traits::node) node; typedef BOOST_INTRUSIVE_IMPDEF(typename node_traits::node_ptr) node_ptr; typedef BOOST_INTRUSIVE_IMPDEF(typename node_traits::const_node_ptr) const_node_ptr; /// @cond typedef typename get_algo::type algo_type; /// @endcond typedef BOOST_INTRUSIVE_IMPDEF(algo_type) node_algorithms; static const bool constant_time_size = ConstantTimeSize; static const bool stateful_value_traits = detail::is_stateful_value_traits::value; /// @cond private: //noncopyable BOOST_MOVABLE_BUT_NOT_COPYABLE(bstree_impl) static const bool safemode_or_autounlink = is_safe_autounlink::value; //Constant-time size is incompatible with auto-unlink hooks! BOOST_STATIC_ASSERT(!(constant_time_size && ((int)value_traits::link_mode == (int)auto_unlink))); protected: /// @endcond public: typedef typename node_algorithms::insert_commit_data insert_commit_data; //! Effects: Constructs an empty container. //! //! Complexity: Constant. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor of the key_compare object throws. Basic guarantee. explicit bstree_impl( const key_compare &cmp = key_compare() , const value_traits &v_traits = value_traits()) : data_type(cmp, v_traits) {} //! Requires: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //! Effects: Constructs an empty container and inserts elements from //! [b, e). //! //! Complexity: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is the distance between first and last. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the key_compare object throws. Basic guarantee. template bstree_impl( bool unique, Iterator b, Iterator e , const key_compare &cmp = key_compare() , const value_traits &v_traits = value_traits()) : data_type(cmp, v_traits) { //bstbase releases elements in case of exceptions if(unique) this->insert_unique(b, e); else this->insert_equal(b, e); } //! Effects: to-do //! bstree_impl(BOOST_RV_REF(bstree_impl) x) : data_type(::boost::move(x.comp()), ::boost::move(x.get_value_traits())) { this->swap(x); } //! Effects: to-do //! bstree_impl& operator=(BOOST_RV_REF(bstree_impl) x) { this->swap(x); return *this; } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED //! Effects: Detaches all elements from this. The objects in the set //! are not deleted (i.e. no destructors are called), but the nodes according to //! the value_traits template parameter are reinitialized and thus can be reused. //! //! Complexity: Linear to elements contained in *this. //! //! Throws: Nothing. ~bstree_impl() {} //! Effects: Returns an iterator pointing to the beginning of the container. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator begin(); //! Effects: Returns a const_iterator pointing to the beginning of the container. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator begin() const; //! Effects: Returns a const_iterator pointing to the beginning of the container. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cbegin() const; //! Effects: Returns an iterator pointing to the end of the container. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator end(); //! Effects: Returns a const_iterator pointing to the end of the container. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator end() const; //! Effects: Returns a const_iterator pointing to the end of the container. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cend() const; //! Effects: Returns a reverse_iterator pointing to the beginning of the //! reversed container. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rbegin(); //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rbegin() const; //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crbegin() const; //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rend(); //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rend() const; //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crend() const; #endif //#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED //! Precondition: end_iterator must be a valid end iterator //! of the container. //! //! Effects: Returns a const reference to the container associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static bstree_impl &container_from_end_iterator(iterator end_iterator) { return static_cast (data_type::get_tree_base_from_end_iterator(end_iterator)); } //! Precondition: end_iterator must be a valid end const_iterator //! of the container. //! //! Effects: Returns a const reference to the container associated to the iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static const bstree_impl &container_from_end_iterator(const_iterator end_iterator) { return static_cast (data_type::get_tree_base_from_end_iterator(end_iterator)); } //! Precondition: it must be a valid iterator //! of the container. //! //! Effects: Returns a const reference to the container associated to the iterator //! //! Throws: Nothing. //! //! Complexity: Logarithmic. static bstree_impl &container_from_iterator(iterator it) { return container_from_end_iterator(it.end_iterator_from_it()); } //! Precondition: it must be a valid end const_iterator //! of container. //! //! Effects: Returns a const reference to the container associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Logarithmic. static const bstree_impl &container_from_iterator(const_iterator it) { return container_from_end_iterator(it.end_iterator_from_it()); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED //! Effects: Returns the key_compare object used by the container. //! //! Complexity: Constant. //! //! Throws: If key_compare copy-constructor throws. key_compare key_comp() const; //! Effects: Returns the value_compare object used by the container. //! //! Complexity: Constant. //! //! Throws: If value_compare copy-constructor throws. value_compare value_comp() const; #endif //#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED //! Effects: Returns true if the container is empty. //! //! Complexity: Constant. //! //! Throws: Nothing. bool empty() const { if(ConstantTimeSize){ return !this->data_type::sz_traits().get_size(); } else{ return algo_type::unique(this->header_ptr()); } } //! Effects: Returns the number of elements stored in the container. //! //! Complexity: Linear to elements contained in *this //! if constant-time size option is disabled. Constant time otherwise. //! //! Throws: Nothing. size_type size() const { if(constant_time_size) return this->sz_traits().get_size(); else{ return (size_type)node_algorithms::size(this->header_ptr()); } } //! Effects: Swaps the contents of two containers. //! //! Complexity: Constant. //! //! Throws: If the comparison functor's swap call throws. void swap(bstree_impl& other) { //This can throw ::boost::adl_move_swap(this->comp(), this->comp()); //These can't throw node_algorithms::swap_tree(this->header_ptr(), node_ptr(other.header_ptr())); if(constant_time_size){ size_type backup = this->sz_traits().get_size(); this->sz_traits().set_size(other.sz_traits().get_size()); other.sz_traits().set_size(backup); } } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! Cloner should yield to nodes equivalent to the original nodes. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. Copies the predicate from the source container. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws or predicate copy assignment throws. Basic guarantee. template void clone_from(const bstree_impl &src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); if(!src.empty()){ detail::exception_disposer rollback(*this, disposer); node_algorithms::clone (src.header_ptr() ,this->header_ptr() ,detail::node_cloner (cloner, &this->get_value_traits()) ,detail::node_disposer(disposer, &this->get_value_traits())); this->sz_traits().set_size(src.sz_traits().get_size()); this->comp() = src.comp(); rollback.release(); } } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! Cloner should yield to nodes equivalent to the original nodes. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(reference) //! and inserts them on *this. Copies the predicate from the source container. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws or predicate copy assignment throws. Basic guarantee. //! //! Note: This version can modify the source container, useful to implement //! move semantics. template void clone_from(BOOST_RV_REF(bstree_impl) src, Cloner cloner, Disposer disposer) { this->clear_and_dispose(disposer); if(!src.empty()){ detail::exception_disposer rollback(*this, disposer); node_algorithms::clone (src.header_ptr() ,this->header_ptr() ,detail::node_cloner (cloner, &this->get_value_traits()) ,detail::node_disposer(disposer, &this->get_value_traits())); this->sz_traits().set_size(src.sz_traits().get_size()); this->comp() = src.comp(); rollback.release(); } } //! Requires: value must be an lvalue //! //! Effects: Inserts value into the container before the upper bound. //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: If the internal key_compare ordering function throws. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_equal(reference value) { node_ptr to_insert(this->get_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); iterator ret(node_algorithms::insert_equal_upper_bound (this->header_ptr(), to_insert, this->key_node_comp(this->key_comp())), this->priv_value_traits_ptr()); this->sz_traits().increment(); return ret; } //! Requires: value must be an lvalue, and "hint" must be //! a valid iterator. //! //! Effects: Inserts x into the container, using "hint" as a hint to //! where it will be inserted. If "hint" is the upper_bound //! the insertion takes constant time (two comparisons in the worst case) //! //! Complexity: Logarithmic in general, but it is amortized //! constant time if t is inserted immediately before hint. //! //! Throws: If the internal key_compare ordering function throws. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_equal(const_iterator hint, reference value) { node_ptr to_insert(this->get_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); iterator ret(node_algorithms::insert_equal (this->header_ptr(), hint.pointed_node(), to_insert, this->key_node_comp(this->key_comp())), this->priv_value_traits_ptr()); this->sz_traits().increment(); return ret; } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Inserts a each element of a range into the container //! before the upper bound of the key of each element. //! //! Complexity: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert_equal(Iterator b, Iterator e) { iterator iend(this->end()); for (; b != e; ++b) this->insert_equal(iend, *b); } //! Requires: value must be an lvalue //! //! Effects: Inserts value into the container if the value //! is not already present. //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair insert_unique(reference value) { insert_commit_data commit_data; std::pair ret = (node_algorithms::insert_unique_check (this->header_ptr(), key_of_value()(value), this->key_node_comp(this->key_comp()), commit_data)); return std::pair ( ret.second ? this->insert_unique_commit(value, commit_data) : iterator(ret.first, this->priv_value_traits_ptr()) , ret.second); } //! Requires: value must be an lvalue, and "hint" must be //! a valid iterator //! //! Effects: Tries to insert x into the container, using "hint" as a hint //! to where it will be inserted. //! //! Complexity: Logarithmic in general, but it is amortized //! constant time (two comparisons in the worst case) //! if t is inserted immediately before hint. //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert_unique(const_iterator hint, reference value) { insert_commit_data commit_data; std::pair ret = (node_algorithms::insert_unique_check (this->header_ptr(), hint.pointed_node(), key_of_value()(value), this->key_node_comp(this->key_comp()), commit_data)); return ret.second ? this->insert_unique_commit(value, commit_data) : iterator(ret.first, this->priv_value_traits_ptr()); } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Tries to insert each element of a range into the container. //! //! Complexity: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //! Throws: Nothing. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert_unique(Iterator b, Iterator e) { if(this->empty()){ iterator iend(this->end()); for (; b != e; ++b) this->insert_unique(iend, *b); } else{ for (; b != e; ++b) this->insert_unique(*b); } } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED //! Requires: comp must be a comparison function that induces //! the same strict weak ordering as key_compare. The difference is that //! comp compares an arbitrary key with the contained values. //! //! Effects: Checks if a value can be inserted in the container, using //! a user provided key instead of the value itself. //! //! Returns: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //! Complexity: Average complexity is at most logarithmic. //! //! Throws: If the comp ordering function throws. Strong guarantee. //! //! Notes: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that //! part to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This gives a total //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the container. template std::pair insert_unique_check (const KeyType &key, KeyTypeKeyCompare comp, insert_commit_data &commit_data); //! Requires: comp must be a comparison function that induces //! the same strict weak ordering as key_compare. The difference is that //! comp compares an arbitrary key with the contained values. //! //! Effects: Checks if a value can be inserted in the container, using //! a user provided key instead of the value itself, using "hint" //! as a hint to where it will be inserted. //! //! Returns: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //! Complexity: Logarithmic in general, but it's amortized //! constant time if t is inserted immediately before hint. //! //! Throws: If the comp ordering function throws. Strong guarantee. //! //! Notes: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! constructing that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that key //! to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This can give a total //! constant-time complexity to the insertion: check(O(1)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the container. template std::pair insert_unique_check (const_iterator hint, const KeyType &key ,KeyTypeKeyCompare comp, insert_commit_data &commit_data); #endif //#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED //! Requires: value must be an lvalue of type value_type. commit_data //! must have been obtained from a previous call to "insert_check". //! No objects should have been inserted or erased from the container between //! the "insert_check" that filled "commit_data" and the call to "insert_commit". //! //! Effects: Inserts the value in the container using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //! Returns: An iterator to the newly inserted object. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Notes: This function has only sense if a "insert_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. iterator insert_unique_commit(reference value, const insert_commit_data &commit_data) { node_ptr to_insert(this->get_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); node_algorithms::insert_unique_commit (this->header_ptr(), to_insert, commit_data); this->sz_traits().increment(); return iterator(to_insert, this->priv_value_traits_ptr()); } //! Requires: value must be an lvalue, "pos" must be //! a valid iterator (or end) and must be the succesor of value //! once inserted according to the predicate //! //! Effects: Inserts x into the container before "pos". //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Note: This function does not check preconditions so if "pos" is not //! the successor of "value" container ordering invariant will be broken. //! This is a low-level function to be used only for performance reasons //! by advanced users. iterator insert_before(const_iterator pos, reference value) { node_ptr to_insert(this->get_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); this->sz_traits().increment(); return iterator(node_algorithms::insert_before (this->header_ptr(), pos.pointed_node(), to_insert), this->priv_value_traits_ptr()); } //! Requires: value must be an lvalue, and it must be no less //! than the greatest inserted key //! //! Effects: Inserts x into the container in the last position. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Note: This function does not check preconditions so if value is //! less than the greatest inserted key container ordering invariant will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_back(reference value) { node_ptr to_insert(this->get_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); this->sz_traits().increment(); node_algorithms::push_back(this->header_ptr(), to_insert); } //! Requires: value must be an lvalue, and it must be no greater //! than the minimum inserted key //! //! Effects: Inserts x into the container in the first position. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Note: This function does not check preconditions so if value is //! greater than the minimum inserted key container ordering invariant will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_front(reference value) { node_ptr to_insert(this->get_value_traits().to_node_ptr(value)); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); this->sz_traits().increment(); node_algorithms::push_front(this->header_ptr(), to_insert); } //! Effects: Erases the element pointed to by i. //! //! Complexity: Average complexity for erase element is constant time. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator i) { const_iterator ret(i); ++ret; node_ptr to_erase(i.pointed_node()); if(safemode_or_autounlink) BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!node_algorithms::unique(to_erase)); node_algorithms::erase(this->header_ptr(), to_erase); this->sz_traits().decrement(); if(safemode_or_autounlink) node_algorithms::init(to_erase); return ret.unconst(); } //! Effects: Erases the range pointed to by b end e. //! //! Complexity: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator b, const_iterator e) { size_type n; return this->private_erase(b, e, n); } //! Effects: Erases all the elements with the given value. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const key_type &key) { return this->erase(key, this->key_comp()); } //! Effects: Erases all the elements with the given key. //! according to the comparison functor "comp". //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template BOOST_INTRUSIVE_DOC1ST(size_type , typename detail::disable_if_convertible::type) erase(const KeyType& key, KeyTypeKeyCompare comp) { std::pair p = this->equal_range(key, comp); size_type n; this->private_erase(p.first, p.second, n); return n; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element pointed to by i. //! Disposer::operator()(pointer) is called for the removed element. //! //! Complexity: Average complexity for erase element is constant time. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template iterator erase_and_dispose(const_iterator i, Disposer disposer) { node_ptr to_erase(i.pointed_node()); iterator ret(this->erase(i)); disposer(this->get_value_traits().to_value_ptr(to_erase)); return ret; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase_and_dispose(const key_type &key, Disposer disposer) { std::pair p = this->equal_range(key); size_type n; this->private_erase(p.first, p.second, n, disposer); return n; } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Complexity: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template iterator erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) { size_type n; return this->private_erase(b, e, n, disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + N). //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template BOOST_INTRUSIVE_DOC1ST(size_type , typename detail::disable_if_convertible::type) erase_and_dispose(const KeyType& key, KeyTypeKeyCompare comp, Disposer disposer) { std::pair p = this->equal_range(key, comp); size_type n; this->private_erase(p.first, p.second, n, disposer); return n; } //! Effects: Erases all of the elements. //! //! Complexity: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { if(safemode_or_autounlink){ this->clear_and_dispose(detail::null_disposer()); } else{ node_algorithms::init_header(this->header_ptr()); this->sz_traits().set_size(0); } } //! Effects: Erases all of the elements calling disposer(p) for //! each node to be erased. //! Complexity: Average complexity for is at most O(log(size() + N)), //! where N is the number of elements in the container. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. Calls N times to disposer functor. template void clear_and_dispose(Disposer disposer) { node_algorithms::clear_and_dispose(this->header_ptr() , detail::node_disposer(disposer, &this->get_value_traits())); node_algorithms::init_header(this->header_ptr()); this->sz_traits().set_size(0); } //! Effects: Returns the number of contained elements with the given value //! //! Complexity: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given value. //! //! Throws: If `key_compare` throws. size_type count(const key_type &key) const { return size_type(this->count(key, this->key_comp())); } //! Effects: Returns the number of contained elements with the given key //! //! Complexity: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! Throws: If `comp` throws. template size_type count(const KeyType &key, KeyTypeKeyCompare comp) const { std::pair ret = this->equal_range(key, comp); size_type n = 0; for(; ret.first != ret.second; ++ret.first){ ++n; } return n; } #if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) //Add non-const overloads to theoretically const members //as some algorithms have different behavior when non-const versions are used (like splay trees). size_type count(const key_type &key) { return size_type(this->count(key, this->key_comp())); } template size_type count(const KeyType &key, KeyTypeKeyCompare comp) { std::pair ret = this->equal_range(key, comp); size_type n = 0; for(; ret.first != ret.second; ++ret.first){ ++n; } return n; } #else //defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `key_compare` throws. iterator lower_bound(const key_type &key); //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `key_compare` throws. const_iterator lower_bound(const key_type &key) const; //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `comp` throws. template iterator lower_bound(const KeyType &key, KeyTypeKeyCompare comp); //! Effects: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `comp` throws. template const_iterator lower_bound(const KeyType &key, KeyTypeKeyCompare comp) const; //! Effects: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `key_compare` throws. iterator upper_bound(const key_type &key); //! Effects: Returns an iterator to the first element whose //! key is greater than k according to comp or end() if that element //! does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `comp` throws. template iterator upper_bound(const KeyType &key, KeyTypeKeyCompare comp); //! Effects: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `key_compare` throws. const_iterator upper_bound(const key_type &key) const; //! Effects: Returns an iterator to the first element whose //! key is greater than k according to comp or end() if that element //! does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `comp` throws. template const_iterator upper_bound(const KeyType &key, KeyTypeKeyCompare comp) const; //! Effects: Finds an iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `key_compare` throws. iterator find(const key_type &key); //! Effects: Finds an iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `comp` throws. template iterator find(const KeyType &key, KeyTypeKeyCompare comp); //! Effects: Finds a const_iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `key_compare` throws. const_iterator find(const key_type &key) const; //! Effects: Finds a const_iterator to the first element whose key is //! k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If `comp` throws. template const_iterator find(const KeyType &key, KeyTypeKeyCompare comp) const; //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If `key_compare` throws. std::pair equal_range(const key_type &key); //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If `comp` throws. template std::pair equal_range(const KeyType &key, KeyTypeKeyCompare comp); //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If `key_compare` throws. std::pair equal_range(const key_type &key) const; //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If `comp` throws. template std::pair equal_range(const KeyType &key, KeyTypeKeyCompare comp) const; //! Requires: 'lower_key' must not be greater than 'upper_key'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If `key_compare` throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. //! //! Note: Experimental function, the interface might change in future releases. std::pair bounded_range (const key_type &lower_key, const key_type &upper_value, bool left_closed, bool right_closed); //! Requires: KeyTypeKeyCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the container. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If `comp` throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. //! //! Note: Experimental function, the interface might change in future releases. template std::pair bounded_range (const KeyType &lower_key, const KeyType &upper_key, KeyTypeKeyCompare comp, bool left_closed, bool right_closed); //! Requires: 'lower_key' must not be greater than 'upper_key'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If `key_compare` throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. //! //! Note: Experimental function, the interface might change in future releases. std::pair bounded_range (const key_type &lower_key, const key_type &upper_key, bool left_closed, bool right_closed) const; //! Requires: KeyTypeKeyCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the container. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If `comp` throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. //! //! Note: Experimental function, the interface might change in future releases. template std::pair bounded_range (const KeyType &lower_key, const KeyType &upper_key, KeyTypeKeyCompare comp, bool left_closed, bool right_closed) const; //! Requires: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator i belonging to the set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static iterator s_iterator_to(reference value); //! Requires: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static const_iterator s_iterator_to(const_reference value); //! Requires: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator i belonging to the set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. iterator iterator_to(reference value); //! Requires: value must be an lvalue and shall be in a set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator i belonging to the //! set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator iterator_to(const_reference value) const; //! Requires: value shall not be in a container. //! //! Effects: init_node puts the hook of a value in a well-known default //! state. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value); #endif //#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) //! Effects: Unlinks the leftmost node from the container. //! //! Complexity: Average complexity is constant time. //! //! Throws: Nothing. //! //! Notes: This function breaks the container and the container can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the container. pointer unlink_leftmost_without_rebalance() { node_ptr to_be_disposed(node_algorithms::unlink_leftmost_without_rebalance (this->header_ptr())); if(!to_be_disposed) return 0; this->sz_traits().decrement(); if(safemode_or_autounlink)//If this is commented does not work with normal_link node_algorithms::init(to_be_disposed); return this->get_value_traits().to_value_ptr(to_be_disposed); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) //! Requires: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any container. //! //! Effects: Replaces replace_this in its position in the //! container with with_this. The container does not need to be rebalanced. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this); //! Effects: Rebalances the tree. //! //! Throws: Nothing. //! //! Complexity: Linear. void rebalance(); //! Requires: old_root is a node of a tree. //! //! Effects: Rebalances the subtree rooted at old_root. //! //! Returns: The new root of the subtree. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements in the subtree. iterator rebalance_subtree(iterator root); #endif //#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) //! Effects: removes "value" from the container. //! //! Throws: Nothing. //! //! Complexity: Logarithmic time. //! //! Note: This static function is only usable with non-constant //! time size containers that have stateless comparison functors. //! //! If the user calls //! this function with a constant time size container or stateful comparison //! functor a compilation error will be issued. static void remove_node(reference value) { BOOST_STATIC_ASSERT((!constant_time_size)); node_ptr to_remove(value_traits::to_node_ptr(value)); node_algorithms::unlink(to_remove); if(safemode_or_autounlink) node_algorithms::init(to_remove); } //! Effects: Asserts the integrity of the container with additional checks provided by the user. //! //! Complexity: Linear time. //! //! Note: The method might not have effect when asserts are turned off (e.g., with NDEBUG). //! Experimental function, interface might change in future versions. template void check(ExtraChecker extra_checker) const { typedef detail::key_nodeptr_comp nodeptr_comp_t; nodeptr_comp_t nodeptr_comp(this->key_comp(), &this->get_value_traits()); typedef typename get_node_checker::type node_checker_t; typename node_checker_t::return_type checker_return; node_algorithms::check(this->header_ptr(), node_checker_t(nodeptr_comp, extra_checker), checker_return); if (constant_time_size) BOOST_INTRUSIVE_INVARIANT_ASSERT(this->sz_traits().get_size() == checker_return.node_count); } //! Effects: Asserts the integrity of the container. //! //! Complexity: Linear time. //! //! Note: The method has no effect when asserts are turned off (e.g., with NDEBUG). //! Experimental function, interface might change in future versions. void check() const { check(detail::empty_node_checker()); } friend bool operator==(const bstree_impl &x, const bstree_impl &y) { if(constant_time_size && x.size() != y.size()){ return false; } return boost::intrusive::algo_equal(x.cbegin(), x.cend(), y.cbegin(), y.cend()); } friend bool operator!=(const bstree_impl &x, const bstree_impl &y) { return !(x == y); } friend bool operator<(const bstree_impl &x, const bstree_impl &y) { return ::boost::intrusive::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } friend bool operator>(const bstree_impl &x, const bstree_impl &y) { return y < x; } friend bool operator<=(const bstree_impl &x, const bstree_impl &y) { return !(x > y); } friend bool operator>=(const bstree_impl &x, const bstree_impl &y) { return !(x < y); } friend void swap(bstree_impl &x, bstree_impl &y) { x.swap(y); } /// @cond private: template iterator private_erase(const_iterator b, const_iterator e, size_type &n, Disposer disposer) { for(n = 0; b != e; ++n) this->erase_and_dispose(b++, disposer); return b.unconst(); } iterator private_erase(const_iterator b, const_iterator e, size_type &n) { for(n = 0; b != e; ++n) this->erase(b++); return b.unconst(); } /// @endcond }; //! Helper metafunction to define a \c bstree that yields to the same type when the //! same options (either explicitly or implicitly) are used. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif struct make_bstree { /// @cond typedef typename pack_options < bstree_defaults, #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) O1, O2, O3, O4, O5, O6 #else Options... #endif >::type packed_options; typedef typename detail::get_value_traits ::type value_traits; typedef bstree_impl < value_traits , typename packed_options::key_of_value , typename packed_options::compare , typename packed_options::size_type , packed_options::constant_time_size , BsTreeAlgorithms , typename packed_options::header_holder_type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif class bstree : public make_bstree::type { typedef typename make_bstree ::type Base; BOOST_MOVABLE_BUT_NOT_COPYABLE(bstree) public: typedef typename Base::key_compare key_compare; typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same::value)); bstree( const key_compare &cmp = key_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, v_traits) {} template bstree( bool unique, Iterator b, Iterator e , const key_compare &cmp = key_compare() , const value_traits &v_traits = value_traits()) : Base(unique, b, e, cmp, v_traits) {} bstree(BOOST_RV_REF(bstree) x) : Base(BOOST_MOVE_BASE(Base, x)) {} bstree& operator=(BOOST_RV_REF(bstree) x) { return static_cast(this->Base::operator=(BOOST_MOVE_BASE(Base, x))); } template void clone_from(const bstree &src, Cloner cloner, Disposer disposer) { Base::clone_from(src, cloner, disposer); } template void clone_from(BOOST_RV_REF(bstree) src, Cloner cloner, Disposer disposer) { Base::clone_from(BOOST_MOVE_BASE(Base, src), cloner, disposer); } static bstree &container_from_end_iterator(iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static const bstree &container_from_end_iterator(const_iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static bstree &container_from_iterator(iterator it) { return static_cast(Base::container_from_iterator(it)); } static const bstree &container_from_iterator(const_iterator it) { return static_cast(Base::container_from_iterator(it)); } }; #endif } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_BSTREE_HPP