/** * * Copyright (c) 2010 Matthias Walter (xammy@xammy.homelinux.net) * * Authors: Matthias Walter * * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * */ #ifndef BOOST_GRAPH_BIPARTITE_HPP #define BOOST_GRAPH_BIPARTITE_HPP #include #include #include #include #include #include #include #include namespace boost { namespace detail { /** * The bipartite_visitor_error is thrown if an edge cannot be colored. * The witnesses are the edges incident vertices. */ template struct bipartite_visitor_error: std::exception { std::pair witnesses; bipartite_visitor_error (Vertex a, Vertex b) : witnesses (a, b) { } const char* what () const throw () { return "Graph is not bipartite."; } }; /** * Functor which colors edges to be non-monochromatic. */ template struct bipartition_colorize { typedef on_tree_edge event_filter; bipartition_colorize (PartitionMap partition_map) : partition_map_ (partition_map) { } template void operator() (Edge e, const Graph& g) { typedef typename graph_traits ::vertex_descriptor vertex_descriptor_t; typedef color_traits ::value_type> color_traits; vertex_descriptor_t source_vertex = source (e, g); vertex_descriptor_t target_vertex = target (e, g); if (get (partition_map_, source_vertex) == color_traits::white ()) put (partition_map_, target_vertex, color_traits::black ()); else put (partition_map_, target_vertex, color_traits::white ()); } private: PartitionMap partition_map_; }; /** * Creates a bipartition_colorize functor which colors edges * to be non-monochromatic. * * @param partition_map Color map for the bipartition * @return The functor. */ template inline bipartition_colorize colorize_bipartition (PartitionMap partition_map) { return bipartition_colorize (partition_map); } /** * Functor which tests an edge to be monochromatic. */ template struct bipartition_check { typedef on_back_edge event_filter; bipartition_check (PartitionMap partition_map) : partition_map_ (partition_map) { } template void operator() (Edge e, const Graph& g) { typedef typename graph_traits ::vertex_descriptor vertex_descriptor_t; vertex_descriptor_t source_vertex = source (e, g); vertex_descriptor_t target_vertex = target (e, g); if (get (partition_map_, source_vertex) == get (partition_map_, target_vertex)) throw bipartite_visitor_error (source_vertex, target_vertex); } private: PartitionMap partition_map_; }; /** * Creates a bipartition_check functor which raises an error if a * monochromatic edge is found. * * @param partition_map The map for a bipartition. * @return The functor. */ template inline bipartition_check check_bipartition (PartitionMap partition_map) { return bipartition_check (partition_map); } /** * Find the beginning of a common suffix of two sequences * * @param sequence1 Pair of bidirectional iterators defining the first sequence. * @param sequence2 Pair of bidirectional iterators defining the second sequence. * @return Pair of iterators pointing to the beginning of the common suffix. */ template inline std::pair reverse_mismatch (std::pair < BiDirectionalIterator1, BiDirectionalIterator1> sequence1, std::pair sequence2) { if (sequence1.first == sequence1.second || sequence2.first == sequence2.second) return std::make_pair (sequence1.first, sequence2.first); BiDirectionalIterator1 iter1 = sequence1.second; BiDirectionalIterator2 iter2 = sequence2.second; while (true) { --iter1; --iter2; if (*iter1 != *iter2) { ++iter1; ++iter2; break; } if (iter1 == sequence1.first) break; if (iter2 == sequence2.first) break; } return std::make_pair (iter1, iter2); } } /** * Checks a given graph for bipartiteness and fills the given color map with * white and black according to the bipartition. If the graph is not * bipartite, the contents of the color map are undefined. Runs in linear * time in the size of the graph, if access to the property maps is in * constant time. * * @param graph The given graph. * @param index_map An index map associating vertices with an index. * @param partition_map A color map to fill with the bipartition. * @return true if and only if the given graph is bipartite. */ template bool is_bipartite (const Graph& graph, const IndexMap index_map, PartitionMap partition_map) { /// General types and variables typedef typename property_traits ::value_type partition_color_t; typedef typename graph_traits ::vertex_descriptor vertex_descriptor_t; typedef typename graph_traits ::vertex_iterator vertex_iterator_t; /// Declare dfs visitor // detail::empty_recorder recorder; // typedef detail::bipartite_visitor dfs_visitor_t; // dfs_visitor_t dfs_visitor (partition_map, recorder); /// Call dfs try { depth_first_search (graph, vertex_index_map (index_map).visitor (make_dfs_visitor (std::make_pair ( detail::colorize_bipartition (partition_map), std::make_pair (detail::check_bipartition (partition_map), put_property (partition_map, color_traits ::white (), on_start_vertex ())))))); } catch (detail::bipartite_visitor_error error) { return false; } return true; } /** * Checks a given graph for bipartiteness. * * @param graph The given graph. * @param index_map An index map associating vertices with an index. * @return true if and only if the given graph is bipartite. */ template bool is_bipartite (const Graph& graph, const IndexMap index_map) { typedef one_bit_color_map partition_map_t; partition_map_t partition_map (num_vertices (graph), index_map); return is_bipartite (graph, index_map, partition_map); } /** * Checks a given graph for bipartiteness. The graph must * have an internal vertex_index property. Runs in linear time in the * size of the graph, if access to the property maps is in constant time. * * @param graph The given graph. * @return true if and only if the given graph is bipartite. */ template bool is_bipartite (const Graph& graph) { return is_bipartite (graph, get (vertex_index, graph)); } /** * Checks a given graph for bipartiteness and fills a given color map with * white and black according to the bipartition. If the graph is not * bipartite, a sequence of vertices, producing an odd-cycle, is written to * the output iterator. The final iterator value is returned. Runs in linear * time in the size of the graph, if access to the property maps is in * constant time. * * @param graph The given graph. * @param index_map An index map associating vertices with an index. * @param partition_map A color map to fill with the bipartition. * @param result An iterator to write the odd-cycle vertices to. * @return The final iterator value after writing. */ template OutputIterator find_odd_cycle (const Graph& graph, const IndexMap index_map, PartitionMap partition_map, OutputIterator result) { /// General types and variables typedef typename property_traits ::value_type partition_color_t; typedef typename graph_traits ::vertex_descriptor vertex_descriptor_t; typedef typename graph_traits ::vertex_iterator vertex_iterator_t; vertex_iterator_t vertex_iter, vertex_end; /// Declare predecessor map typedef std::vector predecessors_t; typedef iterator_property_map predecessor_map_t; predecessors_t predecessors (num_vertices (graph), graph_traits ::null_vertex ()); predecessor_map_t predecessor_map (predecessors.begin (), index_map); /// Initialize predecessor map for (boost::tie (vertex_iter, vertex_end) = vertices (graph); vertex_iter != vertex_end; ++vertex_iter) { put (predecessor_map, *vertex_iter, *vertex_iter); } /// Call dfs try { depth_first_search (graph, vertex_index_map (index_map).visitor (make_dfs_visitor (std::make_pair ( detail::colorize_bipartition (partition_map), std::make_pair (detail::check_bipartition (partition_map), std::make_pair (put_property (partition_map, color_traits ::white (), on_start_vertex ()), record_predecessors (predecessor_map, on_tree_edge ()))))))); } catch (detail::bipartite_visitor_error error) { typedef std::vector path_t; path_t path1, path2; vertex_descriptor_t next, current; /// First path next = error.witnesses.first; do { current = next; path1.push_back (current); next = predecessor_map[current]; } while (current != next); /// Second path next = error.witnesses.second; do { current = next; path2.push_back (current); next = predecessor_map[current]; } while (current != next); /// Find beginning of common suffix std::pair mismatch = detail::reverse_mismatch ( std::make_pair (path1.begin (), path1.end ()), std::make_pair (path2.begin (), path2.end ())); /// Copy the odd-length cycle result = std::copy (path1.begin (), mismatch.first + 1, result); return std::reverse_copy (path2.begin (), mismatch.second, result); } return result; } /** * Checks a given graph for bipartiteness. If the graph is not bipartite, a * sequence of vertices, producing an odd-cycle, is written to the output * iterator. The final iterator value is returned. Runs in linear time in the * size of the graph, if access to the property maps is in constant time. * * @param graph The given graph. * @param index_map An index map associating vertices with an index. * @param result An iterator to write the odd-cycle vertices to. * @return The final iterator value after writing. */ template OutputIterator find_odd_cycle (const Graph& graph, const IndexMap index_map, OutputIterator result) { typedef one_bit_color_map partition_map_t; partition_map_t partition_map (num_vertices (graph), index_map); return find_odd_cycle (graph, index_map, partition_map, result); } /** * Checks a given graph for bipartiteness. If the graph is not bipartite, a * sequence of vertices, producing an odd-cycle, is written to the output * iterator. The final iterator value is returned. The graph must have an * internal vertex_index property. Runs in linear time in the size of the * graph, if access to the property maps is in constant time. * * @param graph The given graph. * @param result An iterator to write the odd-cycle vertices to. * @return The final iterator value after writing. */ template OutputIterator find_odd_cycle (const Graph& graph, OutputIterator result) { return find_odd_cycle (graph, get (vertex_index, graph), result); } } #endif /// BOOST_GRAPH_BIPARTITE_HPP