summaryrefslogtreecommitdiff
path: root/boost/rational.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/rational.hpp')
-rw-r--r--boost/rational.hpp497
1 files changed, 396 insertions, 101 deletions
diff --git a/boost/rational.hpp b/boost/rational.hpp
index 2b74b05fd3..4fc06c9edc 100644
--- a/boost/rational.hpp
+++ b/boost/rational.hpp
@@ -32,7 +32,7 @@
// 05 May 12 Reduced use of implicit gcd (Mario Lang)
// 05 Nov 06 Change rational_cast to not depend on division between different
// types (Daryle Walker)
-// 04 Nov 06 Off-load GCD and LCM to Boost.Math; add some invariant checks;
+// 04 Nov 06 Off-load GCD and LCM to Boost.Integer; add some invariant checks;
// add std::numeric_limits<> requirement to help GCD (Daryle Walker)
// 31 Oct 06 Recoded both operator< to use round-to-negative-infinity
// divisions; the rational-value version now uses continued fraction
@@ -83,6 +83,10 @@
#include <limits> // for std::numeric_limits
#include <boost/static_assert.hpp> // for BOOST_STATIC_ASSERT
#include <boost/throw_exception.hpp>
+#include <boost/utility/enable_if.hpp>
+#include <boost/type_traits/is_convertible.hpp>
+#include <boost/type_traits/is_class.hpp>
+#include <boost/type_traits/is_same.hpp>
// Control whether depreciated GCD and LCM functions are included (default: yes)
#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
@@ -95,18 +99,34 @@ namespace boost {
template <typename IntType>
IntType gcd(IntType n, IntType m)
{
- // Defer to the version in Boost.Math
+ // Defer to the version in Boost.Integer
return integer::gcd( n, m );
}
template <typename IntType>
IntType lcm(IntType n, IntType m)
{
- // Defer to the version in Boost.Math
+ // Defer to the version in Boost.Integer
return integer::lcm( n, m );
}
#endif // BOOST_CONTROL_RATIONAL_HAS_GCD
+namespace rational_detail{
+
+ template <class FromInt, class ToInt>
+ struct is_compatible_integer
+ {
+ BOOST_STATIC_CONSTANT(bool, value = ((std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
+ && (std::numeric_limits<FromInt>::digits <= std::numeric_limits<ToInt>::digits)
+ && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
+ && ((std::numeric_limits<FromInt>::is_signed == false) || (std::numeric_limits<ToInt>::is_signed == true))
+ && is_convertible<FromInt, ToInt>::value)
+ || is_same<FromInt, ToInt>::value)
+ || (is_class<ToInt>::value && is_class<FromInt>::value && is_convertible<FromInt, ToInt>::value));
+ };
+
+}
+
class bad_rational : public std::domain_error
{
public:
@@ -115,24 +135,7 @@ public:
};
template <typename IntType>
-class rational :
- less_than_comparable < rational<IntType>,
- equality_comparable < rational<IntType>,
- less_than_comparable2 < rational<IntType>, IntType,
- equality_comparable2 < rational<IntType>, IntType,
- addable < rational<IntType>,
- subtractable < rational<IntType>,
- multipliable < rational<IntType>,
- dividable < rational<IntType>,
- addable2 < rational<IntType>, IntType,
- subtractable2 < rational<IntType>, IntType,
- subtractable2_left < rational<IntType>, IntType,
- multipliable2 < rational<IntType>, IntType,
- dividable2 < rational<IntType>, IntType,
- dividable2_left < rational<IntType>, IntType,
- incrementable < rational<IntType>,
- decrementable < rational<IntType>
- > > > > > > > > > > > > > > > >
+class rational
{
// Class-wide pre-conditions
BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
@@ -149,26 +152,104 @@ public:
BOOST_CONSTEXPR
rational() : num(0), den(1) {}
- BOOST_CONSTEXPR
- rational(param_type n) : num(n), den(1) {}
- rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
+ template <class T>
+ BOOST_CONSTEXPR rational(const T& n, typename enable_if_c<
+ rational_detail::is_compatible_integer<T, IntType>::value
+ >::type const* = 0) : num(n), den(1) {}
+ template <class T, class U>
+ rational(const T& n, const U& d, typename enable_if_c<
+ rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value
+ >::type const* = 0) : num(n), den(d) {
+ normalize();
+ }
-#ifndef BOOST_NO_MEMBER_TEMPLATES
template < typename NewType >
BOOST_CONSTEXPR explicit
- rational(rational<NewType> const &r)
+ rational(rational<NewType> const &r, typename enable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
: num(r.numerator()), den(is_normalized(int_type(r.numerator()),
int_type(r.denominator())) ? r.denominator() :
(BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
-#endif
+ template < typename NewType >
+ BOOST_CONSTEXPR explicit
+ rational(rational<NewType> const &r, typename disable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
+ : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
+ int_type(r.denominator())) && is_safe_narrowing_conversion(r.denominator()) && is_safe_narrowing_conversion(r.numerator()) ? r.denominator() :
+ (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
// Default copy constructor and assignment are fine
// Add assignment from IntType
- rational& operator=(param_type i) { num = i; den = 1; return *this; }
+ template <class T>
+ typename enable_if_c<
+ rational_detail::is_compatible_integer<T, IntType>::value, rational &
+ >::type operator=(const T& n) { return assign(static_cast<IntType>(n), static_cast<IntType>(1)); }
// Assign in place
- rational& assign(param_type n, param_type d);
+ template <class T, class U>
+ typename enable_if_c<
+ rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value, rational &
+ >::type assign(const T& n, const U& d)
+ {
+ return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
+ }
+ //
+ // The following overloads should probably *not* be provided -
+ // but are provided for backwards compatibity reasons only.
+ // These allow for construction/assignment from types that
+ // are wider than IntType only if there is an implicit
+ // conversion from T to IntType, they will throw a bad_rational
+ // if the conversion results in loss of precision or undefined behaviour.
+ //
+ template <class T>
+ rational(const T& n, typename enable_if_c<
+ std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
+ && !rational_detail::is_compatible_integer<T, IntType>::value
+ && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<T, IntType>::value
+ >::type const* = 0)
+ {
+ assign(n, static_cast<T>(1));
+ }
+ template <class T, class U>
+ rational(const T& n, const U& d, typename enable_if_c<
+ (!rational_detail::is_compatible_integer<T, IntType>::value
+ || !rational_detail::is_compatible_integer<U, IntType>::value)
+ && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
+ && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<T, IntType>::value &&
+ std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
+ && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<U, IntType>::value
+ >::type const* = 0)
+ {
+ assign(n, d);
+ }
+ template <class T>
+ typename enable_if_c<
+ std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
+ && !rational_detail::is_compatible_integer<T, IntType>::value
+ && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<T, IntType>::value,
+ rational &
+ >::type operator=(const T& n) { return assign(n, static_cast<T>(1)); }
+
+ template <class T, class U>
+ typename enable_if_c<
+ (!rational_detail::is_compatible_integer<T, IntType>::value
+ || !rational_detail::is_compatible_integer<U, IntType>::value)
+ && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
+ && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<T, IntType>::value &&
+ std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
+ && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<U, IntType>::value,
+ rational &
+ >::type assign(const T& n, const U& d)
+ {
+ if(!is_safe_narrowing_conversion(n) || !is_safe_narrowing_conversion(d))
+ BOOST_THROW_EXCEPTION(bad_rational());
+ return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
+ }
// Access to representation
BOOST_CONSTEXPR
@@ -182,15 +263,66 @@ public:
rational& operator*= (const rational& r);
rational& operator/= (const rational& r);
- rational& operator+= (param_type i) { num += i * den; return *this; }
- rational& operator-= (param_type i) { num -= i * den; return *this; }
- rational& operator*= (param_type i);
- rational& operator/= (param_type i);
+ template <class T>
+ typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator+= (const T& i)
+ {
+ num += i * den;
+ return *this;
+ }
+ template <class T>
+ typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator-= (const T& i)
+ {
+ num -= i * den;
+ return *this;
+ }
+ template <class T>
+ typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator*= (const T& i)
+ {
+ // Avoid overflow and preserve normalization
+ IntType gcd = integer::gcd(static_cast<IntType>(i), den);
+ num *= i / gcd;
+ den /= gcd;
+ return *this;
+ }
+ template <class T>
+ typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator/= (const T& i)
+ {
+ // Avoid repeated construction
+ IntType const zero(0);
+
+ if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
+ if(num == zero) return *this;
+
+ // Avoid overflow and preserve normalization
+ IntType const gcd = integer::gcd(num, static_cast<IntType>(i));
+ num /= gcd;
+ den *= i / gcd;
+
+ if(den < zero) {
+ num = -num;
+ den = -den;
+ }
+
+ return *this;
+ }
// Increment and decrement
const rational& operator++() { num += den; return *this; }
const rational& operator--() { num -= den; return *this; }
+ rational operator++(int)
+ {
+ rational t(*this);
+ ++(*this);
+ return t;
+ }
+ rational operator--(int)
+ {
+ rational t(*this);
+ --(*this);
+ return t;
+ }
+
// Operator not
BOOST_CONSTEXPR
bool operator!() const { return !num; }
@@ -213,13 +345,37 @@ public:
// Comparison operators
bool operator< (const rational& r) const;
+ bool operator> (const rational& r) const { return r < *this; }
BOOST_CONSTEXPR
bool operator== (const rational& r) const;
- bool operator< (param_type i) const;
- bool operator> (param_type i) const;
- BOOST_CONSTEXPR
- bool operator== (param_type i) const;
+ template <class T>
+ typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator< (const T& i) const
+ {
+ // Avoid repeated construction
+ int_type const zero(0);
+
+ // Break value into mixed-fraction form, w/ always-nonnegative remainder
+ BOOST_ASSERT(this->den > zero);
+ int_type q = this->num / this->den, r = this->num % this->den;
+ while(r < zero) { r += this->den; --q; }
+
+ // Compare with just the quotient, since the remainder always bumps the
+ // value up. [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
+ // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
+ // q >= i + 1 > i; therefore n/d < i iff q < i.]
+ return q < i;
+ }
+ template <class T>
+ typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator>(const T& i) const
+ {
+ return operator==(i) ? false : !operator<(i);
+ }
+ template <class T>
+ BOOST_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator== (const T& i) const
+ {
+ return ((den == IntType(1)) && (num == i));
+ }
private:
// Implementation - numerator and denominator (normalized).
@@ -251,15 +407,70 @@ private:
return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
d, zero), zero ) == one;
}
+ //
+ // Conversion checks:
+ //
+ // (1) From an unsigned type with more digits than IntType:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
+ {
+ return val < (T(1) << std::numeric_limits<IntType>::digits);
+ }
+ //
+ // (2) From a signed type with more digits than IntType, and IntType also signed:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T& val)
+ {
+ // Note that this check assumes IntType has a 2's complement representation,
+ // we don't want to try to convert a std::numeric_limits<IntType>::min() to
+ // a T because that conversion may not be allowed (this happens when IntType
+ // is from Boost.Multiprecision).
+ return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= -(T(1) << std::numeric_limits<IntType>::digits));
+ }
+ //
+ // (3) From a signed type with more digits than IntType, and IntType unsigned:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
+ {
+ return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= 0);
+ }
+ //
+ // (4) From a signed type with fewer digits than IntType, and IntType unsigned:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
+ {
+ return val >= 0;
+ }
+ //
+ // (5) From an unsigned type with fewer digits than IntType, and IntType signed:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
+ {
+ return true;
+ }
+ //
+ // (6) From an unsigned type with fewer digits than IntType, and IntType unsigned:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T&)
+ {
+ return true;
+ }
+ //
+ // (7) From an signed type with fewer digits than IntType, and IntType signed:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
+ {
+ return true;
+ }
};
-// Assign in place
-template <typename IntType>
-inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
-{
- return *this = rational( n, d );
-}
-
// Unary plus and minus
template <typename IntType>
BOOST_CONSTEXPR
@@ -271,7 +482,7 @@ inline rational<IntType> operator+ (const rational<IntType>& r)
template <typename IntType>
inline rational<IntType> operator- (const rational<IntType>& r)
{
- return rational<IntType>(-r.numerator(), r.denominator());
+ return rational<IntType>(static_cast<IntType>(-r.numerator()), r.denominator());
}
// Arithmetic assignment operators
@@ -373,40 +584,155 @@ rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
return *this;
}
-// Mixed-mode operators
-template <typename IntType>
-inline rational<IntType>&
-rational<IntType>::operator*= (param_type i)
+
+//
+// Non-member operators: previously these were provided by Boost.Operator, but these had a number of
+// drawbacks, most notably, that in order to allow inter-operability with IntType code such as this:
+//
+// rational<int> r(3);
+// assert(r == 3.5); // compiles and passes!!
+//
+// Happens to be allowed as well :-(
+//
+// There are three possible cases for each operator:
+// 1) rational op rational.
+// 2) rational op integer
+// 3) integer op rational
+// Cases (1) and (2) are folded into the one function.
+//
+template <class IntType, class Arg>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
+ operator + (const rational<IntType>& a, const Arg& b)
{
- // Avoid overflow and preserve normalization
- IntType gcd = integer::gcd(i, den);
- num *= i / gcd;
- den /= gcd;
+ rational<IntType> t(a);
+ return t += b;
+}
+template <class Arg, class IntType>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
+ operator + (const Arg& b, const rational<IntType>& a)
+{
+ rational<IntType> t(a);
+ return t += b;
+}
- return *this;
+template <class IntType, class Arg>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
+ operator - (const rational<IntType>& a, const Arg& b)
+{
+ rational<IntType> t(a);
+ return t -= b;
+}
+template <class Arg, class IntType>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
+ operator - (const Arg& b, const rational<IntType>& a)
+{
+ rational<IntType> t(a);
+ return -(t -= b);
}
-template <typename IntType>
-rational<IntType>&
-rational<IntType>::operator/= (param_type i)
+template <class IntType, class Arg>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
+ operator * (const rational<IntType>& a, const Arg& b)
{
- // Avoid repeated construction
- IntType const zero(0);
+ rational<IntType> t(a);
+ return t *= b;
+}
+template <class Arg, class IntType>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
+ operator * (const Arg& b, const rational<IntType>& a)
+{
+ rational<IntType> t(a);
+ return t *= b;
+}
- if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
- if (num == zero) return *this;
+template <class IntType, class Arg>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
+ operator / (const rational<IntType>& a, const Arg& b)
+{
+ rational<IntType> t(a);
+ return t /= b;
+}
+template <class Arg, class IntType>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
+ operator / (const Arg& b, const rational<IntType>& a)
+{
+ rational<IntType> t(b);
+ return t /= a;
+}
- // Avoid overflow and preserve normalization
- IntType const gcd = integer::gcd(num, i);
- num /= gcd;
- den *= i / gcd;
+template <class IntType, class Arg>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
+ operator <= (const rational<IntType>& a, const Arg& b)
+{
+ return !(a > b);
+}
+template <class Arg, class IntType>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator <= (const Arg& b, const rational<IntType>& a)
+{
+ return a >= b;
+}
- if (den < zero) {
- num = -num;
- den = -den;
- }
+template <class IntType, class Arg>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
+ operator >= (const rational<IntType>& a, const Arg& b)
+{
+ return !(a < b);
+}
+template <class Arg, class IntType>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator >= (const Arg& b, const rational<IntType>& a)
+{
+ return a <= b;
+}
- return *this;
+template <class IntType, class Arg>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
+ operator != (const rational<IntType>& a, const Arg& b)
+{
+ return !(a == b);
+}
+template <class Arg, class IntType>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator != (const Arg& b, const rational<IntType>& a)
+{
+ return !(b == a);
+}
+
+template <class Arg, class IntType>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator < (const Arg& b, const rational<IntType>& a)
+{
+ return a > b;
+}
+template <class Arg, class IntType>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator > (const Arg& b, const rational<IntType>& a)
+{
+ return a < b;
+}
+template <class Arg, class IntType>
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator == (const Arg& b, const rational<IntType>& a)
+{
+ return a == b;
}
// Comparison operators
@@ -495,43 +821,12 @@ bool rational<IntType>::operator< (const rational<IntType>& r) const
}
template <typename IntType>
-bool rational<IntType>::operator< (param_type i) const
-{
- // Avoid repeated construction
- int_type const zero( 0 );
-
- // Break value into mixed-fraction form, w/ always-nonnegative remainder
- BOOST_ASSERT( this->den > zero );
- int_type q = this->num / this->den, r = this->num % this->den;
- while ( r < zero ) { r += this->den; --q; }
-
- // Compare with just the quotient, since the remainder always bumps the
- // value up. [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
- // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
- // q >= i + 1 > i; therefore n/d < i iff q < i.]
- return q < i;
-}
-
-template <typename IntType>
-bool rational<IntType>::operator> (param_type i) const
-{
- return operator==(i)? false: !operator<(i);
-}
-
-template <typename IntType>
BOOST_CONSTEXPR
inline bool rational<IntType>::operator== (const rational<IntType>& r) const
{
return ((num == r.num) && (den == r.den));
}
-template <typename IntType>
-BOOST_CONSTEXPR
-inline bool rational<IntType>::operator== (param_type i) const
-{
- return ((den == IntType(1)) && (num == i));
-}
-
// Invariant check
template <typename IntType>
inline bool rational<IntType>::test_invariant() const