summaryrefslogtreecommitdiff
path: root/boost/polygon/voronoi_diagram.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/polygon/voronoi_diagram.hpp')
-rw-r--r--boost/polygon/voronoi_diagram.hpp620
1 files changed, 620 insertions, 0 deletions
diff --git a/boost/polygon/voronoi_diagram.hpp b/boost/polygon/voronoi_diagram.hpp
new file mode 100644
index 0000000000..7df26ec4e1
--- /dev/null
+++ b/boost/polygon/voronoi_diagram.hpp
@@ -0,0 +1,620 @@
+// Boost.Polygon library voronoi_diagram.hpp header file
+
+// Copyright Andrii Sydorchuk 2010-2012.
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+// See http://www.boost.org for updates, documentation, and revision history.
+
+#ifndef BOOST_POLYGON_VORONOI_DIAGRAM
+#define BOOST_POLYGON_VORONOI_DIAGRAM
+
+#include <vector>
+#include <utility>
+
+#include "detail/voronoi_ctypes.hpp"
+#include "detail/voronoi_structures.hpp"
+
+#include "voronoi_geometry_type.hpp"
+
+namespace boost {
+namespace polygon {
+
+// Forward declarations.
+template <typename T>
+class voronoi_edge;
+
+// Represents Voronoi cell.
+// Data members:
+// 1) index of the source within the initial input set
+// 2) pointer to the incident edge
+// 3) mutable color member
+// Cell may contain point or segment site inside.
+template <typename T>
+class voronoi_cell {
+ public:
+ typedef T coordinate_type;
+ typedef std::size_t color_type;
+ typedef voronoi_edge<coordinate_type> voronoi_edge_type;
+ typedef std::size_t source_index_type;
+ typedef SourceCategory source_category_type;
+
+ voronoi_cell(source_index_type source_index,
+ source_category_type source_category) :
+ source_index_(source_index),
+ incident_edge_(NULL),
+ color_(source_category) {}
+
+ // Returns true if the cell contains point site, false else.
+ bool contains_point() const {
+ source_category_type source_category = this->source_category();
+ return belongs(source_category, GEOMETRY_CATEGORY_POINT);
+ }
+
+ // Returns true if the cell contains segment site, false else.
+ bool contains_segment() const {
+ source_category_type source_category = this->source_category();
+ return belongs(source_category, GEOMETRY_CATEGORY_SEGMENT);
+ }
+
+ source_index_type source_index() const {
+ return source_index_;
+ }
+
+ source_category_type source_category() const {
+ return static_cast<source_category_type>(color_ & SOURCE_CATEGORY_BITMASK);
+ }
+
+ // Degenerate cells don't have any incident edges.
+ bool is_degenerate() const { return incident_edge_ == NULL; }
+
+ voronoi_edge_type* incident_edge() { return incident_edge_; }
+ const voronoi_edge_type* incident_edge() const { return incident_edge_; }
+ void incident_edge(voronoi_edge_type* e) { incident_edge_ = e; }
+
+ color_type color() const { return color_ >> BITS_SHIFT; }
+ void color(color_type color) const {
+ color_ &= BITS_MASK;
+ color_ |= color << BITS_SHIFT;
+ }
+
+ private:
+ // 5 color bits are reserved.
+ enum Bits {
+ BITS_SHIFT = 0x5,
+ BITS_MASK = 0x1F
+ };
+
+ source_index_type source_index_;
+ voronoi_edge_type* incident_edge_;
+ mutable color_type color_;
+};
+
+// Represents Voronoi vertex.
+// Data members:
+// 1) vertex coordinates
+// 2) pointer to the incident edge
+// 3) mutable color member
+template <typename T>
+class voronoi_vertex {
+ public:
+ typedef T coordinate_type;
+ typedef std::size_t color_type;
+ typedef voronoi_edge<coordinate_type> voronoi_edge_type;
+
+ voronoi_vertex(const coordinate_type& x, const coordinate_type& y) :
+ x_(x),
+ y_(y),
+ incident_edge_(NULL),
+ color_(0) {}
+
+ const coordinate_type& x() const { return x_; }
+ const coordinate_type& y() const { return y_; }
+
+ bool is_degenerate() const { return incident_edge_ == NULL; }
+
+ voronoi_edge_type* incident_edge() { return incident_edge_; }
+ const voronoi_edge_type* incident_edge() const { return incident_edge_; }
+ void incident_edge(voronoi_edge_type* e) { incident_edge_ = e; }
+
+ color_type color() const { return color_ >> BITS_SHIFT; }
+ void color(color_type color) const {
+ color_ &= BITS_MASK;
+ color_ |= color << BITS_SHIFT;
+ }
+
+ private:
+ // 5 color bits are reserved.
+ enum Bits {
+ BITS_SHIFT = 0x5,
+ BITS_MASK = 0x1F
+ };
+
+ coordinate_type x_;
+ coordinate_type y_;
+ voronoi_edge_type* incident_edge_;
+ mutable color_type color_;
+};
+
+// Half-edge data structure. Represents Voronoi edge.
+// Data members:
+// 1) pointer to the corresponding cell
+// 2) pointer to the vertex that is the starting
+// point of the half-edge
+// 3) pointer to the twin edge
+// 4) pointer to the CCW next edge
+// 5) pointer to the CCW prev edge
+// 6) mutable color member
+template <typename T>
+class voronoi_edge {
+ public:
+ typedef T coordinate_type;
+ typedef voronoi_cell<coordinate_type> voronoi_cell_type;
+ typedef voronoi_vertex<coordinate_type> voronoi_vertex_type;
+ typedef voronoi_edge<coordinate_type> voronoi_edge_type;
+ typedef std::size_t color_type;
+
+ voronoi_edge(bool is_linear, bool is_primary) :
+ cell_(NULL),
+ vertex_(NULL),
+ twin_(NULL),
+ next_(NULL),
+ prev_(NULL),
+ color_(0) {
+ if (is_linear)
+ color_ |= BIT_IS_LINEAR;
+ if (is_primary)
+ color_ |= BIT_IS_PRIMARY;
+ }
+
+ voronoi_cell_type* cell() { return cell_; }
+ const voronoi_cell_type* cell() const { return cell_; }
+ void cell(voronoi_cell_type* c) { cell_ = c; }
+
+ voronoi_vertex_type* vertex0() { return vertex_; }
+ const voronoi_vertex_type* vertex0() const { return vertex_; }
+ void vertex0(voronoi_vertex_type* v) { vertex_ = v; }
+
+ voronoi_vertex_type* vertex1() { return twin_->vertex0(); }
+ const voronoi_vertex_type* vertex1() const { return twin_->vertex0(); }
+
+ voronoi_edge_type* twin() { return twin_; }
+ const voronoi_edge_type* twin() const { return twin_; }
+ void twin(voronoi_edge_type* e) { twin_ = e; }
+
+ voronoi_edge_type* next() { return next_; }
+ const voronoi_edge_type* next() const { return next_; }
+ void next(voronoi_edge_type* e) { next_ = e; }
+
+ voronoi_edge_type* prev() { return prev_; }
+ const voronoi_edge_type* prev() const { return prev_; }
+ void prev(voronoi_edge_type* e) { prev_ = e; }
+
+ // Returns a pointer to the rotation next edge
+ // over the starting point of the half-edge.
+ voronoi_edge_type* rot_next() { return prev_->twin(); }
+ const voronoi_edge_type* rot_next() const { return prev_->twin(); }
+
+ // Returns a pointer to the rotation prev edge
+ // over the starting point of the half-edge.
+ voronoi_edge_type* rot_prev() { return twin_->next(); }
+ const voronoi_edge_type* rot_prev() const { return twin_->next(); }
+
+ // Returns true if the edge is finite (segment, parabolic arc).
+ // Returns false if the edge is infinite (ray, line).
+ bool is_finite() const { return vertex0() && vertex1(); }
+
+ // Returns true if the edge is infinite (ray, line).
+ // Returns false if the edge is finite (segment, parabolic arc).
+ bool is_infinite() const { return !vertex0() || !vertex1(); }
+
+ // Returns true if the edge is linear (segment, ray, line).
+ // Returns false if the edge is curved (parabolic arc).
+ bool is_linear() const {
+ return (color_ & BIT_IS_LINEAR) ? true : false;
+ }
+
+ // Returns true if the edge is curved (parabolic arc).
+ // Returns false if the edge is linear (segment, ray, line).
+ bool is_curved() const {
+ return (color_ & BIT_IS_LINEAR) ? false : true;
+ }
+
+ // Returns false if edge goes through the endpoint of the segment.
+ // Returns true else.
+ bool is_primary() const {
+ return (color_ & BIT_IS_PRIMARY) ? true : false;
+ }
+
+ // Returns true if edge goes through the endpoint of the segment.
+ // Returns false else.
+ bool is_secondary() const {
+ return (color_ & BIT_IS_PRIMARY) ? false : true;
+ }
+
+ color_type color() const { return color_ >> BITS_SHIFT; }
+ void color(color_type color) const {
+ color_ &= BITS_MASK;
+ color_ |= color << BITS_SHIFT;
+ }
+
+ private:
+ // 5 color bits are reserved.
+ enum Bits {
+ BIT_IS_LINEAR = 0x1, // linear is opposite to curved
+ BIT_IS_PRIMARY = 0x2, // primary is opposite to secondary
+
+ BITS_SHIFT = 0x5,
+ BITS_MASK = 0x1F
+ };
+
+ voronoi_cell_type* cell_;
+ voronoi_vertex_type* vertex_;
+ voronoi_edge_type* twin_;
+ voronoi_edge_type* next_;
+ voronoi_edge_type* prev_;
+ mutable color_type color_;
+};
+
+template <typename T>
+struct voronoi_diagram_traits {
+ typedef T coordinate_type;
+ typedef voronoi_cell<coordinate_type> cell_type;
+ typedef voronoi_vertex<coordinate_type> vertex_type;
+ typedef voronoi_edge<coordinate_type> edge_type;
+ typedef class {
+ public:
+ enum { ULPS = 128 };
+ bool operator()(const vertex_type& v1, const vertex_type& v2) const {
+ return (ulp_cmp(v1.x(), v2.x(), ULPS) ==
+ detail::ulp_comparison<T>::EQUAL) &&
+ (ulp_cmp(v1.y(), v2.y(), ULPS) ==
+ detail::ulp_comparison<T>::EQUAL);
+ }
+ private:
+ typename detail::ulp_comparison<T> ulp_cmp;
+ } vertex_equality_predicate_type;
+};
+
+// Voronoi output data structure.
+// CCW ordering is used on the faces perimeter and around the vertices.
+template <typename T, typename TRAITS = voronoi_diagram_traits<T> >
+class voronoi_diagram {
+ public:
+ typedef typename TRAITS::coordinate_type coordinate_type;
+ typedef typename TRAITS::cell_type cell_type;
+ typedef typename TRAITS::vertex_type vertex_type;
+ typedef typename TRAITS::edge_type edge_type;
+
+ typedef std::vector<cell_type> cell_container_type;
+ typedef typename cell_container_type::const_iterator const_cell_iterator;
+
+ typedef std::vector<vertex_type> vertex_container_type;
+ typedef typename vertex_container_type::const_iterator const_vertex_iterator;
+
+ typedef std::vector<edge_type> edge_container_type;
+ typedef typename edge_container_type::const_iterator const_edge_iterator;
+
+ voronoi_diagram() {}
+
+ void clear() {
+ cells_.clear();
+ vertices_.clear();
+ edges_.clear();
+ }
+
+ const cell_container_type& cells() const {
+ return cells_;
+ }
+
+ const vertex_container_type& vertices() const {
+ return vertices_;
+ }
+
+ const edge_container_type& edges() const {
+ return edges_;
+ }
+
+ std::size_t num_cells() const {
+ return cells_.size();
+ }
+
+ std::size_t num_edges() const {
+ return edges_.size();
+ }
+
+ std::size_t num_vertices() const {
+ return vertices_.size();
+ }
+
+ void _reserve(std::size_t num_sites) {
+ cells_.reserve(num_sites);
+ vertices_.reserve(num_sites << 1);
+ edges_.reserve((num_sites << 2) + (num_sites << 1));
+ }
+
+ template <typename CT>
+ void _process_single_site(const detail::site_event<CT>& site) {
+ cells_.push_back(cell_type(site.initial_index(), site.source_category()));
+ }
+
+ // Insert a new half-edge into the output data structure.
+ // Takes as input left and right sites that form a new bisector.
+ // Returns a pair of pointers to a new half-edges.
+ template <typename CT>
+ std::pair<void*, void*> _insert_new_edge(
+ const detail::site_event<CT>& site1,
+ const detail::site_event<CT>& site2) {
+ // Get sites' indexes.
+ int site_index1 = site1.sorted_index();
+ int site_index2 = site2.sorted_index();
+
+ bool is_linear = is_linear_edge(site1, site2);
+ bool is_primary = is_primary_edge(site1, site2);
+
+ // Create a new half-edge that belongs to the first site.
+ edges_.push_back(edge_type(is_linear, is_primary));
+ edge_type& edge1 = edges_.back();
+
+ // Create a new half-edge that belongs to the second site.
+ edges_.push_back(edge_type(is_linear, is_primary));
+ edge_type& edge2 = edges_.back();
+
+ // Add the initial cell during the first edge insertion.
+ if (cells_.empty()) {
+ cells_.push_back(cell_type(
+ site1.initial_index(), site1.source_category()));
+ }
+
+ // The second site represents a new site during site event
+ // processing. Add a new cell to the cell records.
+ cells_.push_back(cell_type(
+ site2.initial_index(), site2.source_category()));
+
+ // Set up pointers to cells.
+ edge1.cell(&cells_[site_index1]);
+ edge2.cell(&cells_[site_index2]);
+
+ // Set up twin pointers.
+ edge1.twin(&edge2);
+ edge2.twin(&edge1);
+
+ // Return a pointer to the new half-edge.
+ return std::make_pair(&edge1, &edge2);
+ }
+
+ // Insert a new half-edge into the output data structure with the
+ // start at the point where two previously added half-edges intersect.
+ // Takes as input two sites that create a new bisector, circle event
+ // that corresponds to the intersection point of the two old half-edges,
+ // pointers to those half-edges. Half-edges' direction goes out of the
+ // new Voronoi vertex point. Returns a pair of pointers to a new half-edges.
+ template <typename CT1, typename CT2>
+ std::pair<void*, void*> _insert_new_edge(
+ const detail::site_event<CT1>& site1,
+ const detail::site_event<CT1>& site3,
+ const detail::circle_event<CT2>& circle,
+ void* data12, void* data23) {
+ edge_type* edge12 = static_cast<edge_type*>(data12);
+ edge_type* edge23 = static_cast<edge_type*>(data23);
+
+ // Add a new Voronoi vertex.
+ vertices_.push_back(vertex_type(circle.x(), circle.y()));
+ vertex_type& new_vertex = vertices_.back();
+
+ // Update vertex pointers of the old edges.
+ edge12->vertex0(&new_vertex);
+ edge23->vertex0(&new_vertex);
+
+ bool is_linear = is_linear_edge(site1, site3);
+ bool is_primary = is_primary_edge(site1, site3);
+
+ // Add a new half-edge.
+ edges_.push_back(edge_type(is_linear, is_primary));
+ edge_type& new_edge1 = edges_.back();
+ new_edge1.cell(&cells_[site1.sorted_index()]);
+
+ // Add a new half-edge.
+ edges_.push_back(edge_type(is_linear, is_primary));
+ edge_type& new_edge2 = edges_.back();
+ new_edge2.cell(&cells_[site3.sorted_index()]);
+
+ // Update twin pointers.
+ new_edge1.twin(&new_edge2);
+ new_edge2.twin(&new_edge1);
+
+ // Update vertex pointer.
+ new_edge2.vertex0(&new_vertex);
+
+ // Update Voronoi prev/next pointers.
+ edge12->prev(&new_edge1);
+ new_edge1.next(edge12);
+ edge12->twin()->next(edge23);
+ edge23->prev(edge12->twin());
+ edge23->twin()->next(&new_edge2);
+ new_edge2.prev(edge23->twin());
+
+ // Return a pointer to the new half-edge.
+ return std::make_pair(&new_edge1, &new_edge2);
+ }
+
+ void _build() {
+ // Remove degenerate edges.
+ edge_iterator last_edge = edges_.begin();
+ for (edge_iterator it = edges_.begin(); it != edges_.end(); it += 2) {
+ const vertex_type* v1 = it->vertex0();
+ const vertex_type* v2 = it->vertex1();
+ if (v1 && v2 && vertex_equality_predicate_(*v1, *v2)) {
+ remove_edge(&(*it));
+ } else {
+ if (it != last_edge) {
+ edge_type* e1 = &(*last_edge = *it);
+ edge_type* e2 = &(*(last_edge + 1) = *(it + 1));
+ e1->twin(e2);
+ e2->twin(e1);
+ if (e1->prev()) {
+ e1->prev()->next(e1);
+ e2->next()->prev(e2);
+ }
+ if (e2->prev()) {
+ e1->next()->prev(e1);
+ e2->prev()->next(e2);
+ }
+ }
+ last_edge += 2;
+ }
+ }
+ edges_.erase(last_edge, edges_.end());
+
+ // Set up incident edge pointers for cells and vertices.
+ for (edge_iterator it = edges_.begin(); it != edges_.end(); ++it) {
+ it->cell()->incident_edge(&(*it));
+ if (it->vertex0()) {
+ it->vertex0()->incident_edge(&(*it));
+ }
+ }
+
+ // Remove degenerate vertices.
+ vertex_iterator last_vertex = vertices_.begin();
+ for (vertex_iterator it = vertices_.begin(); it != vertices_.end(); ++it) {
+ if (it->incident_edge()) {
+ if (it != last_vertex) {
+ *last_vertex = *it;
+ vertex_type* v = &(*last_vertex);
+ edge_type* e = v->incident_edge();
+ do {
+ e->vertex0(v);
+ e = e->rot_next();
+ } while (e != v->incident_edge());
+ }
+ ++last_vertex;
+ }
+ }
+ vertices_.erase(last_vertex, vertices_.end());
+
+ // Set up next/prev pointers for infinite edges.
+ if (vertices_.empty()) {
+ if (!edges_.empty()) {
+ // Update prev/next pointers for the line edges.
+ edge_iterator edge_it = edges_.begin();
+ edge_type* edge1 = &(*edge_it);
+ edge1->next(edge1);
+ edge1->prev(edge1);
+ ++edge_it;
+ edge1 = &(*edge_it);
+ ++edge_it;
+
+ while (edge_it != edges_.end()) {
+ edge_type* edge2 = &(*edge_it);
+ ++edge_it;
+
+ edge1->next(edge2);
+ edge1->prev(edge2);
+ edge2->next(edge1);
+ edge2->prev(edge1);
+
+ edge1 = &(*edge_it);
+ ++edge_it;
+ }
+
+ edge1->next(edge1);
+ edge1->prev(edge1);
+ }
+ } else {
+ // Update prev/next pointers for the ray edges.
+ for (cell_iterator cell_it = cells_.begin();
+ cell_it != cells_.end(); ++cell_it) {
+ if (cell_it->is_degenerate())
+ continue;
+ // Move to the previous edge while
+ // it is possible in the CW direction.
+ edge_type* left_edge = cell_it->incident_edge();
+ while (left_edge->prev() != NULL) {
+ left_edge = left_edge->prev();
+ // Terminate if this is not a boundary cell.
+ if (left_edge == cell_it->incident_edge())
+ break;
+ }
+
+ if (left_edge->prev() != NULL)
+ continue;
+
+ edge_type* right_edge = cell_it->incident_edge();
+ while (right_edge->next() != NULL)
+ right_edge = right_edge->next();
+ left_edge->prev(right_edge);
+ right_edge->next(left_edge);
+ }
+ }
+ }
+
+ private:
+ typedef typename cell_container_type::iterator cell_iterator;
+ typedef typename vertex_container_type::iterator vertex_iterator;
+ typedef typename edge_container_type::iterator edge_iterator;
+ typedef typename TRAITS::vertex_equality_predicate_type
+ vertex_equality_predicate_type;
+
+ template <typename SEvent>
+ bool is_primary_edge(const SEvent& site1, const SEvent& site2) const {
+ bool flag1 = site1.is_segment();
+ bool flag2 = site2.is_segment();
+ if (flag1 && !flag2) {
+ return (site1.point0() != site2.point0()) &&
+ (site1.point1() != site2.point0());
+ }
+ if (!flag1 && flag2) {
+ return (site2.point0() != site1.point0()) &&
+ (site2.point1() != site1.point0());
+ }
+ return true;
+ }
+
+ template <typename SEvent>
+ bool is_linear_edge(const SEvent& site1, const SEvent& site2) const {
+ if (!is_primary_edge(site1, site2)) {
+ return true;
+ }
+ return !(site1.is_segment() ^ site2.is_segment());
+ }
+
+ // Remove degenerate edge.
+ void remove_edge(edge_type* edge) {
+ // Update the endpoints of the incident edges to the second vertex.
+ vertex_type* vertex = edge->vertex0();
+ edge_type* updated_edge = edge->twin()->rot_next();
+ while (updated_edge != edge->twin()) {
+ updated_edge->vertex0(vertex);
+ updated_edge = updated_edge->rot_next();
+ }
+
+ edge_type* edge1 = edge;
+ edge_type* edge2 = edge->twin();
+
+ edge_type* edge1_rot_prev = edge1->rot_prev();
+ edge_type* edge1_rot_next = edge1->rot_next();
+
+ edge_type* edge2_rot_prev = edge2->rot_prev();
+ edge_type* edge2_rot_next = edge2->rot_next();
+
+ // Update prev/next pointers for the incident edges.
+ edge1_rot_next->twin()->next(edge2_rot_prev);
+ edge2_rot_prev->prev(edge1_rot_next->twin());
+ edge1_rot_prev->prev(edge2_rot_next->twin());
+ edge2_rot_next->twin()->next(edge1_rot_prev);
+ }
+
+ cell_container_type cells_;
+ vertex_container_type vertices_;
+ edge_container_type edges_;
+ vertex_equality_predicate_type vertex_equality_predicate_;
+
+ // Disallow copy constructor and operator=
+ voronoi_diagram(const voronoi_diagram&);
+ void operator=(const voronoi_diagram&);
+};
+} // polygon
+} // boost
+
+#endif // BOOST_POLYGON_VORONOI_DIAGRAM