////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP #define BOOST_CONTAINER_CONTAINER_VECTOR_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace container { /// @cond namespace container_detail { //! Const vector_iterator used to iterate through a vector. template class vector_const_iterator { public: typedef std::random_access_iterator_tag iterator_category; typedef typename boost::intrusive::pointer_traits::element_type value_type; typedef typename boost::intrusive::pointer_traits::difference_type difference_type; typedef typename boost::intrusive::pointer_traits::template rebind_pointer::type pointer; typedef const value_type& reference; /// @cond protected: Pointer m_ptr; public: Pointer get_ptr() const { return m_ptr; } explicit vector_const_iterator(Pointer ptr) : m_ptr(ptr){} /// @endcond public: //Constructors vector_const_iterator() : m_ptr(0){} //Pointer like operators reference operator*() const { return *m_ptr; } const value_type * operator->() const { return container_detail::to_raw_pointer(m_ptr); } reference operator[](difference_type off) const { return m_ptr[off]; } //Increment / Decrement vector_const_iterator& operator++() { ++m_ptr; return *this; } vector_const_iterator operator++(int) { Pointer tmp = m_ptr; ++*this; return vector_const_iterator(tmp); } vector_const_iterator& operator--() { --m_ptr; return *this; } vector_const_iterator operator--(int) { Pointer tmp = m_ptr; --*this; return vector_const_iterator(tmp); } //Arithmetic vector_const_iterator& operator+=(difference_type off) { m_ptr += off; return *this; } vector_const_iterator operator+(difference_type off) const { return vector_const_iterator(m_ptr+off); } friend vector_const_iterator operator+(difference_type off, const vector_const_iterator& right) { return vector_const_iterator(off + right.m_ptr); } vector_const_iterator& operator-=(difference_type off) { m_ptr -= off; return *this; } vector_const_iterator operator-(difference_type off) const { return vector_const_iterator(m_ptr-off); } difference_type operator-(const vector_const_iterator& right) const { return m_ptr - right.m_ptr; } //Comparison operators bool operator== (const vector_const_iterator& r) const { return m_ptr == r.m_ptr; } bool operator!= (const vector_const_iterator& r) const { return m_ptr != r.m_ptr; } bool operator< (const vector_const_iterator& r) const { return m_ptr < r.m_ptr; } bool operator<= (const vector_const_iterator& r) const { return m_ptr <= r.m_ptr; } bool operator> (const vector_const_iterator& r) const { return m_ptr > r.m_ptr; } bool operator>= (const vector_const_iterator& r) const { return m_ptr >= r.m_ptr; } }; //! Iterator used to iterate through a vector template class vector_iterator : public vector_const_iterator { public: explicit vector_iterator(Pointer ptr) : vector_const_iterator(ptr) {} public: typedef std::random_access_iterator_tag iterator_category; typedef typename boost::intrusive::pointer_traits::element_type value_type; typedef typename boost::intrusive::pointer_traits::difference_type difference_type; typedef Pointer pointer; typedef value_type& reference; //Constructors vector_iterator() {} //Pointer like operators reference operator*() const { return *this->m_ptr; } value_type* operator->() const { return container_detail::to_raw_pointer(this->m_ptr); } reference operator[](difference_type off) const { return this->m_ptr[off]; } //Increment / Decrement vector_iterator& operator++() { ++this->m_ptr; return *this; } vector_iterator operator++(int) { pointer tmp = this->m_ptr; ++*this; return vector_iterator(tmp); } vector_iterator& operator--() { --this->m_ptr; return *this; } vector_iterator operator--(int) { vector_iterator tmp = *this; --*this; return vector_iterator(tmp); } // Arithmetic vector_iterator& operator+=(difference_type off) { this->m_ptr += off; return *this; } vector_iterator operator+(difference_type off) const { return vector_iterator(this->m_ptr+off); } friend vector_iterator operator+(difference_type off, const vector_iterator& right) { return vector_iterator(off + right.m_ptr); } vector_iterator& operator-=(difference_type off) { this->m_ptr -= off; return *this; } vector_iterator operator-(difference_type off) const { return vector_iterator(this->m_ptr-off); } difference_type operator-(const vector_const_iterator& right) const { return static_cast&>(*this) - right; } }; template struct vector_value_traits { typedef T value_type; typedef A allocator_type; static const bool trivial_dctr = boost::has_trivial_destructor::value; static const bool trivial_dctr_after_move = trivial_dctr; //::boost::has_trivial_destructor_after_move::value || trivial_dctr; //static const bool trivial_copy = has_trivial_copy::value; //static const bool nothrow_copy = has_nothrow_copy::value; //static const bool trivial_assign = has_trivial_assign::value; //static const bool nothrow_assign = has_nothrow_assign::value; static const bool trivial_copy = has_trivial_copy::value; static const bool nothrow_copy = has_nothrow_copy::value; static const bool trivial_assign = has_trivial_assign::value; static const bool nothrow_assign = false; //This is the anti-exception array destructor //to deallocate values already constructed typedef typename container_detail::if_c ,container_detail::scoped_destructor_n >::type OldArrayDestructor; //This is the anti-exception array destructor //to destroy objects created with copy construction typedef typename container_detail::if_c ,container_detail::scoped_destructor_n >::type ArrayDestructor; //This is the anti-exception array deallocator typedef typename container_detail::if_c ,container_detail::scoped_array_deallocator >::type ArrayDeallocator; }; //!This struct deallocates and allocated memory template struct vector_alloc_holder { typedef boost::container::allocator_traits allocator_traits_type; typedef typename allocator_traits_type::pointer pointer; typedef typename allocator_traits_type::size_type size_type; typedef typename allocator_traits_type::value_type value_type; typedef vector_value_traits value_traits; //Constructor, does not throw vector_alloc_holder() BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor::value) : members_() {} //Constructor, does not throw template explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_CONTAINER_NOEXCEPT : members_(boost::forward(a)) {} //Destructor ~vector_alloc_holder() { this->prot_destroy_all(); this->prot_deallocate(); } typedef container_detail::integral_constant allocator_v1; typedef container_detail::integral_constant allocator_v2; typedef container_detail::integral_constant::value> alloc_version; std::pair allocation_command(allocation_type command, size_type limit_size, size_type preferred_size, size_type &received_size, const pointer &reuse = 0) { return allocation_command(command, limit_size, preferred_size, received_size, reuse, alloc_version()); } std::pair allocation_command(allocation_type command, size_type limit_size, size_type preferred_size, size_type &received_size, const pointer &reuse, allocator_v1) { (void)limit_size; (void)reuse; if(!(command & allocate_new)) return std::pair(pointer(0), false); received_size = preferred_size; return std::make_pair(this->alloc().allocate(received_size), false); } std::pair allocation_command(allocation_type command, size_type limit_size, size_type preferred_size, size_type &received_size, const pointer &reuse, allocator_v2) { return this->alloc().allocation_command (command, limit_size, preferred_size, received_size, reuse); } size_type next_capacity(size_type additional_objects) const { return get_next_capacity( allocator_traits_type::max_size(this->alloc()) , this->members_.m_capacity, additional_objects); } struct members_holder : public A { private: members_holder(const members_holder&); public: template explicit members_holder(BOOST_FWD_REF(Alloc) alloc) : A(boost::forward(alloc)), m_start(0), m_size(0), m_capacity(0) {} members_holder() : A(), m_start(0), m_size(0), m_capacity(0) {} pointer m_start; size_type m_size; size_type m_capacity; } members_; void swap_members(vector_alloc_holder &x) { container_detail::do_swap(this->members_.m_start, x.members_.m_start); container_detail::do_swap(this->members_.m_size, x.members_.m_size); container_detail::do_swap(this->members_.m_capacity, x.members_.m_capacity); } A &alloc() { return members_; } const A &alloc() const { return members_; } protected: void prot_deallocate() { if(!this->members_.m_capacity) return; this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity); this->members_.m_start = 0; this->members_.m_size = 0; this->members_.m_capacity = 0; } void destroy(value_type* p) { if(!value_traits::trivial_dctr) allocator_traits_type::destroy(this->alloc(), p); } void destroy_n(value_type* p, size_type n) { if(!value_traits::trivial_dctr){ for(; n--; ++p){ allocator_traits_type::destroy(this->alloc(), p); } } } void prot_destroy_all() { this->destroy_n(container_detail::to_raw_pointer(this->members_.m_start), this->members_.m_size); this->members_.m_size = 0; } }; } //namespace container_detail { /// @endcond //! \class vector //! A vector is a sequence that supports random access to elements, constant //! time insertion and removal of elements at the end, and linear time insertion //! and removal of elements at the beginning or in the middle. The number of //! elements in a vector may vary dynamically; memory management is automatic. //! boost::container::vector is similar to std::vector but it's compatible //! with shared memory and memory mapped files. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template > #else template #endif class vector : private container_detail::vector_alloc_holder { /// @cond typedef vector self_t; typedef container_detail::vector_alloc_holder base_t; typedef allocator_traits allocator_traits_type; /// @endcond public: //! The type of object, T, stored in the vector typedef T value_type; //! Pointer to T typedef typename allocator_traits_type::pointer pointer; //! Const pointer to T typedef typename allocator_traits_type::const_pointer const_pointer; //! Reference to T typedef typename allocator_traits_type::reference reference; //! Const reference to T typedef typename allocator_traits_type::const_reference const_reference; //! An unsigned integral type typedef typename allocator_traits_type::size_type size_type; //! A signed integral type typedef typename allocator_traits_type::difference_type difference_type; //! The allocator type typedef A allocator_type; //! The random access iterator typedef container_detail::vector_iterator iterator; //! The random access const_iterator typedef container_detail::vector_const_iterator const_iterator; //! Iterator used to iterate backwards through a vector. typedef std::reverse_iterator reverse_iterator; //! Const iterator used to iterate backwards through a vector. typedef std::reverse_iterator const_reverse_iterator; //! The stored allocator type typedef allocator_type stored_allocator_type; /// @cond private: BOOST_COPYABLE_AND_MOVABLE(vector) typedef container_detail::advanced_insert_aux_int advanced_insert_aux_int_t; typedef container_detail::vector_value_traits value_traits; typedef typename base_t::allocator_v1 allocator_v1; typedef typename base_t::allocator_v2 allocator_v2; typedef typename base_t::alloc_version alloc_version; typedef constant_iterator cvalue_iterator; typedef repeat_iterator repeat_it; typedef boost::move_iterator repeat_move_it; /// @endcond public: //! Effects: Constructs a vector taking the allocator as parameter. //! //! Throws: If allocator_type's default constructor throws. //! //! Complexity: Constant. vector() BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor::value) : base_t() {} //! Effects: Constructs a vector taking the allocator as parameter. //! //! Throws: Nothing //! //! Complexity: Constant. explicit vector(const A& a) BOOST_CONTAINER_NOEXCEPT : base_t(a) {} //! Effects: Constructs a vector that will use a copy of allocator a //! and inserts n default contructed values. //! //! Throws: If allocator_type's default constructor or allocation //! throws or T's default constructor throws. //! //! Complexity: Linear to n. explicit vector(size_type n) : base_t() { //Allocate size_type real_cap; std::pair ret = this->allocation_command(allocate_new, n, n, real_cap, this->members_.m_start); T *new_mem = container_detail::to_raw_pointer(ret.first); //Anti-exception rollback typename value_traits::ArrayDeallocator scoped_alloc(new_mem, this->alloc(), real_cap); //Default constructor container_detail::default_construct_aux_proxy proxy(this->alloc(), n); proxy.uninitialized_copy_remaining_to(new_mem); //All ok, commit this->members_.m_start = ret.first; this->members_.m_size = n; this->members_.m_capacity = real_cap; scoped_alloc.release(); } //! Effects: Constructs a vector that will use a copy of allocator a //! and inserts n copies of value. //! //! Throws: If allocator_type's default constructor or allocation //! throws or T's copy constructor throws. //! //! Complexity: Linear to n. vector(size_type n, const T& value, const allocator_type& a = allocator_type()) : base_t(a) { this->insert(this->cend(), n, value); } //! Effects: Copy constructs a vector. //! //! Postcondition: x == *this. //! //! Throws: If allocator_type's default constructor or allocation //! throws or T's copy constructor throws. //! //! Complexity: Linear to the elements x contains. vector(const vector &x) : base_t(allocator_traits_type::select_on_container_copy_construction(x.alloc())) { this->assign( container_detail::to_raw_pointer(x.members_.m_start) , container_detail::to_raw_pointer(x.members_.m_start + x.members_.m_size)); } //! Effects: Move constructor. Moves mx's resources to *this. //! //! Throws: Nothing //! //! Complexity: Constant. vector(BOOST_RV_REF(vector) mx) BOOST_CONTAINER_NOEXCEPT : base_t(boost::move(mx.alloc())) { this->swap_members(mx); } //! Effects: Copy constructs a vector using the specified allocator. //! //! Postcondition: x == *this. //! //! Throws: If allocation //! throws or T's copy constructor throws. //! //! Complexity: Linear to the elements x contains. vector(const vector &x, const allocator_type &a) : base_t(a) { this->assign( container_detail::to_raw_pointer(x.members_.m_start) , container_detail::to_raw_pointer(x.members_.m_start + x.members_.m_size)); } //! Effects: Move constructor using the specified allocator. //! Moves mx's resources to *this if a == allocator_type(). //! Otherwise copies values from x to *this. //! //! Throws: If allocation or T's copy constructor throws. //! //! Complexity: Constant if a == mx.get_allocator(), linear otherwise. vector(BOOST_RV_REF(vector) mx, const allocator_type &a) : base_t(a) { if(mx.alloc() == a){ this->swap_members(mx); } else{ this->assign( container_detail::to_raw_pointer(mx.members_.m_start) , container_detail::to_raw_pointer(mx.members_.m_start + mx.members_.m_size)); } } //! Effects: Constructs a vector that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the vector. //! //! Throws: If allocator_type's default constructor or allocation //! throws or T's constructor taking an dereferenced InIt throws. //! //! Complexity: Linear to the range [first, last). template vector(InIt first, InIt last, const allocator_type& a = allocator_type()) : base_t(a) { this->assign(first, last); } //! Effects: Destroys the vector. All stored values are destroyed //! and used memory is deallocated. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements. ~vector() BOOST_CONTAINER_NOEXCEPT {} //vector_alloc_holder clears the data //! Effects: Returns an iterator to the first element contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() BOOST_CONTAINER_NOEXCEPT { return iterator(this->members_.m_start); } //! Effects: Returns a const_iterator to the first element contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const BOOST_CONTAINER_NOEXCEPT { return const_iterator(this->members_.m_start); } //! Effects: Returns an iterator to the end of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() BOOST_CONTAINER_NOEXCEPT { return iterator(this->members_.m_start + this->members_.m_size); } //! Effects: Returns a const_iterator to the end of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const BOOST_CONTAINER_NOEXCEPT { return this->cend(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT { return reverse_iterator(this->end()); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT { return this->crbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT { return reverse_iterator(this->begin()); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT { return this->crend(); } //! Effects: Returns a const_iterator to the first element contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT { return const_iterator(this->members_.m_start); } //! Effects: Returns a const_iterator to the end of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const BOOST_CONTAINER_NOEXCEPT { return const_iterator(this->members_.m_start + this->members_.m_size); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT { return const_reverse_iterator(this->end());} //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed vector. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT { return const_reverse_iterator(this->begin()); } //! Requires: !empty() //! //! Effects: Returns a reference to the first //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference front() BOOST_CONTAINER_NOEXCEPT { return *this->members_.m_start; } //! Requires: !empty() //! //! Effects: Returns a const reference to the first //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference front() const BOOST_CONTAINER_NOEXCEPT { return *this->members_.m_start; } //! Requires: !empty() //! //! Effects: Returns a reference to the last //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference back() BOOST_CONTAINER_NOEXCEPT { return this->members_.m_start[this->members_.m_size - 1]; } //! Requires: !empty() //! //! Effects: Returns a const reference to the last //! element of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference back() const BOOST_CONTAINER_NOEXCEPT { return this->members_.m_start[this->members_.m_size - 1]; } //! Returns: A pointer such that [data(),data() + size()) is a valid range. //! For a non-empty vector, data() == &front(). //! //! Throws: Nothing. //! //! Complexity: Constant. pointer data() BOOST_CONTAINER_NOEXCEPT { return this->members_.m_start; } //! Returns: A pointer such that [data(),data() + size()) is a valid range. //! For a non-empty vector, data() == &front(). //! //! Throws: Nothing. //! //! Complexity: Constant. const_pointer data() const BOOST_CONTAINER_NOEXCEPT { return this->members_.m_start; } //! Effects: Returns the number of the elements contained in the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const BOOST_CONTAINER_NOEXCEPT { return this->members_.m_size; } //! Effects: Returns the largest possible size of the vector. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const BOOST_CONTAINER_NOEXCEPT { return allocator_traits_type::max_size(this->alloc()); } //! Effects: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! Throws: Nothing. //! //! Complexity: Constant. size_type capacity() const BOOST_CONTAINER_NOEXCEPT { return this->members_.m_capacity; } //! Effects: Returns true if the vector contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const BOOST_CONTAINER_NOEXCEPT { return !this->members_.m_size; } //! Requires: size() > n. //! //! Effects: Returns a reference to the nth element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. reference operator[](size_type n) { return this->members_.m_start[n]; } //! Requires: size() > n. //! //! Effects: Returns a const reference to the nth element //! from the beginning of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reference operator[](size_type n) const BOOST_CONTAINER_NOEXCEPT { return this->members_.m_start[n]; } //! Requires: size() > n. //! //! Effects: Returns a reference to the nth element //! from the beginning of the container. //! //! Throws: std::range_error if n >= size() //! //! Complexity: Constant. reference at(size_type n) { this->priv_check_range(n); return this->members_.m_start[n]; } //! Requires: size() > n. //! //! Effects: Returns a const reference to the nth element //! from the beginning of the container. //! //! Throws: std::range_error if n >= size() //! //! Complexity: Constant. const_reference at(size_type n) const { this->priv_check_range(n); return this->members_.m_start[n]; } //! Effects: Returns a copy of the internal allocator. //! //! Throws: If allocator's copy constructor throws. //! //! Complexity: Constant. allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT { return this->alloc(); } //! Effects: Returns a reference to the internal allocator. //! //! Throws: Nothing //! //! Complexity: Constant. //! //! Note: Non-standard extension. const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT { return this->alloc(); } //! Effects: Returns a reference to the internal allocator. //! //! Throws: Nothing //! //! Complexity: Constant. //! //! Note: Non-standard extension. stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT { return this->alloc(); } //! Effects: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! Throws: If memory allocation allocation throws or T's copy/move constructor throws. void reserve(size_type new_cap) { if (this->capacity() < new_cap){ //There is not enough memory, allocate a new //buffer or expand the old one. bool same_buffer_start; size_type real_cap = 0; std::pair ret = this->allocation_command (allocate_new | expand_fwd | expand_bwd, new_cap, new_cap, real_cap, this->members_.m_start); //Check for forward expansion same_buffer_start = ret.second && this->members_.m_start == ret.first; if(same_buffer_start){ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_expand_fwd; #endif this->members_.m_capacity = real_cap; } //If there is no forward expansion, move objects else{ //We will reuse insert code, so create a dummy input iterator T *dummy_it(container_detail::to_raw_pointer(this->members_.m_start)); container_detail::advanced_insert_aux_proxy, T*> proxy(this->alloc(), ::boost::make_move_iterator(dummy_it), ::boost::make_move_iterator(dummy_it)); //Backwards (and possibly forward) expansion if(ret.second){ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_expand_bwd; #endif this->priv_range_insert_expand_backwards ( container_detail::to_raw_pointer(ret.first) , real_cap , container_detail::to_raw_pointer(this->members_.m_start) , 0 , proxy); } //New buffer else{ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_alloc; #endif this->priv_range_insert_new_allocation ( container_detail::to_raw_pointer(ret.first) , real_cap , container_detail::to_raw_pointer(this->members_.m_start) , 0 , proxy); } } } } //! Effects: Makes *this contain the same elements as x. //! //! Postcondition: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! Throws: If memory allocation throws or T's copy/move constructor/assignment throws. //! //! Complexity: Linear to the number of elements in x. vector& operator=(BOOST_COPY_ASSIGN_REF(vector) x) { if (&x != this){ allocator_type &this_alloc = this->alloc(); const allocator_type &x_alloc = x.alloc(); container_detail::bool_ flag; if(flag && this_alloc != x_alloc){ this->clear(); this->shrink_to_fit(); } container_detail::assign_alloc(this_alloc, x_alloc, flag); this->assign( container_detail::to_raw_pointer(x.members_.m_start) , container_detail::to_raw_pointer(x.members_.m_start + x.members_.m_size)); } return *this; } //! Effects: Move assignment. All mx's values are transferred to *this. //! //! Postcondition: x.empty(). *this contains a the elements x had //! before the function. //! //! Throws: Nothing //! //! Complexity: Linear. vector& operator=(BOOST_RV_REF(vector) x) //iG BOOST_CONTAINER_NOEXCEPT_IF(!allocator_type::propagate_on_container_move_assignment::value || is_nothrow_move_assignable::value);) BOOST_CONTAINER_NOEXCEPT { if (&x != this){ allocator_type &this_alloc = this->alloc(); allocator_type &x_alloc = x.alloc(); //If allocators are equal we can just swap pointers if(this_alloc == x_alloc){ //Destroy objects but retain memory in case x reuses it in the future this->clear(); this->swap_members(x); //Move allocator if needed container_detail::bool_ flag; container_detail::move_alloc(this_alloc, x_alloc, flag); } //If unequal allocators, then do a one by one move else{ this->assign( boost::make_move_iterator(container_detail::to_raw_pointer(x.members_.m_start)) , boost::make_move_iterator(container_detail::to_raw_pointer(x.members_.m_start + x.members_.m_size))); } } return *this; } //! Effects: Assigns the n copies of val to *this. //! //! Throws: If memory allocation throws or //! T's copy/move constructor/assignment throws. //! //! Complexity: Linear to n. void assign(size_type n, const value_type& val) { this->assign(cvalue_iterator(val, n), cvalue_iterator()); } //! Effects: Assigns the the range [first, last) to *this. //! //! Throws: If memory allocation throws or T's copy/move constructor/assignment or //! T's constructor/assignment from dereferencing InpIt throws. //! //! Complexity: Linear to n. template void assign(InIt first, InIt last) { //Dispatch depending on integer/iterator const bool aux_boolean = container_detail::is_convertible::value; typedef container_detail::bool_ Result; this->priv_assign_dispatch(first, last, Result()); } #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts a copy of x at the end of the vector. //! //! Throws: If memory allocation throws or //! T's copy/move constructor throws. //! //! Complexity: Amortized constant time. void push_back(const T &x); //! Effects: Constructs a new element in the end of the vector //! and moves the resources of mx to this new element. //! //! Throws: If memory allocation throws or //! T's move constructor throws. //! //! Complexity: Amortized constant time. void push_back(T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back) #endif #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type T constructed with //! std::forward(args)... in the end of the vector. //! //! Throws: If memory allocation throws or the in-place constructor throws or //! T's move constructor throws. //! //! Complexity: Amortized constant time. template void emplace_back(Args &&...args) { T* back_pos = container_detail::to_raw_pointer(this->members_.m_start) + this->members_.m_size; if (this->members_.m_size < this->members_.m_capacity){ //There is more memory, just construct a new object at the end allocator_traits_type::construct(this->alloc(), back_pos, ::boost::forward(args)...); ++this->members_.m_size; } else{ typedef container_detail::advanced_insert_aux_emplace type; type &&proxy = type(this->alloc(), ::boost::forward(args)...); priv_range_insert(back_pos, 1, proxy); } } //! Requires: position must be a valid iterator of *this. //! //! Effects: Inserts an object of type T constructed with //! std::forward(args)... before position //! //! Throws: If memory allocation throws or the in-place constructor throws or //! T's move constructor/assignment throws. //! //! Complexity: If position is end(), amortized constant time //! Linear time otherwise. template iterator emplace(const_iterator position, Args && ...args) { //Just call more general insert(pos, size, value) and return iterator size_type pos_n = position - cbegin(); typedef container_detail::advanced_insert_aux_emplace type; type &&proxy = type(this->alloc(), ::boost::forward(args)...); priv_range_insert(position.get_ptr(), 1, proxy); return iterator(this->members_.m_start + pos_n); } #else #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ T* back_pos = container_detail::to_raw_pointer \ (this->members_.m_start) + this->members_.m_size; \ if (this->members_.m_size < this->members_.m_capacity){ \ allocator_traits_type::construct (this->alloc() \ , back_pos BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \ ++this->members_.m_size; \ } \ else{ \ container_detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \ proxy \ (this->alloc() BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \ priv_range_insert(back_pos, 1, proxy); \ } \ } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace(const_iterator pos \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ size_type pos_n = pos - cbegin(); \ container_detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \ proxy \ (this->alloc() BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \ priv_range_insert(container_detail::to_raw_pointer(pos.get_ptr()), 1, proxy); \ return iterator(this->members_.m_start + pos_n); \ } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING //! Effects: Swaps the contents of *this and x. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(vector& x) { //Just swap internals this->swap_members(x); //And now the allocator container_detail::bool_ flag; container_detail::swap_alloc(this->alloc(), x.alloc(), flag); } #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Requires: position must be a valid iterator of *this. //! //! Effects: Insert a copy of x before position. //! //! Throws: If memory allocation throws or T's copy/move constructor/assignment throws. //! //! Complexity: If position is end(), amortized constant time //! Linear time otherwise. iterator insert(const_iterator position, const T &x); //! Requires: position must be a valid iterator of *this. //! //! Effects: Insert a new element before position with mx's resources. //! //! Throws: If memory allocation throws. //! //! Complexity: If position is end(), amortized constant time //! Linear time otherwise. iterator insert(const_iterator position, T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator) #endif //! Requires: pos must be a valid iterator of *this. //! //! Effects: Insert a copy of the [first, last) range before pos. //! //! Throws: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws or T's copy/move constructor/assignment throws. //! //! Complexity: Linear to std::distance [first, last). template void insert(const_iterator pos, InIt first, InIt last) { //Dispatch depending on integer/iterator const bool aux_boolean = container_detail::is_convertible::value; typedef container_detail::bool_ Result; this->priv_insert_dispatch(pos, first, last, Result()); } //! Requires: pos must be a valid iterator of *this. //! //! Effects: Insert n copies of x before pos. //! //! Throws: If memory allocation throws or T's copy constructor throws. //! //! Complexity: Linear to n. void insert(const_iterator p, size_type n, const T& x) { this->insert(p, cvalue_iterator(x, n), cvalue_iterator()); } //! Effects: Removes the last element from the vector. //! //! Throws: Nothing. //! //! Complexity: Constant time. void pop_back() { //Destroy last element --this->members_.m_size; this->destroy(container_detail::to_raw_pointer(this->members_.m_start) + this->members_.m_size); } //! Effects: Erases the element at position pos. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements between pos and the //! last element. Constant if pos is the last element. iterator erase(const_iterator position) { T *pos = container_detail::to_raw_pointer(position.get_ptr()); T *beg = container_detail::to_raw_pointer(this->members_.m_start); ::boost::move(pos + 1, beg + this->members_.m_size, pos); --this->members_.m_size; //Destroy last element base_t::destroy(container_detail::to_raw_pointer(this->members_.m_start) + this->members_.m_size); return iterator(position.get_ptr()); } //! Effects: Erases the elements pointed by [first, last). //! //! Throws: Nothing. //! //! Complexity: Linear to the distance between first and last //! plus linear to the elements between pos and the last element. iterator erase(const_iterator first, const_iterator last) { if (first != last){ // worth doing, copy down over hole T* end_pos = container_detail::to_raw_pointer(this->members_.m_start) + this->members_.m_size; T* ptr = container_detail::to_raw_pointer(boost::move (container_detail::to_raw_pointer(last.get_ptr()) ,end_pos ,container_detail::to_raw_pointer(first.get_ptr()) )); size_type destroyed = (end_pos - ptr); this->destroy_n(ptr, destroyed); this->members_.m_size -= destroyed; } return iterator(first.get_ptr()); } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size, const T& x) { pointer finish = this->members_.m_start + this->members_.m_size; if (new_size < size()){ //Destroy last elements this->erase(const_iterator(this->members_.m_start + new_size), this->end()); } else{ //Insert new elements at the end this->insert(const_iterator(finish), new_size - this->size(), x); } } //! Effects: Inserts or erases elements at the end such that //! the size becomes n. New elements are default constructed. //! //! Throws: If memory allocation throws, or T's copy constructor throws. //! //! Complexity: Linear to the difference between size() and new_size. void resize(size_type new_size) { if (new_size < this->size()){ //Destroy last elements this->erase(const_iterator(this->members_.m_start + new_size), this->end()); } else{ size_type n = new_size - this->size(); this->reserve(new_size); container_detail::default_construct_aux_proxy proxy(this->alloc(), n); priv_range_insert(this->cend().get_ptr(), n, proxy); } } //! Effects: Erases all the elements of the vector. //! //! Throws: Nothing. //! //! Complexity: Linear to the number of elements in the vector. void clear() BOOST_CONTAINER_NOEXCEPT { this->prot_destroy_all(); } //! Effects: Tries to deallocate the excess of memory created //! with previous allocations. The size of the vector is unchanged //! //! Throws: If memory allocation throws, or T's copy/move constructor throws. //! //! Complexity: Linear to size(). void shrink_to_fit() { priv_shrink_to_fit(alloc_version()); } /// @cond //Absolutely experimental. This function might change, disappear or simply crash! template void insert_ordered_at(size_type element_count, BiDirPosConstIt last_position_it, BiDirValueIt last_value_it) { const size_type *dummy = 0; this->priv_insert_ordered_at(element_count, last_position_it, false, &dummy[0], last_value_it); } //Absolutely experimental. This function might change, disappear or simply crash! template void insert_ordered_at(size_type element_count, BiDirPosConstIt last_position_it, BiDirSkipConstIt last_skip_it, BiDirValueIt last_value_it) { this->priv_insert_ordered_at(element_count, last_position_it, true, last_skip_it, last_value_it); } private: iterator priv_insert(const_iterator position, const T &x) { //Just call more general insert(pos, size, value) and return iterator size_type pos_n = position - cbegin(); this->insert(position, (size_type)1, x); return iterator(this->members_.m_start + pos_n); } iterator priv_insert(const_iterator position, BOOST_RV_REF(T) x) { //Just call more general insert(pos, size, value) and return iterator size_type pos_n = position - cbegin(); this->insert(position ,repeat_move_it(repeat_it(x, 1)) ,repeat_move_it(repeat_it())); return iterator(this->members_.m_start + pos_n); } template void priv_push_back(BOOST_MOVE_CATCH_FWD(U) x) { if (this->members_.m_size < this->members_.m_capacity){ //There is more memory, just construct a new object at the end allocator_traits_type::construct ( this->alloc() , container_detail::to_raw_pointer(this->members_.m_start + this->members_.m_size) , ::boost::forward(x) ); ++this->members_.m_size; } else{ this->insert(this->cend(), ::boost::forward(x)); } } template void priv_shrink_to_fit( AllocVersion , typename container_detail::enable_if_c< container_detail::is_same::value >::type * = 0) { if(this->members_.m_capacity){ if(!size()){ this->prot_deallocate(); } else{ //Allocate a new buffer. size_type real_cap = 0; std::pair ret = this->allocation_command (allocate_new, this->size(), this->size(), real_cap, this->members_.m_start); if(real_cap < this->capacity()){ //We will reuse insert code, so create a dummy input iterator T *dummy_it(container_detail::to_raw_pointer(this->members_.m_start)); container_detail::advanced_insert_aux_proxy, T*> proxy(this->alloc(), ::boost::make_move_iterator(dummy_it), ::boost::make_move_iterator(dummy_it)); #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_alloc; #endif this->priv_range_insert_new_allocation ( container_detail::to_raw_pointer(ret.first) , real_cap , container_detail::to_raw_pointer(this->members_.m_start) , 0 , proxy); } else{ this->alloc().deallocate(ret.first, real_cap); } } } } template void priv_shrink_to_fit(AllocVersion , typename container_detail::enable_if_c< !container_detail::is_same::value >::type * = 0) { if(this->members_.m_capacity){ if(!size()){ this->prot_deallocate(); } else{ size_type received_size; if(this->alloc().allocation_command ( shrink_in_place | nothrow_allocation , this->capacity(), this->size() , received_size, this->members_.m_start).first){ this->members_.m_capacity = received_size; #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_shrink; #endif } } } } template void priv_range_insert(const_iterator pos, FwdIt first, FwdIt last, std::forward_iterator_tag) { if(first != last){ const size_type n = std::distance(first, last); container_detail::advanced_insert_aux_proxy proxy(this->alloc(), first, last); priv_range_insert(pos.get_ptr(), n, proxy); } } template void priv_range_insert(const_iterator pos, InIt first, InIt last, std::input_iterator_tag) { for(;first != last; ++first){ this->emplace(pos, *first); } } void priv_range_insert(pointer pos, const size_type n, advanced_insert_aux_int_t &interf) { //Check if we have enough memory or try to expand current memory size_type remaining = this->members_.m_capacity - this->members_.m_size; bool same_buffer_start; std::pair ret; size_type real_cap = this->members_.m_capacity; //Check if we already have room if (n <= remaining){ same_buffer_start = true; } else{ //There is not enough memory, allocate a new //buffer or expand the old one. size_type new_cap = this->next_capacity(n); ret = this->allocation_command (allocate_new | expand_fwd | expand_bwd, this->members_.m_size + n, new_cap, real_cap, this->members_.m_start); //Check for forward expansion same_buffer_start = ret.second && this->members_.m_start == ret.first; if(same_buffer_start){ this->members_.m_capacity = real_cap; } } //If we had room or we have expanded forward if (same_buffer_start){ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_expand_fwd; #endif this->priv_range_insert_expand_forward (container_detail::to_raw_pointer(pos), n, interf); } //Backwards (and possibly forward) expansion else if(ret.second){ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_expand_bwd; #endif this->priv_range_insert_expand_backwards ( container_detail::to_raw_pointer(ret.first) , real_cap , container_detail::to_raw_pointer(pos) , n , interf); } //New buffer else{ #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS ++this->num_alloc; #endif this->priv_range_insert_new_allocation ( container_detail::to_raw_pointer(ret.first) , real_cap , container_detail::to_raw_pointer(pos) , n , interf); } } //Absolutely experimental. This function might change, disappear or simply crash! template void priv_insert_ordered_at( size_type element_count, BiDirPosConstIt last_position_it , bool do_skip, BiDirSkipConstIt last_skip_it, BiDirValueIt last_value_it) { const size_type old_size_pos = this->size(); this->reserve(old_size_pos + element_count); T* const begin_ptr = container_detail::to_raw_pointer(this->members_.m_start); size_type insertions_left = element_count; size_type next_pos = old_size_pos; size_type hole_size = element_count; //Exception rollback. If any copy throws before the hole is filled, values //already inserted/copied at the end of the buffer will be destroyed. typename value_traits::ArrayDestructor past_hole_values_destroyer (begin_ptr + old_size_pos + element_count, this->alloc(), size_type(0u)); //Loop for each insertion backwards, first moving the elements after the insertion point, //then inserting the element. while(insertions_left){ const size_type pos = static_cast(*(--last_position_it)); BOOST_ASSERT(pos <= old_size_pos); //If needed shift the range after the insertion point and the previous insertion point. //Function will take care if the shift crosses the size() boundary, using copy/move //or uninitialized copy/move if necessary. size_type new_hole_size = (pos != next_pos) ? priv_insert_ordered_at_shift_range(pos, next_pos, this->size(), insertions_left) : hole_size ; if(new_hole_size > 0){ //The hole was reduced by priv_insert_ordered_at_shift_range so expand exception rollback range backwards past_hole_values_destroyer.increment_size_backwards(next_pos - pos); //Insert the new value in the hole allocator_traits_type::construct(this->alloc(), begin_ptr + pos + insertions_left - 1, *(--last_value_it)); --new_hole_size; if(new_hole_size == 0){ //Hole was just filled, disable exception rollback and change vector size past_hole_values_destroyer.release(); this->members_.m_size += element_count; } else{ //The hole was reduced by the new insertion by one past_hole_values_destroyer.increment_size_backwards(size_type(1u)); } } else{ if(hole_size){ //Hole was just filled by priv_insert_ordered_at_shift_range, disable exception rollback and change vector size past_hole_values_destroyer.release(); this->members_.m_size += element_count; } //Insert the new value in the already constructed range begin_ptr[pos + insertions_left - 1] = *(--last_value_it); } if(do_skip){ size_type n = *(--last_skip_it); while(n--){ --last_value_it; } } --insertions_left; hole_size = new_hole_size; next_pos = pos; } } //Takes the range pointed by [first_pos, last_pos) and shifts it to the right //by 'shift_count'. 'limit_pos' marks the end of constructed elements. // //Precondition: first_pos <= last_pos <= limit_pos // //The shift operation might cross limit_pos so elements to moved beyond limit_pos //are uninitialized_moved with an allocator. Other elements are moved. // //The shift operation might left uninitialized elements after limit_pos //and the number of uninitialized elements is returned by the function. // //Old situation: // first_pos last_pos old_limit // | | | // ____________V_______V__________________V_____________ //| prefix | range | suffix |raw_mem ~ //|____________|_______|__________________|_____________~ // //New situation in Case A (hole_size == 0): // range is moved through move assignments // // first_pos last_pos old_limit // | | | // ____________V_______V__________________V_____________ //| prefix' | | | range |suffix'|raw_mem ~ //|________________+______|___^___|_______|_____________~ // | | // |_>_>_>_>_>^ // // //New situation in Case B (hole_size >= 0): // range is moved through uninitialized moves // // first_pos last_pos old_limit // | | | // ____________V_______V__________________V________________ //| prefix' | | | [hole] | range | //|_______________________________________|________|___^___| // | | // |_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_^ // //New situation in Case C (hole_size == 0): // range is moved through move assignments and uninitialized moves // // first_pos last_pos old_limit // | | | // ____________V_______V__________________V___ //| prefix' | | | range | //|___________________________________|___^___| // | | // |_>_>_>_>_>_>_>_>_>_>_>^ size_type priv_insert_ordered_at_shift_range(size_type first_pos, size_type last_pos, size_type limit_pos, size_type shift_count) { BOOST_ASSERT(first_pos <= last_pos); BOOST_ASSERT(last_pos <= limit_pos); // T* const begin_ptr = container_detail::to_raw_pointer(this->members_.m_start); size_type hole_size = 0; //Case A: if((last_pos + shift_count) <= limit_pos){ //All move assigned boost::move_backward(begin_ptr + first_pos, begin_ptr + last_pos, begin_ptr + last_pos + shift_count); } //Case B: else if((first_pos + shift_count) >= limit_pos){ //All uninitialized_moved ::boost::container::uninitialized_move_alloc (this->alloc(), begin_ptr + first_pos, begin_ptr + last_pos, begin_ptr + first_pos + shift_count); hole_size = last_pos + shift_count - limit_pos; } //Case C: else{ //Some uninitialized_moved T* const limit_ptr = begin_ptr + limit_pos; T* const boundary_ptr = limit_ptr - shift_count; ::boost::container::uninitialized_move_alloc (this->alloc(), boundary_ptr, begin_ptr + last_pos, limit_ptr); //The rest is move assigned boost::move_backward(begin_ptr + first_pos, boundary_ptr, limit_ptr); } return hole_size; } private: void priv_range_insert_expand_forward(T* pos, size_type n, advanced_insert_aux_int_t &interf) { //n can't be 0, because there is nothing to do in that case if(!n) return; //There is enough memory T* old_finish = container_detail::to_raw_pointer(this->members_.m_start) + this->members_.m_size; const size_type elems_after = old_finish - pos; if (elems_after >= n){ //New elements can be just copied. //Move to uninitialized memory last objects ::boost::container::uninitialized_move_alloc (this->alloc(), old_finish - n, old_finish, old_finish); this->members_.m_size += n; //Copy previous to last objects to the initialized end boost::move_backward(pos, old_finish - n, old_finish); //Insert new objects in the pos interf.copy_remaining_to(pos); } else { //The new elements don't fit in the [pos, end()) range. Copy //to the beginning of the unallocated zone the last new elements. interf.uninitialized_copy_some_and_update(old_finish, elems_after, false); this->members_.m_size += n - elems_after; //Copy old [pos, end()) elements to the uninitialized memory ::boost::container::uninitialized_move_alloc (this->alloc(), pos, old_finish, container_detail::to_raw_pointer(this->members_.m_start) + this->members_.m_size); this->members_.m_size += elems_after; //Copy first new elements in pos interf.copy_remaining_to(pos); } } void priv_range_insert_new_allocation (T* new_start, size_type new_cap, T* pos, size_type n, advanced_insert_aux_int_t &interf) { //n can be zero, if we want to reallocate! T *new_finish = new_start; T *old_finish; //Anti-exception rollbacks typename value_traits::ArrayDeallocator scoped_alloc(new_start, this->alloc(), new_cap); typename value_traits::ArrayDestructor constructed_values_destroyer(new_start, this->alloc(), 0u); //Initialize with [begin(), pos) old buffer //the start of the new buffer T *old_buffer = container_detail::to_raw_pointer(this->members_.m_start); if(old_buffer){ new_finish = ::boost::container::uninitialized_move_alloc (this->alloc(), container_detail::to_raw_pointer(this->members_.m_start), pos, old_finish = new_finish); constructed_values_destroyer.increment_size(new_finish - old_finish); } //Initialize new objects, starting from previous point interf.uninitialized_copy_remaining_to(old_finish = new_finish); new_finish += n; constructed_values_destroyer.increment_size(new_finish - old_finish); //Initialize from the rest of the old buffer, //starting from previous point if(old_buffer){ new_finish = ::boost::container::uninitialized_move_alloc (this->alloc(), pos, old_buffer + this->members_.m_size, new_finish); //Destroy and deallocate old elements //If there is allocated memory, destroy and deallocate if(!value_traits::trivial_dctr_after_move) this->destroy_n(old_buffer, this->members_.m_size); this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity); } this->members_.m_start = new_start; this->members_.m_size = new_finish - new_start; this->members_.m_capacity = new_cap; //All construction successful, disable rollbacks constructed_values_destroyer.release(); scoped_alloc.release(); } void priv_range_insert_expand_backwards (T* new_start, size_type new_capacity, T* pos, const size_type n, advanced_insert_aux_int_t &interf) { //n can be zero to just expand capacity //Backup old data T* old_start = container_detail::to_raw_pointer(this->members_.m_start); T* old_finish = old_start + this->members_.m_size; size_type old_size = this->members_.m_size; //We can have 8 possibilities: const size_type elemsbefore = (size_type)(pos - old_start); const size_type s_before = (size_type)(old_start - new_start); //Update the vector buffer information to a safe state this->members_.m_start = new_start; this->members_.m_capacity = new_capacity; this->members_.m_size = 0; //If anything goes wrong, this object will destroy //all the old objects to fulfill previous vector state typename value_traits::OldArrayDestructor old_values_destroyer(old_start, this->alloc(), old_size); //Check if s_before is big enough to hold the beginning of old data + new data if(difference_type(s_before) >= difference_type(elemsbefore + n)){ //Copy first old values before pos, after that the new objects ::boost::container::uninitialized_move_alloc(this->alloc(), old_start, pos, new_start); this->members_.m_size = elemsbefore; interf.uninitialized_copy_remaining_to(new_start + elemsbefore); this->members_.m_size += n; //Check if s_before is so big that even copying the old data + new data //there is a gap between the new data and the old data if(s_before >= (old_size + n)){ //Old situation: // _________________________________________________________ //| raw_mem | old_begin | old_end | //| __________________________________|___________|_________| // //New situation: // _________________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|__________|_________|________________________| // //Now initialize the rest of memory with the last old values ::boost::container::uninitialized_move_alloc (this->alloc(), pos, old_finish, new_start + elemsbefore + n); //All new elements correctly constructed, avoid new element destruction this->members_.m_size = old_size + n; //Old values destroyed automatically with "old_values_destroyer" //when "old_values_destroyer" goes out of scope unless the have trivial //destructor after move. if(value_traits::trivial_dctr_after_move) old_values_destroyer.release(); } //s_before is so big that divides old_end else{ //Old situation: // __________________________________________________ //| raw_mem | old_begin | old_end | //| ___________________________|___________|_________| // //New situation: // __________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|__________|_________|_________________| // //Now initialize the rest of memory with the last old values //All new elements correctly constructed, avoid new element destruction size_type raw_gap = s_before - (elemsbefore + n); //Now initialize the rest of s_before memory with the //first of elements after new values ::boost::container::uninitialized_move_alloc (this->alloc(), pos, pos + raw_gap, new_start + elemsbefore + n); //Update size since we have a contiguous buffer this->members_.m_size = old_size + s_before; //All new elements correctly constructed, avoid old element destruction old_values_destroyer.release(); //Now copy remaining last objects in the old buffer begin T *to_destroy = ::boost::move(pos + raw_gap, old_finish, old_start); //Now destroy redundant elements except if they were moved and //they have trivial destructor after move size_type n_destroy = old_finish - to_destroy; if(!value_traits::trivial_dctr_after_move) this->destroy_n(to_destroy, n_destroy); this->members_.m_size -= n_destroy; } } else{ //Check if we have to do the insertion in two phases //since maybe s_before is not big enough and //the buffer was expanded both sides // //Old situation: // _________________________________________________ //| raw_mem | old_begin + old_end | raw_mem | //|_________|_____________________|_________________| // //New situation with do_after: // _________________________________________________ //| old_begin + new + old_end | raw_mem | //|___________________________________|_____________| // //New without do_after: // _________________________________________________ //| old_begin + new + old_end | raw_mem | //|____________________________|____________________| // bool do_after = n > s_before; //Now we can have two situations: the raw_mem of the //beginning divides the old_begin, or the new elements: if (s_before <= elemsbefore) { //The raw memory divides the old_begin group: // //If we need two phase construction (do_after) //new group is divided in new = new_beg + new_end groups //In this phase only new_beg will be inserted // //Old situation: // _________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|_________|___________|_________|_________________| // //New situation with do_after(1): //This is not definitive situation, the second phase //will include // _________________________________________________ //| old_begin | new_beg | old_end | raw_mem | //|___________|_________|_________|_________________| // //New situation without do_after: // _________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|_____|_________|_____________________| // //Copy the first part of old_begin to raw_mem T *start_n = old_start + difference_type(s_before); ::boost::container::uninitialized_move_alloc (this->alloc(), old_start, start_n, new_start); //The buffer is all constructed until old_end, //release destroyer and update size old_values_destroyer.release(); this->members_.m_size = old_size + s_before; //Now copy the second part of old_begin overwriting himself T* next = ::boost::move(start_n, pos, old_start); if(do_after){ //Now copy the new_beg elements interf.copy_some_and_update(next, s_before, true); } else{ //Now copy the all the new elements interf.copy_remaining_to(next); T* move_start = next + n; //Now displace old_end elements T* move_end = ::boost::move(pos, old_finish, move_start); //Destroy remaining moved elements from old_end except if //they have trivial destructor after being moved difference_type n_destroy = s_before - n; if(!value_traits::trivial_dctr_after_move) this->destroy_n(move_end, n_destroy); this->members_.m_size -= n_destroy; } } else { //If we have to expand both sides, //we will play if the first new values so //calculate the upper bound of new values //The raw memory divides the new elements // //If we need two phase construction (do_after) //new group is divided in new = new_beg + new_end groups //In this phase only new_beg will be inserted // //Old situation: // _______________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|_______________|___________|_________|_________________| // //New situation with do_after(): // ____________________________________________________ //| old_begin | new_beg | old_end | raw_mem | //|___________|_______________|_________|______________| // //New situation without do_after: // ______________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|_____|_________|__________________________| // //First copy whole old_begin and part of new to raw_mem ::boost::container::uninitialized_move_alloc (this->alloc(), old_start, pos, new_start); this->members_.m_size = elemsbefore; const size_type mid_n = difference_type(s_before) - elemsbefore; interf.uninitialized_copy_some_and_update(new_start + elemsbefore, mid_n, true); this->members_.m_size = old_size + s_before; //The buffer is all constructed until old_end, //release destroyer and update size old_values_destroyer.release(); if(do_after){ //Copy new_beg part interf.copy_some_and_update(old_start, s_before - mid_n, true); } else{ //Copy all new elements interf.copy_remaining_to(old_start); T* move_start = old_start + (n-mid_n); //Displace old_end T* move_end = ::boost::move(pos, old_finish, move_start); //Destroy remaining moved elements from old_end except if they //have trivial destructor after being moved difference_type n_destroy = s_before - n; if(!value_traits::trivial_dctr_after_move) this->destroy_n(move_end, n_destroy); this->members_.m_size -= n_destroy; } } //This is only executed if two phase construction is needed //This can be executed without exception handling since we //have to just copy and append in raw memory and //old_values_destroyer has been released in phase 1. if(do_after){ //The raw memory divides the new elements // //Old situation: // ______________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|______________|___________|____________|______________| // //New situation with do_after(1): // _______________________________________________________ //| old_begin + new_beg | new_end |old_end | raw_mem | //|__________________________|_________|________|_________| // //New situation with do_after(2): // ______________________________________________________ //| old_begin + new | old_end |raw | //|_______________________________________|_________|____| // const size_type n_after = n - s_before; const difference_type elemsafter = old_size - elemsbefore; //We can have two situations: if (elemsafter > difference_type(n_after)){ //The raw_mem from end will divide displaced old_end // //Old situation: // ______________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|______________|___________|____________|______________| // //New situation with do_after(1): // _______________________________________________________ //| old_begin + new_beg | new_end |old_end | raw_mem | //|__________________________|_________|________|_________| // //First copy the part of old_end raw_mem T* finish_n = old_finish - difference_type(n_after); ::boost::container::uninitialized_move_alloc (this->alloc(), finish_n, old_finish, old_finish); this->members_.m_size += n_after; //Displace the rest of old_end to the new position boost::move_backward(pos, finish_n, old_finish); //Now overwrite with new_end //The new_end part is [first + (n - n_after), last) interf.copy_remaining_to(pos); } else { //The raw_mem from end will divide new_end part // //Old situation: // _____________________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|______________|___________|____________|_____________________| // //New situation with do_after(2): // _____________________________________________________________ //| old_begin + new_beg | new_end |old_end | raw_mem | //|__________________________|_______________|________|_________| // size_type mid_last_dist = n_after - elemsafter; //First initialize data in raw memory //The new_end part is [first + (n - n_after), last) interf.uninitialized_copy_some_and_update(old_finish, elemsafter, false); this->members_.m_size += mid_last_dist; ::boost::container::uninitialized_move_alloc (this->alloc(), pos, old_finish, old_finish + mid_last_dist); this->members_.m_size += n_after - mid_last_dist; //Now copy the part of new_end over constructed elements interf.copy_remaining_to(pos); } } } } template void priv_assign_aux(InIt first, InIt last, std::input_iterator_tag) { //Overwrite all elements we can from [first, last) iterator cur = begin(); for ( ; first != last && cur != end(); ++cur, ++first){ *cur = *first; } if (first == last){ //There are no more elements in the sequence, erase remaining this->erase(cur, cend()); } else{ //There are more elements in the range, insert the remaining ones this->insert(this->cend(), first, last); } } template void priv_assign_aux(FwdIt first, FwdIt last, std::forward_iterator_tag) { size_type n = std::distance(first, last); if(!n){ this->prot_destroy_all(); return; } //Check if we have enough memory or try to expand current memory size_type remaining = this->members_.m_capacity - this->members_.m_size; bool same_buffer_start; std::pair ret; size_type real_cap = this->members_.m_capacity; if (n <= remaining){ same_buffer_start = true; } else{ //There is not enough memory, allocate a new buffer size_type new_cap = this->next_capacity(n); ret = this->allocation_command (allocate_new | expand_fwd | expand_bwd, this->size() + n, new_cap, real_cap, this->members_.m_start); same_buffer_start = ret.second && this->members_.m_start == ret.first; if(same_buffer_start){ this->members_.m_capacity = real_cap; } } if(same_buffer_start){ T *start = container_detail::to_raw_pointer(this->members_.m_start); if (this->size() >= n){ //There is memory, but there are more old elements than new ones //Overwrite old elements with new ones std::copy(first, last, start); //Destroy remaining old elements this->destroy_n(start + n, this->members_.m_size - n); this->members_.m_size = n; } else{ //There is memory, but there are less old elements than new ones //First overwrite some old elements with new ones FwdIt mid = first; std::advance(mid, this->size()); // iG T *end = std::copy(first, mid, start); T *end = std::copy(first, mid, start); //Initialize the remaining new elements in the uninitialized memory ::boost::container::uninitialized_copy_or_move_alloc(this->alloc(), mid, last, end); this->members_.m_size = n; } } else if(!ret.second){ typename value_traits::ArrayDeallocator scoped_alloc(ret.first, this->alloc(), real_cap); ::boost::container::uninitialized_copy_or_move_alloc(this->alloc(), first, last, container_detail::to_raw_pointer(ret.first)); scoped_alloc.release(); //Destroy and deallocate old buffer if(this->members_.m_start != 0){ this->destroy_n(container_detail::to_raw_pointer(this->members_.m_start), this->members_.m_size); this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity); } this->members_.m_start = ret.first; this->members_.m_size = n; this->members_.m_capacity = real_cap; } else{ //Backwards expansion //If anything goes wrong, this object will destroy old objects T *old_start = container_detail::to_raw_pointer(this->members_.m_start); size_type old_size = this->members_.m_size; typename value_traits::OldArrayDestructor old_values_destroyer(old_start, this->alloc(), old_size); //If something goes wrong size will be 0 //but holding the whole buffer this->members_.m_size = 0; this->members_.m_start = ret.first; this->members_.m_capacity = real_cap; //Backup old buffer data size_type old_offset = old_start - container_detail::to_raw_pointer(ret.first); size_type first_count = container_detail::min_value(n, old_offset); FwdIt mid = first; std::advance(mid, first_count); ::boost::container::uninitialized_copy_or_move_alloc (this->alloc(), first, mid, container_detail::to_raw_pointer(ret.first)); if(old_offset > n){ //All old elements will be destroyed by "old_values_destroyer" this->members_.m_size = n; } else{ //We have constructed objects from the new begin until //the old end so release the rollback destruction old_values_destroyer.release(); this->members_.m_start = ret.first; this->members_.m_size = first_count + old_size; //Now overwrite the old values size_type second_count = container_detail::min_value(old_size, n - first_count); FwdIt mid2 = mid; std::advance(mid2, second_count); // iG std::copy(mid, mid2, old_start); std::copy(mid, mid2, old_start); //Check if we still have to append elements in the //uninitialized end if(second_count == old_size){ // iG std::copy(mid2, last, old_start + old_size); std::copy(mid2, last, old_start + old_size); } else{ //We have to destroy some old values this->destroy_n (old_start + second_count, old_size - second_count); this->members_.m_size = n; } this->members_.m_size = n; } } } template void priv_assign_dispatch(Integer n, Integer val, container_detail::true_) { this->assign((size_type) n, (value_type)val); } template void priv_assign_dispatch(InIt first, InIt last, container_detail::false_) { //Dispatch depending on integer/iterator typedef typename std::iterator_traits::iterator_category ItCat; this->priv_assign_aux(first, last, ItCat()); } template void priv_insert_dispatch(const_iterator pos, Integer n, Integer val, container_detail::true_) { this->insert(pos, (size_type)n, (T)val); } template void priv_insert_dispatch(const_iterator pos, InIt first, InIt last, container_detail::false_) { //Dispatch depending on integer/iterator typedef typename std::iterator_traits::iterator_category ItCat; this->priv_range_insert(pos, first, last, ItCat()); } void priv_check_range(size_type n) const { //If n is out of range, throw an out_of_range exception if (n >= size()) throw std::out_of_range("vector::at"); } #ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS public: unsigned int num_expand_fwd; unsigned int num_expand_bwd; unsigned int num_shrink; unsigned int num_alloc; void reset_alloc_stats() { num_expand_fwd = num_expand_bwd = num_alloc = 0, num_shrink = 0; } #endif /// @endcond }; template inline bool operator==(const vector& x, const vector& y) { //Check first size and each element if needed return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin()); } template inline bool operator!=(const vector& x, const vector& y) { //Check first size and each element if needed return x.size() != y.size() || !std::equal(x.begin(), x.end(), y.begin()); } template inline bool operator<(const vector& x, const vector& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template inline void swap(vector& x, vector& y) { x.swap(y); } }} /// @cond namespace boost { /* //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor::value; }; */ } /// @endcond #include #endif // #ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP