#ifndef BOOST_GEOMETRY_PROJECTIONS_OB_TRAN_HPP #define BOOST_GEOMETRY_PROJECTIONS_OB_TRAN_HPP // Boost.Geometry - extensions-gis-projections (based on PROJ4) // This file is automatically generated. DO NOT EDIT. // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017, 2018. // Modifications copyright (c) 2017-2018, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from PROJ4, http://trac.osgeo.org/proj // PROJ4 is originally written by Gerald Evenden (then of the USGS) // PROJ4 is maintained by Frank Warmerdam // PROJ4 is converted to Boost.Geometry by Barend Gehrels // Last updated version of proj: 4.9.1 // Original copyright notice: // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace srs { namespace par4 { //struct ob_tran_oblique {}; //struct ob_tran_transverse {}; struct ob_tran {}; }} //namespace srs::par4 namespace projections { #ifndef DOXYGEN_NO_DETAIL namespace detail { // fwd declaration needed below template inline detail::base_v >* create_new(parameters const& parameters); } // namespace detail namespace detail { namespace ob_tran { static const double TOL = 1e-10; template inline Parameters o_proj_parameters(Parameters const& par) { Parameters pj; /* get name of projection to be translated */ pj.name = pj_param(par.params, "so_proj").s; /* copy existing header into new */ pj.params = par.params; pj.over = par.over; pj.geoc = par.geoc; pj.a = par.a; pj.es = par.es; pj.ra = par.ra; pj.lam0 = par.lam0; pj.phi0 = par.phi0; pj.x0 = par.x0; pj.y0 = par.y0; pj.k0 = par.k0; /* force spherical earth */ pj.one_es = pj.rone_es = 1.; pj.es = pj.e = 0.; return pj; } template struct par_ob_tran { par_ob_tran(Parameters const& par) : link(projections::detail::create_new(o_proj_parameters(par))) { if (! link.get()) BOOST_THROW_EXCEPTION( projection_exception(-26) ); } template inline void fwd(T& lp_lon, T& lp_lat, T& xy_x, T& xy_y) const { link->fwd(lp_lon, lp_lat, xy_x, xy_y); } template inline void inv(T& xy_x, T& xy_y, T& lp_lon, T& lp_lat) const { link->inv(xy_x, xy_y, lp_lon, lp_lat); } boost::shared_ptr > link; CalculationType lamp; CalculationType cphip, sphip; }; template struct par_ob_tran_static { typedef typename srs::par4::detail::pick_o_proj_tag < StaticParameters >::type o_proj_tag; typedef typename projections::detail::static_projection_type < o_proj_tag, srs_sphere_tag, // force spherical StaticParameters, CalculationType, Parameters >::type projection_type; par_ob_tran_static(Parameters const& par) : link(o_proj_parameters(par)) {} template inline void fwd(T& lp_lon, T& lp_lat, T& xy_x, T& xy_y) const { link.fwd(lp_lon, lp_lat, xy_x, xy_y); } template inline void inv(T& xy_x, T& xy_y, T& lp_lon, T& lp_lat) const { link.inv(xy_x, xy_y, lp_lon, lp_lat); } projection_type link; CalculationType lamp; CalculationType cphip, sphip; }; template inline void o_forward(T& lp_lon, T& lp_lat, T& xy_x, T& xy_y, Par const& proj_parm) { T coslam, sinphi, cosphi; coslam = cos(lp_lon); sinphi = sin(lp_lat); cosphi = cos(lp_lat); lp_lon = adjlon(aatan2(cosphi * sin(lp_lon), proj_parm.sphip * cosphi * coslam + proj_parm.cphip * sinphi) + proj_parm.lamp); lp_lat = aasin(proj_parm.sphip * sinphi - proj_parm.cphip * cosphi * coslam); proj_parm.fwd(lp_lon, lp_lat, xy_x, xy_y); } template inline void o_inverse(T& xy_x, T& xy_y, T& lp_lon, T& lp_lat, Par const& proj_parm) { T coslam, sinphi, cosphi; proj_parm.inv(xy_x, xy_y, lp_lon, lp_lat); if (lp_lon != HUGE_VAL) { coslam = cos(lp_lon -= proj_parm.lamp); sinphi = sin(lp_lat); cosphi = cos(lp_lat); lp_lat = aasin(proj_parm.sphip * sinphi + proj_parm.cphip * cosphi * coslam); lp_lon = aatan2(cosphi * sin(lp_lon), proj_parm.sphip * cosphi * coslam - proj_parm.cphip * sinphi); } } template inline void t_forward(T& lp_lon, T& lp_lat, T& xy_x, T& xy_y, Par const& proj_parm) { T cosphi, coslam; cosphi = cos(lp_lat); coslam = cos(lp_lon); lp_lon = adjlon(aatan2(cosphi * sin(lp_lon), sin(lp_lat)) + proj_parm.lamp); lp_lat = aasin(- cosphi * coslam); proj_parm.fwd(lp_lon, lp_lat, xy_x, xy_y); } template inline void t_inverse(T& xy_x, T& xy_y, T& lp_lon, T& lp_lat, Par const& proj_parm) { T cosphi, t; proj_parm.inv(xy_x, xy_y, lp_lon, lp_lat); if (lp_lon != HUGE_VAL) { cosphi = cos(lp_lat); t = lp_lon - proj_parm.lamp; lp_lon = aatan2(cosphi * sin(t), - sin(lp_lat)); lp_lat = aasin(cosphi * cos(t)); } } // General Oblique Transformation template inline CalculationType setup_ob_tran(Parameters & par, ProjParameters& proj_parm) { static const CalculationType HALFPI = detail::HALFPI(); CalculationType phip; par.es = 0.; /* force to spherical */ // proj_parm.link should be created at this point if (pj_param(par.params, "to_alpha").i) { CalculationType lamc, phic, alpha; lamc = pj_param(par.params, "ro_lon_c").f; phic = pj_param(par.params, "ro_lat_c").f; alpha = pj_param(par.params, "ro_alpha").f; /* if (fabs(phic) <= TOL || fabs(fabs(phic) - HALFPI) <= TOL || fabs(fabs(alpha) - HALFPI) <= TOL) */ if (fabs(fabs(phic) - HALFPI) <= TOL) BOOST_THROW_EXCEPTION( projection_exception(-32) ); proj_parm.lamp = lamc + aatan2(-cos(alpha), -sin(alpha) * sin(phic)); phip = aasin(cos(phic) * sin(alpha)); } else if (pj_param(par.params, "to_lat_p").i) { /* specified new pole */ proj_parm.lamp = pj_param(par.params, "ro_lon_p").f; phip = pj_param(par.params, "ro_lat_p").f; } else { /* specified new "equator" points */ CalculationType lam1, lam2, phi1, phi2, con; lam1 = pj_param(par.params, "ro_lon_1").f; phi1 = pj_param(par.params, "ro_lat_1").f; lam2 = pj_param(par.params, "ro_lon_2").f; phi2 = pj_param(par.params, "ro_lat_2").f; if (fabs(phi1 - phi2) <= TOL || (con = fabs(phi1)) <= TOL || fabs(con - HALFPI) <= TOL || fabs(fabs(phi2) - HALFPI) <= TOL) BOOST_THROW_EXCEPTION( projection_exception(-33) ); proj_parm.lamp = atan2(cos(phi1) * sin(phi2) * cos(lam1) - sin(phi1) * cos(phi2) * cos(lam2), sin(phi1) * cos(phi2) * sin(lam2) - cos(phi1) * sin(phi2) * sin(lam1)); phip = atan(-cos(proj_parm.lamp - lam1) / tan(phi1)); } if (fabs(phip) > TOL) { /* oblique */ proj_parm.cphip = cos(phip); proj_parm.sphip = sin(phip); } else { /* transverse */ } // return phip to choose model return phip; } // template class, using CRTP to implement forward/inverse template struct base_ob_tran_oblique : public base_t_fi, CalculationType, Parameters> { typedef CalculationType geographic_type; typedef CalculationType cartesian_type; par_ob_tran m_proj_parm; inline base_ob_tran_oblique(Parameters const& par, par_ob_tran const& proj_parm) : base_t_fi < base_ob_tran_oblique, CalculationType, Parameters >(*this, par) , m_proj_parm(proj_parm) {} // FORWARD(o_forward) spheroid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(geographic_type& lp_lon, geographic_type& lp_lat, cartesian_type& xy_x, cartesian_type& xy_y) const { o_forward(lp_lon, lp_lat, xy_x, xy_y, this->m_proj_parm); } // INVERSE(o_inverse) spheroid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(cartesian_type& xy_x, cartesian_type& xy_y, geographic_type& lp_lon, geographic_type& lp_lat) const { o_inverse(xy_x, xy_y, lp_lon, lp_lat, this->m_proj_parm); } static inline std::string get_name() { return "ob_tran_oblique"; } }; // template class, using CRTP to implement forward/inverse template struct base_ob_tran_transverse : public base_t_fi, CalculationType, Parameters> { typedef CalculationType geographic_type; typedef CalculationType cartesian_type; par_ob_tran m_proj_parm; inline base_ob_tran_transverse(Parameters const& par, par_ob_tran const& proj_parm) : base_t_fi < base_ob_tran_transverse, CalculationType, Parameters >(*this, par) , m_proj_parm(proj_parm) {} // FORWARD(t_forward) spheroid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(geographic_type& lp_lon, geographic_type& lp_lat, cartesian_type& xy_x, cartesian_type& xy_y) const { t_forward(lp_lon, lp_lat, xy_x, xy_y, this->m_proj_parm); } // INVERSE(t_inverse) spheroid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(cartesian_type& xy_x, cartesian_type& xy_y, geographic_type& lp_lon, geographic_type& lp_lat) const { t_inverse(xy_x, xy_y, lp_lon, lp_lat, this->m_proj_parm); } static inline std::string get_name() { return "ob_tran_transverse"; } }; // template class, using CRTP to implement forward/inverse template struct base_ob_tran_static : public base_t_fi, CalculationType, Parameters> { typedef CalculationType geographic_type; typedef CalculationType cartesian_type; par_ob_tran_static m_proj_parm; bool m_is_oblique; inline base_ob_tran_static(Parameters const& par) : base_t_fi, CalculationType, Parameters>(*this, par) , m_proj_parm(par) {} // FORWARD(o_forward) spheroid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(geographic_type& lp_lon, geographic_type& lp_lat, cartesian_type& xy_x, cartesian_type& xy_y) const { if (m_is_oblique) { o_forward(lp_lon, lp_lat, xy_x, xy_y, this->m_proj_parm); } else { t_forward(lp_lon, lp_lat, xy_x, xy_y, this->m_proj_parm); } } // INVERSE(o_inverse) spheroid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(cartesian_type& xy_x, cartesian_type& xy_y, geographic_type& lp_lon, geographic_type& lp_lat) const { if (m_is_oblique) { o_inverse(xy_x, xy_y, lp_lon, lp_lat, this->m_proj_parm); } else { t_inverse(xy_x, xy_y, lp_lon, lp_lat, this->m_proj_parm); } } static inline std::string get_name() { return "ob_tran"; } }; }} // namespace detail::ob_tran #endif // doxygen /*! \brief General Oblique Transformation projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Miscellaneous - Spheroid \par Projection parameters - o_proj (string) - Plus projection parameters - o_lat_p (degrees) - o_lon_p (degrees) - New pole - o_alpha: Alpha (degrees) - o_lon_c (degrees) - o_lat_c (degrees) - o_lon_1 (degrees) - o_lat_1: Latitude of first standard parallel (degrees) - o_lon_2 (degrees) - o_lat_2: Latitude of second standard parallel (degrees) \par Example \image html ex_ob_tran.gif */ template struct ob_tran_oblique : public detail::ob_tran::base_ob_tran_oblique { inline ob_tran_oblique(Parameters const& par, detail::ob_tran::par_ob_tran const& proj_parm) : detail::ob_tran::base_ob_tran_oblique(par, proj_parm) { // already done //detail::ob_tran::setup_ob_tran(this->m_par, this->m_proj_parm); } }; /*! \brief General Oblique Transformation projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Miscellaneous - Spheroid \par Projection parameters - o_proj (string) - Plus projection parameters - o_lat_p (degrees) - o_lon_p (degrees) - New pole - o_alpha: Alpha (degrees) - o_lon_c (degrees) - o_lat_c (degrees) - o_lon_1 (degrees) - o_lat_1: Latitude of first standard parallel (degrees) - o_lon_2 (degrees) - o_lat_2: Latitude of second standard parallel (degrees) \par Example \image html ex_ob_tran.gif */ template struct ob_tran_transverse : public detail::ob_tran::base_ob_tran_transverse { inline ob_tran_transverse(Parameters const& par, detail::ob_tran::par_ob_tran const& proj_parm) : detail::ob_tran::base_ob_tran_transverse(par, proj_parm) { // already done //detail::ob_tran::setup_ob_tran(this->m_par, this->m_proj_parm); } }; /*! \brief General Oblique Transformation projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Miscellaneous - Spheroid \par Projection parameters - o_proj (string) - Plus projection parameters - o_lat_p (degrees) - o_lon_p (degrees) - New pole - o_alpha: Alpha (degrees) - o_lon_c (degrees) - o_lat_c (degrees) - o_lon_1 (degrees) - o_lat_1: Latitude of first standard parallel (degrees) - o_lon_2 (degrees) - o_lat_2: Latitude of second standard parallel (degrees) \par Example \image html ex_ob_tran.gif */ template struct ob_tran_static : public detail::ob_tran::base_ob_tran_static { inline ob_tran_static(const Parameters& par) : detail::ob_tran::base_ob_tran_static(par) { CalculationType phip = detail::ob_tran::setup_ob_tran(this->m_par, this->m_proj_parm); this->m_is_oblique = fabs(phip) > detail::ob_tran::TOL; } }; #ifndef DOXYGEN_NO_DETAIL namespace detail { // Static projection template struct static_projection_type { typedef ob_tran_static type; }; template struct static_projection_type { typedef ob_tran_static type; }; // Factory entry(s) template class ob_tran_entry : public detail::factory_entry { public : virtual base_v* create_new(const Parameters& par) const { Parameters params = par; detail::ob_tran::par_ob_tran proj_parm(params); CalculationType phip = detail::ob_tran::setup_ob_tran(params, proj_parm); if (fabs(phip) > detail::ob_tran::TOL) return new base_v_fi, CalculationType, Parameters>(params, proj_parm); else return new base_v_fi, CalculationType, Parameters>(params, proj_parm); } }; template inline void ob_tran_init(detail::base_factory& factory) { factory.add_to_factory("ob_tran", new ob_tran_entry); } } // namespace detail #endif // doxygen } // namespace projections }} // namespace boost::geometry #endif // BOOST_GEOMETRY_PROJECTIONS_OB_TRAN_HPP