////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2013. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_ADAPTIVE_POOL_HPP #define BOOST_CONTAINER_ADAPTIVE_POOL_HPP #ifndef BOOST_CONFIG_HPP # include #endif #if defined(BOOST_HAS_PRAGMA_ONCE) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace container { //!An STL node allocator that uses a modified DLMalloc as memory //!source. //! //!This node allocator shares a segregated storage between all instances //!of adaptive_pool with equal sizeof(T). //! //!NodesPerBlock is the number of nodes allocated at once when the allocator //!needs runs out of nodes. MaxFreeBlocks is the maximum number of totally free blocks //!that the adaptive node pool will hold. The rest of the totally free blocks will be //!deallocated to the memory manager. //! //!OverheadPercent is the (approximated) maximum size overhead (1-20%) of the allocator: //!(memory usable for nodes / total memory allocated from the memory allocator) template < class T , std::size_t NodesPerBlock BOOST_CONTAINER_DOCONLY(= ADP_nodes_per_block) , std::size_t MaxFreeBlocks BOOST_CONTAINER_DOCONLY(= ADP_max_free_blocks) , std::size_t OverheadPercent BOOST_CONTAINER_DOCONLY(= ADP_overhead_percent) BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I unsigned Version) > class adaptive_pool { //!If Version is 1, the allocator is a STL conforming allocator. If Version is 2, //!the allocator offers advanced expand in place and burst allocation capabilities. public: typedef unsigned int allocation_type; typedef adaptive_pool self_t; static const std::size_t nodes_per_block = NodesPerBlock; static const std::size_t max_free_blocks = MaxFreeBlocks; static const std::size_t overhead_percent = OverheadPercent; static const std::size_t real_nodes_per_block = NodesPerBlock; BOOST_CONTAINER_DOCIGN(BOOST_STATIC_ASSERT((Version <=2))); public: //------- typedef T value_type; typedef T * pointer; typedef const T * const_pointer; typedef typename ::boost::container:: dtl::unvoid_ref::type reference; typedef typename ::boost::container:: dtl::unvoid_ref::type const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef boost::container::dtl:: version_type version; #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED typedef boost::container::dtl:: basic_multiallocation_chain multiallocation_chain_void; typedef boost::container::dtl:: transform_multiallocation_chain multiallocation_chain; #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED //!Obtains adaptive_pool from //!adaptive_pool template struct rebind { typedef adaptive_pool < T2 , NodesPerBlock , MaxFreeBlocks , OverheadPercent BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I Version) > other; }; #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED private: //!Not assignable from related adaptive_pool template adaptive_pool& operator= (const adaptive_pool&); #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED public: //!Default constructor adaptive_pool() BOOST_NOEXCEPT_OR_NOTHROW {} //!Copy constructor from other adaptive_pool. adaptive_pool(const adaptive_pool &) BOOST_NOEXCEPT_OR_NOTHROW {} //!Copy constructor from related adaptive_pool. template adaptive_pool (const adaptive_pool &) BOOST_NOEXCEPT_OR_NOTHROW {} //!Destructor ~adaptive_pool() BOOST_NOEXCEPT_OR_NOTHROW {} //!Returns the number of elements that could be allocated. //!Never throws size_type max_size() const BOOST_NOEXCEPT_OR_NOTHROW { return size_type(-1)/(2u*sizeof(T)); } //!Allocate memory for an array of count elements. //!Throws std::bad_alloc if there is no enough memory pointer allocate(size_type count, const void * = 0) { if(BOOST_UNLIKELY(count > size_type(-1)/(2u*sizeof(T)))) boost::container::throw_bad_alloc(); if(Version == 1 && count == 1){ typedef typename dtl::shared_adaptive_node_pool shared_pool_t; typedef dtl::singleton_default singleton_t; return pointer(static_cast(singleton_t::instance().allocate_node())); } else{ return static_cast(dlmalloc_malloc(count*sizeof(T))); } } //!Deallocate allocated memory. //!Never throws void deallocate(const pointer &ptr, size_type count) BOOST_NOEXCEPT_OR_NOTHROW { (void)count; if(Version == 1 && count == 1){ typedef dtl::shared_adaptive_node_pool shared_pool_t; typedef dtl::singleton_default singleton_t; singleton_t::instance().deallocate_node(ptr); } else{ dlmalloc_free(ptr); } } pointer allocation_command(allocation_type command, size_type limit_size, size_type &prefer_in_recvd_out_size, pointer &reuse) { pointer ret = this->priv_allocation_command(command, limit_size, prefer_in_recvd_out_size, reuse); if(BOOST_UNLIKELY(!ret && !(command & BOOST_CONTAINER_NOTHROW_ALLOCATION))) boost::container::throw_bad_alloc(); return ret; } //!Returns maximum the number of objects the previously allocated memory //!pointed by p can hold. size_type size(pointer p) const BOOST_NOEXCEPT_OR_NOTHROW { return dlmalloc_size(p); } //!Allocates just one object. Memory allocated with this function //!must be deallocated only with deallocate_one(). //!Throws bad_alloc if there is no enough memory pointer allocate_one() { typedef dtl::shared_adaptive_node_pool shared_pool_t; typedef dtl::singleton_default singleton_t; return (pointer)singleton_t::instance().allocate_node(); } //!Allocates many elements of size == 1. //!Elements must be individually deallocated with deallocate_one() void allocate_individual(std::size_t num_elements, multiallocation_chain &chain) { typedef dtl::shared_adaptive_node_pool shared_pool_t; typedef dtl::singleton_default singleton_t; singleton_t::instance().allocate_nodes(num_elements, static_cast(chain)); //typename shared_pool_t::multiallocation_chain ch; //singleton_t::instance().allocate_nodes(num_elements, ch); //chain.incorporate_after //(chain.before_begin(), (T*)&*ch.begin(), (T*)&*ch.last(), ch.size()); } //!Deallocates memory previously allocated with allocate_one(). //!You should never use deallocate_one to deallocate memory allocated //!with other functions different from allocate_one(). Never throws void deallocate_one(pointer p) BOOST_NOEXCEPT_OR_NOTHROW { typedef dtl::shared_adaptive_node_pool shared_pool_t; typedef dtl::singleton_default singleton_t; singleton_t::instance().deallocate_node(p); } void deallocate_individual(multiallocation_chain &chain) BOOST_NOEXCEPT_OR_NOTHROW { typedef dtl::shared_adaptive_node_pool shared_pool_t; typedef dtl::singleton_default singleton_t; //typename shared_pool_t::multiallocation_chain ch(&*chain.begin(), &*chain.last(), chain.size()); //singleton_t::instance().deallocate_nodes(ch); singleton_t::instance().deallocate_nodes(chain); } //!Allocates many elements of size elem_size. //!Elements must be individually deallocated with deallocate() void allocate_many(size_type elem_size, std::size_t n_elements, multiallocation_chain &chain) { BOOST_STATIC_ASSERT(( Version > 1 ));/* dlmalloc_memchain ch; BOOST_CONTAINER_MEMCHAIN_INIT(&ch); if(BOOST_UNLIKELY(!dlmalloc_multialloc_nodes(n_elements, elem_size*sizeof(T), DL_MULTIALLOC_DEFAULT_CONTIGUOUS, &ch))){ boost::container::throw_bad_alloc(); } chain.incorporate_after(chain.before_begin() ,(T*)BOOST_CONTAINER_MEMCHAIN_FIRSTMEM(&ch) ,(T*)BOOST_CONTAINER_MEMCHAIN_LASTMEM(&ch) ,BOOST_CONTAINER_MEMCHAIN_SIZE(&ch) );*/ if(BOOST_UNLIKELY(!dlmalloc_multialloc_nodes (n_elements, elem_size*sizeof(T), DL_MULTIALLOC_DEFAULT_CONTIGUOUS, reinterpret_cast(&chain)))){ boost::container::throw_bad_alloc(); } } //!Allocates n_elements elements, each one of size elem_sizes[i] //!Elements must be individually deallocated with deallocate() void allocate_many(const size_type *elem_sizes, size_type n_elements, multiallocation_chain &chain) { BOOST_STATIC_ASSERT(( Version > 1 ));/* dlmalloc_memchain ch; BOOST_CONTAINER_MEMCHAIN_INIT(&ch); if(BOOST_UNLIKELY(!dlmalloc_multialloc_arrays(n_elements, elem_sizes, sizeof(T), DL_MULTIALLOC_DEFAULT_CONTIGUOUS, &ch))){ boost::container::throw_bad_alloc(); } chain.incorporate_after(chain.before_begin() ,(T*)BOOST_CONTAINER_MEMCHAIN_FIRSTMEM(&ch) ,(T*)BOOST_CONTAINER_MEMCHAIN_LASTMEM(&ch) ,BOOST_CONTAINER_MEMCHAIN_SIZE(&ch) );*/ if(BOOST_UNLIKELY(!dlmalloc_multialloc_arrays (n_elements, elem_sizes, sizeof(T), DL_MULTIALLOC_DEFAULT_CONTIGUOUS, reinterpret_cast(&chain)))){ boost::container::throw_bad_alloc(); } } void deallocate_many(multiallocation_chain &chain) BOOST_NOEXCEPT_OR_NOTHROW {/* dlmalloc_memchain ch; void *beg(&*chain.begin()), *last(&*chain.last()); size_t size(chain.size()); BOOST_CONTAINER_MEMCHAIN_INIT_FROM(&ch, beg, last, size); dlmalloc_multidealloc(&ch);*/ dlmalloc_multidealloc(reinterpret_cast(&chain)); } //!Deallocates all free blocks of the pool static void deallocate_free_blocks() BOOST_NOEXCEPT_OR_NOTHROW { typedef dtl::shared_adaptive_node_pool shared_pool_t; typedef dtl::singleton_default singleton_t; singleton_t::instance().deallocate_free_blocks(); } //!Swaps allocators. Does not throw. If each allocator is placed in a //!different memory segment, the result is undefined. friend void swap(adaptive_pool &, adaptive_pool &) BOOST_NOEXCEPT_OR_NOTHROW {} //!An allocator always compares to true, as memory allocated with one //!instance can be deallocated by another instance friend bool operator==(const adaptive_pool &, const adaptive_pool &) BOOST_NOEXCEPT_OR_NOTHROW { return true; } //!An allocator always compares to false, as memory allocated with one //!instance can be deallocated by another instance friend bool operator!=(const adaptive_pool &, const adaptive_pool &) BOOST_NOEXCEPT_OR_NOTHROW { return false; } private: pointer priv_allocation_command (allocation_type command, std::size_t limit_size ,size_type &prefer_in_recvd_out_size, pointer &reuse_ptr) { std::size_t const preferred_size = prefer_in_recvd_out_size; dlmalloc_command_ret_t ret = {0 , 0}; if(BOOST_UNLIKELY(limit_size > this->max_size() || preferred_size > this->max_size())){ return pointer(); } std::size_t l_size = limit_size*sizeof(T); std::size_t p_size = preferred_size*sizeof(T); std::size_t r_size; { void* reuse_ptr_void = reuse_ptr; ret = dlmalloc_allocation_command(command, sizeof(T), l_size, p_size, &r_size, reuse_ptr_void); reuse_ptr = ret.second ? static_cast(reuse_ptr_void) : 0; } prefer_in_recvd_out_size = r_size/sizeof(T); return (pointer)ret.first; } }; template < class T , std::size_t NodesPerBlock = ADP_nodes_per_block , std::size_t MaxFreeBlocks = ADP_max_free_blocks , std::size_t OverheadPercent = ADP_overhead_percent , unsigned Version = 2 > class private_adaptive_pool { //!If Version is 1, the allocator is a STL conforming allocator. If Version is 2, //!the allocator offers advanced expand in place and burst allocation capabilities. public: typedef unsigned int allocation_type; typedef private_adaptive_pool self_t; static const std::size_t nodes_per_block = NodesPerBlock; static const std::size_t max_free_blocks = MaxFreeBlocks; static const std::size_t overhead_percent = OverheadPercent; static const std::size_t real_nodes_per_block = NodesPerBlock; BOOST_CONTAINER_DOCIGN(BOOST_STATIC_ASSERT((Version <=2))); typedef dtl::private_adaptive_node_pool pool_t; pool_t m_pool; public: //------- typedef T value_type; typedef T * pointer; typedef const T * const_pointer; typedef typename ::boost::container:: dtl::unvoid_ref::type reference; typedef typename ::boost::container:: dtl::unvoid_ref::type const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef boost::container::dtl:: version_type version; #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED typedef boost::container::dtl:: basic_multiallocation_chain multiallocation_chain_void; typedef boost::container::dtl:: transform_multiallocation_chain multiallocation_chain; #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED //!Obtains private_adaptive_pool from //!private_adaptive_pool template struct rebind { typedef private_adaptive_pool < T2 , NodesPerBlock , MaxFreeBlocks , OverheadPercent BOOST_CONTAINER_DOCIGN(BOOST_MOVE_I Version) > other; }; #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED private: //!Not assignable from related private_adaptive_pool template private_adaptive_pool& operator= (const private_adaptive_pool&); #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED public: //!Default constructor private_adaptive_pool() BOOST_NOEXCEPT_OR_NOTHROW {} //!Copy constructor from other private_adaptive_pool. private_adaptive_pool(const private_adaptive_pool &) BOOST_NOEXCEPT_OR_NOTHROW {} //!Copy constructor from related private_adaptive_pool. template private_adaptive_pool (const private_adaptive_pool &) BOOST_NOEXCEPT_OR_NOTHROW {} //!Destructor ~private_adaptive_pool() BOOST_NOEXCEPT_OR_NOTHROW {} //!Returns the number of elements that could be allocated. //!Never throws size_type max_size() const BOOST_NOEXCEPT_OR_NOTHROW { return size_type(-1)/(2u*sizeof(T)); } //!Allocate memory for an array of count elements. //!Throws std::bad_alloc if there is no enough memory pointer allocate(size_type count, const void * = 0) { if(BOOST_UNLIKELY(count > size_type(-1)/(2u*sizeof(T)))) boost::container::throw_bad_alloc(); if(Version == 1 && count == 1){ return pointer(static_cast(m_pool.allocate_node())); } else{ return static_cast(dlmalloc_malloc(count*sizeof(T))); } } //!Deallocate allocated memory. //!Never throws void deallocate(const pointer &ptr, size_type count) BOOST_NOEXCEPT_OR_NOTHROW { (void)count; if(Version == 1 && count == 1){ m_pool.deallocate_node(ptr); } else{ dlmalloc_free(ptr); } } pointer allocation_command(allocation_type command, size_type limit_size, size_type &prefer_in_recvd_out_size, pointer &reuse) { pointer ret = this->priv_allocation_command(command, limit_size, prefer_in_recvd_out_size, reuse); if(BOOST_UNLIKELY(!ret && !(command & BOOST_CONTAINER_NOTHROW_ALLOCATION))) boost::container::throw_bad_alloc(); return ret; } //!Returns maximum the number of objects the previously allocated memory //!pointed by p can hold. size_type size(pointer p) const BOOST_NOEXCEPT_OR_NOTHROW { return dlmalloc_size(p); } //!Allocates just one object. Memory allocated with this function //!must be deallocated only with deallocate_one(). //!Throws bad_alloc if there is no enough memory pointer allocate_one() { return (pointer)m_pool.allocate_node(); } //!Allocates many elements of size == 1. //!Elements must be individually deallocated with deallocate_one() void allocate_individual(std::size_t num_elements, multiallocation_chain &chain) { m_pool.allocate_nodes(num_elements, static_cast(chain)); } //!Deallocates memory previously allocated with allocate_one(). //!You should never use deallocate_one to deallocate memory allocated //!with other functions different from allocate_one(). Never throws void deallocate_one(pointer p) BOOST_NOEXCEPT_OR_NOTHROW { m_pool.deallocate_node(p); } void deallocate_individual(multiallocation_chain &chain) BOOST_NOEXCEPT_OR_NOTHROW { m_pool.deallocate_nodes(chain); } //!Allocates many elements of size elem_size. //!Elements must be individually deallocated with deallocate() void allocate_many(size_type elem_size, std::size_t n_elements, multiallocation_chain &chain) { BOOST_STATIC_ASSERT(( Version > 1 )); if(BOOST_UNLIKELY(!dlmalloc_multialloc_nodes (n_elements, elem_size*sizeof(T), DL_MULTIALLOC_DEFAULT_CONTIGUOUS, reinterpret_cast(&chain)))){ boost::container::throw_bad_alloc(); } } //!Allocates n_elements elements, each one of size elem_sizes[i] //!Elements must be individually deallocated with deallocate() void allocate_many(const size_type *elem_sizes, size_type n_elements, multiallocation_chain &chain) { BOOST_STATIC_ASSERT(( Version > 1 )); if(BOOST_UNLIKELY(!dlmalloc_multialloc_arrays (n_elements, elem_sizes, sizeof(T), DL_MULTIALLOC_DEFAULT_CONTIGUOUS, reinterpret_cast(&chain)))){ boost::container::throw_bad_alloc(); } } void deallocate_many(multiallocation_chain &chain) BOOST_NOEXCEPT_OR_NOTHROW { dlmalloc_multidealloc(reinterpret_cast(&chain)); } //!Deallocates all free blocks of the pool void deallocate_free_blocks() BOOST_NOEXCEPT_OR_NOTHROW { m_pool.deallocate_free_blocks(); } //!Swaps allocators. Does not throw. If each allocator is placed in a //!different memory segment, the result is undefined. friend void swap(private_adaptive_pool &, private_adaptive_pool &) BOOST_NOEXCEPT_OR_NOTHROW {} //!An allocator always compares to true, as memory allocated with one //!instance can be deallocated by another instance friend bool operator==(const private_adaptive_pool &, const private_adaptive_pool &) BOOST_NOEXCEPT_OR_NOTHROW { return true; } //!An allocator always compares to false, as memory allocated with one //!instance can be deallocated by another instance friend bool operator!=(const private_adaptive_pool &, const private_adaptive_pool &) BOOST_NOEXCEPT_OR_NOTHROW { return false; } private: pointer priv_allocation_command (allocation_type command, std::size_t limit_size ,size_type &prefer_in_recvd_out_size, pointer &reuse_ptr) { std::size_t const preferred_size = prefer_in_recvd_out_size; dlmalloc_command_ret_t ret = {0 , 0}; if(BOOST_UNLIKELY(limit_size > this->max_size() || preferred_size > this->max_size())){ return pointer(); } std::size_t l_size = limit_size*sizeof(T); std::size_t p_size = preferred_size*sizeof(T); std::size_t r_size; { void* reuse_ptr_void = reuse_ptr; ret = dlmalloc_allocation_command(command, sizeof(T), l_size, p_size, &r_size, reuse_ptr_void); reuse_ptr = ret.second ? static_cast(reuse_ptr_void) : 0; } prefer_in_recvd_out_size = r_size/sizeof(T); return (pointer)ret.first; } }; } //namespace container { } //namespace boost { #include #endif //#ifndef BOOST_CONTAINER_ADAPTIVE_POOL_HPP