// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017. // Modifications copyright (c) 2017 Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_SORT_BY_SIDE_HPP #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_SORT_BY_SIDE_HPP #include #include #include #include #include #include #include #include namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace overlay { namespace sort_by_side { enum direction_type { dir_unknown = -1, dir_from = 0, dir_to = 1 }; // Point-wrapper, adding some properties template struct ranked_point { ranked_point() : rank(0) , turn_index(-1) , operation_index(-1) , direction(dir_unknown) , count_left(0) , count_right(0) , operation(operation_none) {} template ranked_point(const Point& p, signed_size_type ti, int oi, direction_type d, Op op) : point(p) , rank(0) , zone(-1) , turn_index(ti) , operation_index(oi) , direction(d) , count_left(0) , count_right(0) , operation(op.operation) , seg_id(op.seg_id) {} Point point; std::size_t rank; signed_size_type zone; // index of closed zone, in uu turn there would be 2 zones signed_size_type turn_index; int operation_index; // 0,1 direction_type direction; std::size_t count_left; std::size_t count_right; operation_type operation; segment_identifier seg_id; }; struct less_by_turn_index { template inline bool operator()(const T& first, const T& second) const { return first.turn_index == second.turn_index ? first.index < second.index : first.turn_index < second.turn_index ; } }; struct less_by_index { template inline bool operator()(const T& first, const T& second) const { // Length might be considered too // First order by from/to if (first.direction != second.direction) { return first.direction < second.direction; } // Then by turn index if (first.turn_index != second.turn_index) { return first.turn_index < second.turn_index; } // This can also be the same (for example in buffer), but seg_id is // never the same return first.seg_id < second.seg_id; } }; struct less_false { template inline bool operator()(const T&, const T& ) const { return false; } }; template struct less_by_side { less_by_side(const Point& p1, const Point& p2, SideStrategy const& strategy) : m_p1(p1) , m_p2(p2) , m_strategy(strategy) {} template inline bool operator()(const T& first, const T& second) const { LessOnSame on_same; Compare compare; int const side_first = m_strategy.apply(m_p1, m_p2, first.point); int const side_second = m_strategy.apply(m_p1, m_p2, second.point); if (side_first == 0 && side_second == 0) { // Both collinear. They might point into different directions: <------*------> // If so, order the one going backwards as the very first. int const first_code = direction_code(m_p1, m_p2, first.point); int const second_code = direction_code(m_p1, m_p2, second.point); // Order by code, backwards first, then forward. return first_code != second_code ? first_code < second_code : on_same(first, second) ; } else if (side_first == 0 && direction_code(m_p1, m_p2, first.point) == -1) { // First collinear and going backwards. // Order as the very first, so return always true return true; } else if (side_second == 0 && direction_code(m_p1, m_p2, second.point) == -1) { // Second is collinear and going backwards // Order as very last, so return always false return false; } // They are not both collinear if (side_first != side_second) { return compare(side_first, side_second); } // They are both left, both right, and/or both collinear (with each other and/or with p1,p2) // Check mutual side int const side_second_wrt_first = m_strategy.apply(m_p2, first.point, second.point); if (side_second_wrt_first == 0) { return on_same(first, second); } int const side_first_wrt_second = -side_second_wrt_first; // Both are on same side, and not collinear // Union: return true if second is right w.r.t. first, so -1, // so other is 1. union has greater as compare functor // Intersection: v.v. return compare(side_first_wrt_second, side_second_wrt_first); } private : Point m_p1, m_p2; SideStrategy const& m_strategy; }; // Sorts vectors in counter clockwise order (by default) template < bool Reverse1, bool Reverse2, overlay_type OverlayType, typename Point, typename SideStrategy, typename Compare > struct side_sorter { typedef ranked_point rp; private : struct include_union { inline bool operator()(rp const& ranked_point) const { // New candidate if there are no polygons on left side, // but there are on right side return ranked_point.count_left == 0 && ranked_point.count_right > 0; } }; struct include_intersection { inline bool operator()(rp const& ranked_point) const { // New candidate if there are two polygons on right side, // and less on the left side return ranked_point.count_left < 2 && ranked_point.count_right >= 2; } }; public : side_sorter(SideStrategy const& strategy) : m_origin_count(0) , m_origin_segment_distance(0) , m_strategy(strategy) {} template Point add(Operation const& op, signed_size_type turn_index, signed_size_type op_index, Geometry1 const& geometry1, Geometry2 const& geometry2, bool is_origin) { Point point1, point2, point3; geometry::copy_segment_points(geometry1, geometry2, op.seg_id, point1, point2, point3); Point const& point_to = op.fraction.is_one() ? point3 : point2; m_ranked_points.push_back(rp(point1, turn_index, op_index, dir_from, op)); m_ranked_points.push_back(rp(point_to, turn_index, op_index, dir_to, op)); if (is_origin) { m_origin = point1; m_origin_count++; } return point1; } template void add(Operation const& op, signed_size_type turn_index, signed_size_type op_index, segment_identifier const& departure_seg_id, Geometry1 const& geometry1, Geometry2 const& geometry2, bool check_origin) { Point const point1 = add(op, turn_index, op_index, geometry1, geometry2, false); if (check_origin) { bool const is_origin = op.seg_id.source_index == departure_seg_id.source_index && op.seg_id.ring_index == departure_seg_id.ring_index && op.seg_id.multi_index == departure_seg_id.multi_index; if (is_origin) { int const segment_distance = calculate_segment_distance(op, departure_seg_id, geometry1, geometry2); if (m_origin_count == 0 || segment_distance < m_origin_segment_distance) { m_origin = point1; m_origin_segment_distance = segment_distance; } m_origin_count++; } } } template static int calculate_segment_distance(Operation const& op, segment_identifier const& departure_seg_id, Geometry1 const& geometry1, Geometry2 const& geometry2) { if (op.seg_id.segment_index >= departure_seg_id.segment_index) { return op.seg_id.segment_index - departure_seg_id.segment_index; } // Take wrap into account // Suppose ring_count=10 (10 points, 9 segments), dep.seg_id=7, op.seg_id=2, then distance=10-9+2 // Generic function (is this used somewhere else too?) ring_identifier const rid(op.seg_id.source_index, op.seg_id.multi_index, op.seg_id.ring_index); int const segment_count (op.seg_id.source_index == 0 ? geometry::num_points(detail::overlay::get_ring::type>::apply(rid, geometry1)) : geometry::num_points(detail::overlay::get_ring::type>::apply(rid, geometry2))); return ((segment_count - 1) - departure_seg_id.segment_index) + op.seg_id.segment_index; } void apply(Point const& turn_point) { // We need three compare functors: // 1) to order clockwise (union) or counter clockwise (intersection) // 2) to order by side, resulting in unique ranks for all points // 3) to order by side, resulting in non-unique ranks // to give colinear points // Sort by side and assign rank less_by_side less_unique(m_origin, turn_point, m_strategy); less_by_side less_non_unique(m_origin, turn_point, m_strategy); std::sort(m_ranked_points.begin(), m_ranked_points.end(), less_unique); std::size_t colinear_rank = 0; for (std::size_t i = 0; i < m_ranked_points.size(); i++) { if (i > 0 && less_non_unique(m_ranked_points[i - 1], m_ranked_points[i])) { // It is not collinear colinear_rank++; } m_ranked_points[i].rank = colinear_rank; } } template void find_open_generic(Map& handled, bool check) { for (std::size_t i = 0; i < m_ranked_points.size(); i++) { const rp& ranked = m_ranked_points[i]; if (ranked.direction != dir_from) { continue; } signed_size_type const& index = ranked.seg_id.*Member; if (check && (index < 0 || index > 1)) { // Should not occur continue; } if (! handled[index]) { find_polygons_for_source(index, i); handled[index] = true; } } } void find_open() { if (OverlayType == overlay_buffer) { // For buffers, use piece index std::map handled; find_open_generic < &segment_identifier::piece_index >(handled, false); } else { // For other operations, by source (there should only source 0,1) bool handled[2] = {false, false}; find_open_generic < &segment_identifier::source_index >(handled, true); } } void reverse() { if (m_ranked_points.empty()) { return; } std::size_t const last = 1 + m_ranked_points.back().rank; // Move iterator after rank==0 bool has_first = false; typename container_type::iterator it = m_ranked_points.begin() + 1; for (; it != m_ranked_points.end() && it->rank == 0; ++it) { has_first = true; } if (has_first) { // Reverse first part (having rank == 0), if any, // but skip the very first row std::reverse(m_ranked_points.begin() + 1, it); for (typename container_type::iterator fit = m_ranked_points.begin(); fit != it; ++fit) { BOOST_ASSERT(fit->rank == 0); } } // Reverse the rest (main rank > 0) std::reverse(it, m_ranked_points.end()); for (; it != m_ranked_points.end(); ++it) { BOOST_ASSERT(it->rank > 0); it->rank = last - it->rank; } } bool has_origin() const { return m_origin_count > 0; } //private : typedef std::vector container_type; container_type m_ranked_points; Point m_origin; std::size_t m_origin_count; int m_origin_segment_distance; SideStrategy m_strategy; private : //! Check how many open spaces there are template inline std::size_t open_count(Include const& include_functor) const { std::size_t result = 0; std::size_t last_rank = 0; for (std::size_t i = 0; i < m_ranked_points.size(); i++) { rp const& ranked_point = m_ranked_points[i]; if (ranked_point.rank > last_rank && ranked_point.direction == sort_by_side::dir_to && include_functor(ranked_point)) { result++; last_rank = ranked_point.rank; } } return result; } std::size_t move(std::size_t index) const { std::size_t const result = index + 1; return result >= m_ranked_points.size() ? 0 : result; } //! member is pointer to member (source_index or multi_index) template std::size_t move(signed_size_type member_index, std::size_t index) const { std::size_t result = move(index); while (m_ranked_points[result].seg_id.*Member != member_index) { result = move(result); } return result; } void assign_ranks(std::size_t min_rank, std::size_t max_rank, int side_index) { for (std::size_t i = 0; i < m_ranked_points.size(); i++) { rp& ranked = m_ranked_points[i]; // Suppose there are 8 ranks, if min=4,max=6: assign 4,5,6 // if min=5,max=2: assign from 5,6,7,1,2 bool const in_range = max_rank >= min_rank ? ranked.rank >= min_rank && ranked.rank <= max_rank : ranked.rank >= min_rank || ranked.rank <= max_rank ; if (in_range) { if (side_index == 1) { ranked.count_left++; } else if (side_index == 2) { ranked.count_right++; } } } } template void find_polygons_for_source(signed_size_type the_index, std::size_t start_index) { bool in_polygon = true; // Because start_index is "from", arrives at the turn rp const& start_rp = m_ranked_points[start_index]; std::size_t last_from_rank = start_rp.rank; std::size_t previous_rank = start_rp.rank; for (std::size_t index = move(the_index, start_index); ; index = move(the_index, index)) { rp& ranked = m_ranked_points[index]; if (ranked.rank != previous_rank && ! in_polygon) { assign_ranks(last_from_rank, previous_rank - 1, 1); assign_ranks(last_from_rank + 1, previous_rank, 2); } if (index == start_index) { return; } if (ranked.direction == dir_from) { last_from_rank = ranked.rank; in_polygon = true; } else if (ranked.direction == dir_to) { in_polygon = false; } previous_rank = ranked.rank; } } //! Find closed zones and assign it template std::size_t assign_zones(Include const& include_functor) { // Find a starting point (the first rank after an outgoing rank // with no polygons on the left side) std::size_t start_rank = m_ranked_points.size() + 1; std::size_t start_index = 0; std::size_t max_rank = 0; for (std::size_t i = 0; i < m_ranked_points.size(); i++) { rp const& ranked_point = m_ranked_points[i]; if (ranked_point.rank > max_rank) { max_rank = ranked_point.rank; } if (ranked_point.direction == sort_by_side::dir_to && include_functor(ranked_point)) { start_rank = ranked_point.rank + 1; } if (ranked_point.rank == start_rank && start_index == 0) { start_index = i; } } // Assign the zones std::size_t const undefined_rank = max_rank + 1; std::size_t zone_id = 0; std::size_t last_rank = 0; std::size_t rank_at_next_zone = undefined_rank; std::size_t index = start_index; for (std::size_t i = 0; i < m_ranked_points.size(); i++) { rp& ranked_point = m_ranked_points[index]; // Implement cyclic behavior index++; if (index == m_ranked_points.size()) { index = 0; } if (ranked_point.rank != last_rank) { if (ranked_point.rank == rank_at_next_zone) { zone_id++; rank_at_next_zone = undefined_rank; } if (ranked_point.direction == sort_by_side::dir_to && include_functor(ranked_point)) { rank_at_next_zone = ranked_point.rank + 1; if (rank_at_next_zone > max_rank) { rank_at_next_zone = 0; } } last_rank = ranked_point.rank; } ranked_point.zone = zone_id; } return zone_id; } public : inline std::size_t open_count(operation_type for_operation) const { return for_operation == operation_union ? open_count(include_union()) : open_count(include_intersection()) ; } inline std::size_t assign_zones(operation_type for_operation) { return for_operation == operation_union ? assign_zones(include_union()) : assign_zones(include_intersection()) ; } }; }}} // namespace detail::overlay::sort_by_side #endif //DOXYGEN_NO_DETAIL }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_SORT_BY_SIDE_HPP