/////////////////////////////////////////////////////////////////////////////// // tail_quantile.hpp // // Copyright 2006 Daniel Egloff, Olivier Gygi. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_ACCUMULATORS_STATISTICS_TAIL_QUANTILE_HPP_DE_01_01_2006 #define BOOST_ACCUMULATORS_STATISTICS_TAIL_QUANTILE_HPP_DE_01_01_2006 #include #include #include #include #include #include // For ceil #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable: 4127) // conditional expression is constant #endif namespace boost { namespace accumulators { namespace impl { /////////////////////////////////////////////////////////////////////////////// // tail_quantile_impl // Tail quantile estimation based on order statistics /** @brief Tail quantile estimation based on order statistics (for both left and right tails) The estimation of a tail quantile \f$\hat{q}\f$ with level \f$\alpha\f$ based on order statistics requires the caching of at least the \f$\lceil n\alpha\rceil\f$ smallest or the \f$\lceil n(1-\alpha)\rceil\f$ largest samples, \f$n\f$ being the total number of samples. The largest of the \f$\lceil n\alpha\rceil\f$ smallest samples or the smallest of the \f$\lceil n(1-\alpha)\rceil\f$ largest samples provides an estimate for the quantile: \f[ \hat{q}_{n,\alpha} = X_{\lceil \alpha n \rceil:n} \f] @param quantile_probability */ template struct tail_quantile_impl : accumulator_base { // for boost::result_of typedef Sample result_type; tail_quantile_impl(dont_care) {} template result_type result(Args const &args) const { std::size_t cnt = count(args); std::size_t n = static_cast( std::ceil( cnt * ( ( is_same::value ) ? args[quantile_probability] : 1. - args[quantile_probability] ) ) ); // If n is in a valid range, return result, otherwise return NaN or throw exception if ( n < static_cast(tail(args).size())) { // Note that the cached samples of the left are sorted in ascending order, // whereas the samples of the right tail are sorted in descending order return *(boost::begin(tail(args)) + n - 1); } else { if (std::numeric_limits::has_quiet_NaN) { return std::numeric_limits::quiet_NaN(); } else { std::ostringstream msg; msg << "index n = " << n << " is not in valid range [0, " << tail(args).size() << ")"; boost::throw_exception(std::runtime_error(msg.str())); return Sample(0); } } } }; } // namespace impl /////////////////////////////////////////////////////////////////////////////// // tag::tail_quantile<> // namespace tag { template struct tail_quantile : depends_on > { /// INTERNAL ONLY /// typedef accumulators::impl::tail_quantile_impl impl; }; } /////////////////////////////////////////////////////////////////////////////// // extract::tail_quantile // namespace extract { extractor const tail_quantile = {}; BOOST_ACCUMULATORS_IGNORE_GLOBAL(tail_quantile) } using extract::tail_quantile; // for the purposes of feature-based dependency resolution, // tail_quantile provide the same feature as quantile template struct feature_of > : feature_of { }; // So that tail_quantile can be automatically substituted with // weighted_tail_quantile when the weight parameter is non-void. template struct as_weighted_feature > { typedef tag::weighted_tail_quantile type; }; template struct feature_of > : feature_of > {}; }} // namespace boost::accumulators #ifdef _MSC_VER # pragma warning(pop) #endif #endif