// boost heap: wrapper for stl heap // // Copyright (C) 2010 Tim Blechmann // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_HEAP_PRIORITY_QUEUE_HPP #define BOOST_HEAP_PRIORITY_QUEUE_HPP #include #include #include #include #include #include #include #ifdef BOOST_HAS_PRAGMA_ONCE #pragma once #endif namespace boost { namespace heap { namespace detail { typedef parameter::parameters, boost::parameter::optional, boost::parameter::optional, boost::parameter::optional > priority_queue_signature; } /** * \class priority_queue * \brief priority queue, based on stl heap functions * * The priority_queue class is a wrapper for the stl heap functions.
* The template parameter T is the type to be managed by the container. * The user can specify additional options and if no options are provided default options are used. * * The container supports the following options: * - \c boost::heap::compare<>, defaults to \c compare > * - \c boost::heap::stable<>, defaults to \c stable * - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type * - \c boost::heap::allocator<>, defaults to \c allocator > * */ #ifdef BOOST_DOXYGEN_INVOKED template #else template #endif class priority_queue: private detail::make_heap_base::type, false>::type { typedef detail::make_heap_base::type, false> heap_base_maker; typedef typename heap_base_maker::type super_t; typedef typename super_t::internal_type internal_type; typedef typename heap_base_maker::allocator_argument::template rebind::other internal_type_allocator; typedef std::vector container_type; template friend struct detail::heap_merge_emulate; container_type q_; #ifndef BOOST_DOXYGEN_INVOKED struct implementation_defined: detail::extract_allocator_types { typedef typename heap_base_maker::compare_argument value_compare; typedef detail::stable_heap_iterator iterator; typedef iterator const_iterator; typedef typename container_type::allocator_type allocator_type; }; #endif public: typedef T value_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::allocator_type allocator_type; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; /** * \b Note: The iterator does not traverse the priority queue in order of the priorities. * */ typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; static const bool constant_time_size = true; static const bool has_ordered_iterators = false; static const bool is_mergable = false; static const bool is_stable = heap_base_maker::is_stable; static const bool has_reserve = true; /** * \b Effects: constructs an empty priority queue. * * \b Complexity: Constant. * * */ explicit priority_queue(value_compare const & cmp = value_compare()): super_t(cmp) {} /** * \b Effects: copy-constructs priority queue from rhs. * * \b Complexity: Linear. * * */ priority_queue (priority_queue const & rhs): super_t(rhs), q_(rhs.q_) {} #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES /** * \b Effects: C++11-style move constructor. * * \b Complexity: Constant. * * \b Note: Only available, if BOOST_NO_CXX11_RVALUE_REFERENCES is not defined * */ priority_queue(priority_queue && rhs) BOOST_NOEXCEPT_IF(boost::is_nothrow_move_constructible::value): super_t(std::move(rhs)), q_(std::move(rhs.q_)) {} /** * \b Effects: C++11-style move assignment. * * \b Complexity: Constant. * * \b Note: Only available, if BOOST_NO_CXX11_RVALUE_REFERENCES is not defined * */ priority_queue & operator=(priority_queue && rhs) BOOST_NOEXCEPT_IF(boost::is_nothrow_move_assignable::value) { super_t::operator=(std::move(rhs)); q_ = std::move(rhs.q_); return *this; } #endif /** * \b Effects: Assigns priority queue from rhs. * * \b Complexity: Linear. * * */ priority_queue & operator=(priority_queue const & rhs) { static_cast(*this) = static_cast(rhs); q_ = rhs.q_; return *this; } /** * \b Effects: Returns true, if the priority queue contains no elements. * * \b Complexity: Constant. * * */ bool empty(void) const BOOST_NOEXCEPT { return q_.empty(); } /** * \b Effects: Returns the number of elements contained in the priority queue. * * \b Complexity: Constant. * * */ size_type size(void) const BOOST_NOEXCEPT { return q_.size(); } /** * \b Effects: Returns the maximum number of elements the priority queue can contain. * * \b Complexity: Constant. * * */ size_type max_size(void) const BOOST_NOEXCEPT { return q_.max_size(); } /** * \b Effects: Removes all elements from the priority queue. * * \b Complexity: Linear. * * */ void clear(void) BOOST_NOEXCEPT { q_.clear(); } /** * \b Effects: Returns allocator. * * \b Complexity: Constant. * * */ allocator_type get_allocator(void) const { return q_.get_allocator(); } /** * \b Effects: Returns a const_reference to the maximum element. * * \b Complexity: Constant. * * */ const_reference top(void) const { BOOST_ASSERT(!empty()); return super_t::get_value(q_.front()); } /** * \b Effects: Adds a new element to the priority queue. * * \b Complexity: Logarithmic (amortized). Linear (worst case). * * */ void push(value_type const & v) { q_.push_back(super_t::make_node(v)); std::push_heap(q_.begin(), q_.end(), static_cast(*this)); } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) /** * \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. * * \b Complexity: Logarithmic (amortized). Linear (worst case). * * */ template void emplace(Args&&... args) { q_.emplace_back(super_t::make_node(std::forward(args)...)); std::push_heap(q_.begin(), q_.end(), static_cast(*this)); } #endif /** * \b Effects: Removes the top element from the priority queue. * * \b Complexity: Logarithmic (amortized). Linear (worst case). * * */ void pop(void) { BOOST_ASSERT(!empty()); std::pop_heap(q_.begin(), q_.end(), static_cast(*this)); q_.pop_back(); } /** * \b Effects: Swaps two priority queues. * * \b Complexity: Constant. * * */ void swap(priority_queue & rhs) BOOST_NOEXCEPT_IF(boost::is_nothrow_move_constructible::value && boost::is_nothrow_move_assignable::value) { super_t::swap(rhs); q_.swap(rhs.q_); } /** * \b Effects: Returns an iterator to the first element contained in the priority queue. * * \b Complexity: Constant. * * */ iterator begin(void) const BOOST_NOEXCEPT { return iterator(q_.begin()); } /** * \b Effects: Returns an iterator to the end of the priority queue. * * \b Complexity: Constant. * * */ iterator end(void) const BOOST_NOEXCEPT { return iterator(q_.end()); } /** * \b Effects: Reserves memory for element_count elements * * \b Complexity: Linear. * * \b Node: Invalidates iterators * * */ void reserve(size_type element_count) { q_.reserve(element_count); } /** * \b Effect: Returns the value_compare object used by the priority queue * * */ value_compare const & value_comp(void) const { return super_t::value_comp(); } /** * \b Returns: Element-wise comparison of heap data structures * * \b Requirement: the \c value_compare object of both heaps must match. * * */ template bool operator<(HeapType const & rhs) const { return detail::heap_compare(*this, rhs); } /** * \b Returns: Element-wise comparison of heap data structures * * \b Requirement: the \c value_compare object of both heaps must match. * * */ template bool operator>(HeapType const & rhs) const { return detail::heap_compare(rhs, *this); } /** * \b Returns: Element-wise comparison of heap data structures * * \b Requirement: the \c value_compare object of both heaps must match. * * */ template bool operator>=(HeapType const & rhs) const { return !operator<(rhs); } /** * \b Returns: Element-wise comparison of heap data structures * * \b Requirement: the \c value_compare object of both heaps must match. * * */ template bool operator<=(HeapType const & rhs) const { return !operator>(rhs); } /** \brief Equivalent comparison * \b Returns: True, if both heap data structures are equivalent. * * \b Requirement: the \c value_compare object of both heaps must match. * * */ template bool operator==(HeapType const & rhs) const { return detail::heap_equality(*this, rhs); } /** \brief Equivalent comparison * \b Returns: True, if both heap data structures are not equivalent. * * \b Requirement: the \c value_compare object of both heaps must match. * * */ template bool operator!=(HeapType const & rhs) const { return !(*this == rhs); } }; } /* namespace heap */ } /* namespace boost */ #endif /* BOOST_HEAP_PRIORITY_QUEUE_HPP */