// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2015, 2017. // Modifications copyright (c) 2015-2017 Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_DIRECITON_CODE_HPP #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_DIRECITON_CODE_HPP #include #include #include #include #include namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { // TODO: remove template inline int sign_of_difference(Point1 const& point1, Point2 const& point2) { return math::equals(geometry::get(point1), geometry::get(point2)) ? 0 : (geometry::get(point1) > geometry::get(point2) ? 1 : -1); } template ::type> struct direction_code_impl { BOOST_MPL_ASSERT_MSG((false), NOT_IMPLEMENTED_FOR_THIS_CS, (CSTag)); }; template struct direction_code_impl { template static inline int apply(Point1 const& segment_a, Point1 const& segment_b, Point2 const& p) { typedef typename geometry::select_coordinate_type < Point1, Point2 >::type calc_t; if ( (math::equals(geometry::get<0>(segment_b), geometry::get<0>(segment_a)) && math::equals(geometry::get<1>(segment_b), geometry::get<1>(segment_a))) || (math::equals(geometry::get<0>(segment_b), geometry::get<0>(p)) && math::equals(geometry::get<1>(segment_b), geometry::get<1>(p))) ) { return 0; } calc_t x1 = geometry::get<0>(segment_b) - geometry::get<0>(segment_a); calc_t y1 = geometry::get<1>(segment_b) - geometry::get<1>(segment_a); calc_t x2 = geometry::get<0>(segment_b) - geometry::get<0>(p); calc_t y2 = geometry::get<1>(segment_b) - geometry::get<1>(p); calc_t ax = (std::min)(math::abs(x1), math::abs(x2)); calc_t ay = (std::min)(math::abs(y1), math::abs(y2)); int s1 = 0, s2 = 0; if (ax >= ay) { s1 = x1 > 0 ? 1 : -1; s2 = x2 > 0 ? 1 : -1; } else { s1 = y1 > 0 ? 1 : -1; s2 = y2 > 0 ? 1 : -1; } return s1 == s2 ? -1 : 1; } }; template struct direction_code_impl { template static inline int apply(Point1 const& segment_a, Point1 const& segment_b, Point2 const& p) { typedef typename coordinate_type::type coord1_t; typedef typename coordinate_type::type coord2_t; typedef typename coordinate_system::type::units units_t; typedef typename coordinate_system::type::units units2_t; BOOST_MPL_ASSERT_MSG((boost::is_same::value), NOT_IMPLEMENTED_FOR_DIFFERENT_UNITS, (units_t, units2_t)); typedef typename geometry::select_coordinate_type ::type calc_t; typedef math::detail::constants_on_spheroid constants1; typedef math::detail::constants_on_spheroid constants2; static coord1_t const pi_half1 = constants1::max_latitude(); static coord2_t const pi_half2 = constants2::max_latitude(); static calc_t const c0 = 0; coord1_t const a0 = geometry::get<0>(segment_a); coord1_t const a1 = geometry::get<1>(segment_a); coord1_t const b0 = geometry::get<0>(segment_b); coord1_t const b1 = geometry::get<1>(segment_b); coord2_t const p0 = geometry::get<0>(p); coord2_t const p1 = geometry::get<1>(p); if ( (math::equals(b0, a0) && math::equals(b1, a1)) || (math::equals(b0, p0) && math::equals(b1, p1)) ) { return 0; } bool const is_a_pole = math::equals(pi_half1, math::abs(a1)); bool const is_b_pole = math::equals(pi_half1, math::abs(b1)); bool const is_p_pole = math::equals(pi_half2, math::abs(p1)); if ( is_b_pole && ((is_a_pole && math::sign(b1) == math::sign(a1)) || (is_p_pole && math::sign(b1) == math::sign(p1))) ) { return 0; } // NOTE: as opposed to the implementation for cartesian CS // here point b is the origin calc_t const dlon1 = math::longitude_distance_signed(b0, a0); calc_t const dlon2 = math::longitude_distance_signed(b0, p0); bool is_antilon1 = false, is_antilon2 = false; calc_t const dlat1 = latitude_distance_signed(b1, a1, dlon1, is_antilon1); calc_t const dlat2 = latitude_distance_signed(b1, p1, dlon2, is_antilon2); calc_t mx = is_a_pole || is_b_pole || is_p_pole ? c0 : (std::min)(is_antilon1 ? c0 : math::abs(dlon1), is_antilon2 ? c0 : math::abs(dlon2)); calc_t my = (std::min)(math::abs(dlat1), math::abs(dlat2)); int s1 = 0, s2 = 0; if (mx >= my) { s1 = dlon1 > 0 ? 1 : -1; s2 = dlon2 > 0 ? 1 : -1; } else { s1 = dlat1 > 0 ? 1 : -1; s2 = dlat2 > 0 ? 1 : -1; } return s1 == s2 ? -1 : 1; } template static inline T latitude_distance_signed(T const& lat1, T const& lat2, T const& lon_ds, bool & is_antilon) { typedef math::detail::constants_on_spheroid constants; static T const pi = constants::half_period(); static T const c0 = 0; T res = lat2 - lat1; is_antilon = math::equals(math::abs(lon_ds), pi); if (is_antilon) { res = lat2 + lat1; if (res >= c0) res = pi - res; else res = -pi - res; } return res; } }; template struct direction_code_impl { template static inline int apply(Point1 segment_a, Point1 segment_b, Point2 p) { typedef math::detail::constants_on_spheroid < typename coordinate_type::type, typename coordinate_system::type::units > constants1; typedef math::detail::constants_on_spheroid < typename coordinate_type::type, typename coordinate_system::type::units > constants2; geometry::set<1>(segment_a, constants1::max_latitude() - geometry::get<1>(segment_a)); geometry::set<1>(segment_b, constants1::max_latitude() - geometry::get<1>(segment_b)); geometry::set<1>(p, constants2::max_latitude() - geometry::get<1>(p)); return direction_code_impl < Point, spherical_equatorial_tag >::apply(segment_a, segment_b, p); } }; template struct direction_code_impl : direction_code_impl {}; // Gives sense of direction for point p, collinear w.r.t. segment (a,b) // Returns -1 if p goes backward w.r.t (a,b), so goes from b in direction of a // Returns 1 if p goes forward, so extends (a,b) // Returns 0 if p is equal with b, or if (a,b) is degenerate // Note that it does not do any collinearity test, that should be done before template inline int direction_code(Point1 const& segment_a, Point1 const& segment_b, Point2 const& p) { return direction_code_impl::apply(segment_a, segment_b, p); } } // namespace detail #endif //DOXYGEN_NO_DETAIL }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_DIRECITON_CODE_HPP