#ifndef BOOST_GEOMETRY_PROJECTIONS_TPEQD_HPP #define BOOST_GEOMETRY_PROJECTIONS_TPEQD_HPP // Boost.Geometry - extensions-gis-projections (based on PROJ4) // This file is automatically generated. DO NOT EDIT. // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017. // Modifications copyright (c) 2017, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from PROJ4, http://trac.osgeo.org/proj // PROJ4 is originally written by Gerald Evenden (then of the USGS) // PROJ4 is maintained by Frank Warmerdam // PROJ4 is converted to Boost.Geometry by Barend Gehrels // Last updated version of proj: 4.9.1 // Original copyright notice: // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace srs { namespace par4 { struct tpeqd {}; }} //namespace srs::par4 namespace projections { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace tpeqd { template struct par_tpeqd { T cp1, sp1, cp2, sp2, ccs, cs, sc, r2z0, z02, dlam2; T hz0, thz0, rhshz0, ca, sa, lp, lamc; }; // template class, using CRTP to implement forward/inverse template struct base_tpeqd_spheroid : public base_t_fi, CalculationType, Parameters> { typedef CalculationType geographic_type; typedef CalculationType cartesian_type; par_tpeqd m_proj_parm; inline base_tpeqd_spheroid(const Parameters& par) : base_t_fi, CalculationType, Parameters>(*this, par) {} // FORWARD(s_forward) sphere // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(geographic_type& lp_lon, geographic_type& lp_lat, cartesian_type& xy_x, cartesian_type& xy_y) const { CalculationType t, z1, z2, dl1, dl2, sp, cp; sp = sin(lp_lat); cp = cos(lp_lat); z1 = aacos(this->m_proj_parm.sp1 * sp + this->m_proj_parm.cp1 * cp * cos(dl1 = lp_lon + this->m_proj_parm.dlam2)); z2 = aacos(this->m_proj_parm.sp2 * sp + this->m_proj_parm.cp2 * cp * cos(dl2 = lp_lon - this->m_proj_parm.dlam2)); z1 *= z1; z2 *= z2; xy_x = this->m_proj_parm.r2z0 * (t = z1 - z2); t = this->m_proj_parm.z02 - t; xy_y = this->m_proj_parm.r2z0 * asqrt(4. * this->m_proj_parm.z02 * z2 - t * t); if ((this->m_proj_parm.ccs * sp - cp * (this->m_proj_parm.cs * sin(dl1) - this->m_proj_parm.sc * sin(dl2))) < 0.) xy_y = -xy_y; } // INVERSE(s_inverse) sphere // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(cartesian_type& xy_x, cartesian_type& xy_y, geographic_type& lp_lon, geographic_type& lp_lat) const { CalculationType cz1, cz2, s, d, cp, sp; cz1 = cos(boost::math::hypot(xy_y, xy_x + this->m_proj_parm.hz0)); cz2 = cos(boost::math::hypot(xy_y, xy_x - this->m_proj_parm.hz0)); s = cz1 + cz2; d = cz1 - cz2; lp_lon = - atan2(d, (s * this->m_proj_parm.thz0)); lp_lat = aacos(boost::math::hypot(this->m_proj_parm.thz0 * s, d) * this->m_proj_parm.rhshz0); if ( xy_y < 0. ) lp_lat = - lp_lat; /* lam--phi now in system relative to P1--P2 base equator */ sp = sin(lp_lat); cp = cos(lp_lat); lp_lat = aasin(this->m_proj_parm.sa * sp + this->m_proj_parm.ca * cp * (s = cos(lp_lon -= this->m_proj_parm.lp))); lp_lon = atan2(cp * sin(lp_lon), this->m_proj_parm.sa * cp * s - this->m_proj_parm.ca * sp) + this->m_proj_parm.lamc; } static inline std::string get_name() { return "tpeqd_spheroid"; } }; // Two Point Equidistant template inline void setup_tpeqd(Parameters& par, par_tpeqd& proj_parm) { T lam_1, lam_2, phi_1, phi_2, A12, pp; /* get control point locations */ phi_1 = pj_param(par.params, "rlat_1").f; lam_1 = pj_param(par.params, "rlon_1").f; phi_2 = pj_param(par.params, "rlat_2").f; lam_2 = pj_param(par.params, "rlon_2").f; if (phi_1 == phi_2 && lam_1 == lam_2) BOOST_THROW_EXCEPTION( projection_exception(-25) ); par.lam0 = adjlon(0.5 * (lam_1 + lam_2)); proj_parm.dlam2 = adjlon(lam_2 - lam_1); proj_parm.cp1 = cos(phi_1); proj_parm.cp2 = cos(phi_2); proj_parm.sp1 = sin(phi_1); proj_parm.sp2 = sin(phi_2); proj_parm.cs = proj_parm.cp1 * proj_parm.sp2; proj_parm.sc = proj_parm.sp1 * proj_parm.cp2; proj_parm.ccs = proj_parm.cp1 * proj_parm.cp2 * sin(proj_parm.dlam2); proj_parm.z02 = aacos(proj_parm.sp1 * proj_parm.sp2 + proj_parm.cp1 * proj_parm.cp2 * cos(proj_parm.dlam2)); proj_parm.hz0 = .5 * proj_parm.z02; A12 = atan2(proj_parm.cp2 * sin(proj_parm.dlam2), proj_parm.cp1 * proj_parm.sp2 - proj_parm.sp1 * proj_parm.cp2 * cos(proj_parm.dlam2)); proj_parm.ca = cos(pp = aasin(proj_parm.cp1 * sin(A12))); proj_parm.sa = sin(pp); proj_parm.lp = adjlon(atan2(proj_parm.cp1 * cos(A12), proj_parm.sp1) - proj_parm.hz0); proj_parm.dlam2 *= .5; proj_parm.lamc = geometry::math::half_pi() - atan2(sin(A12) * proj_parm.sp1, cos(A12)) - proj_parm.dlam2; proj_parm.thz0 = tan(proj_parm.hz0); proj_parm.rhshz0 = .5 / sin(proj_parm.hz0); proj_parm.r2z0 = 0.5 / proj_parm.z02; proj_parm.z02 *= proj_parm.z02; par.es = 0.; } }} // namespace detail::tpeqd #endif // doxygen /*! \brief Two Point Equidistant projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Miscellaneous - Spheroid \par Projection parameters - lat_1: Latitude of first standard parallel (degrees) - lon_1 (degrees) - lat_2: Latitude of second standard parallel (degrees) - lon_2 (degrees) \par Example \image html ex_tpeqd.gif */ template struct tpeqd_spheroid : public detail::tpeqd::base_tpeqd_spheroid { inline tpeqd_spheroid(const Parameters& par) : detail::tpeqd::base_tpeqd_spheroid(par) { detail::tpeqd::setup_tpeqd(this->m_par, this->m_proj_parm); } }; #ifndef DOXYGEN_NO_DETAIL namespace detail { // Static projection BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION(srs::par4::tpeqd, tpeqd_spheroid, tpeqd_spheroid) // Factory entry(s) template class tpeqd_entry : public detail::factory_entry { public : virtual base_v* create_new(const Parameters& par) const { return new base_v_fi, CalculationType, Parameters>(par); } }; template inline void tpeqd_init(detail::base_factory& factory) { factory.add_to_factory("tpeqd", new tpeqd_entry); } } // namespace detail #endif // doxygen } // namespace projections }} // namespace boost::geometry #endif // BOOST_GEOMETRY_PROJECTIONS_TPEQD_HPP