summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/detail/gamma_inva.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/math/special_functions/detail/gamma_inva.hpp')
-rw-r--r--boost/math/special_functions/detail/gamma_inva.hpp233
1 files changed, 233 insertions, 0 deletions
diff --git a/boost/math/special_functions/detail/gamma_inva.hpp b/boost/math/special_functions/detail/gamma_inva.hpp
new file mode 100644
index 0000000000..549bc3d552
--- /dev/null
+++ b/boost/math/special_functions/detail/gamma_inva.hpp
@@ -0,0 +1,233 @@
+// (C) Copyright John Maddock 2006.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+//
+// This is not a complete header file, it is included by gamma.hpp
+// after it has defined it's definitions. This inverts the incomplete
+// gamma functions P and Q on the first parameter "a" using a generic
+// root finding algorithm (TOMS Algorithm 748).
+//
+
+#ifndef BOOST_MATH_SP_DETAIL_GAMMA_INVA
+#define BOOST_MATH_SP_DETAIL_GAMMA_INVA
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+#include <boost/math/tools/toms748_solve.hpp>
+#include <boost/cstdint.hpp>
+
+namespace boost{ namespace math{ namespace detail{
+
+template <class T, class Policy>
+struct gamma_inva_t
+{
+ gamma_inva_t(T z_, T p_, bool invert_) : z(z_), p(p_), invert(invert_) {}
+ T operator()(T a)
+ {
+ return invert ? p - boost::math::gamma_q(a, z, Policy()) : boost::math::gamma_p(a, z, Policy()) - p;
+ }
+private:
+ T z, p;
+ bool invert;
+};
+
+template <class T, class Policy>
+T inverse_poisson_cornish_fisher(T lambda, T p, T q, const Policy& pol)
+{
+ BOOST_MATH_STD_USING
+ // mean:
+ T m = lambda;
+ // standard deviation:
+ T sigma = sqrt(lambda);
+ // skewness
+ T sk = 1 / sigma;
+ // kurtosis:
+ // T k = 1/lambda;
+ // Get the inverse of a std normal distribution:
+ T x = boost::math::erfc_inv(p > q ? 2 * q : 2 * p, pol) * constants::root_two<T>();
+ // Set the sign:
+ if(p < 0.5)
+ x = -x;
+ T x2 = x * x;
+ // w is correction term due to skewness
+ T w = x + sk * (x2 - 1) / 6;
+ /*
+ // Add on correction due to kurtosis.
+ // Disabled for now, seems to make things worse?
+ //
+ if(lambda >= 10)
+ w += k * x * (x2 - 3) / 24 + sk * sk * x * (2 * x2 - 5) / -36;
+ */
+ w = m + sigma * w;
+ return w > tools::min_value<T>() ? w : tools::min_value<T>();
+}
+
+template <class T, class Policy>
+T gamma_inva_imp(const T& z, const T& p, const T& q, const Policy& pol)
+{
+ BOOST_MATH_STD_USING // for ADL of std lib math functions
+ //
+ // Special cases first:
+ //
+ if(p == 0)
+ {
+ return tools::max_value<T>();
+ }
+ if(q == 0)
+ {
+ return tools::min_value<T>();
+ }
+ //
+ // Function object, this is the functor whose root
+ // we have to solve:
+ //
+ gamma_inva_t<T, Policy> f(z, (p < q) ? p : q, (p < q) ? false : true);
+ //
+ // Tolerance: full precision.
+ //
+ tools::eps_tolerance<T> tol(policies::digits<T, Policy>());
+ //
+ // Now figure out a starting guess for what a may be,
+ // we'll start out with a value that'll put p or q
+ // right bang in the middle of their range, the functions
+ // are quite sensitive so we should need too many steps
+ // to bracket the root from there:
+ //
+ T guess;
+ T factor = 8;
+ if(z >= 1)
+ {
+ //
+ // We can use the relationship between the incomplete
+ // gamma function and the poisson distribution to
+ // calculate an approximate inverse, for large z
+ // this is actually pretty accurate, but it fails badly
+ // when z is very small. Also set our step-factor according
+ // to how accurate we think the result is likely to be:
+ //
+ guess = 1 + inverse_poisson_cornish_fisher(z, q, p, pol);
+ if(z > 5)
+ {
+ if(z > 1000)
+ factor = 1.01f;
+ else if(z > 50)
+ factor = 1.1f;
+ else if(guess > 10)
+ factor = 1.25f;
+ else
+ factor = 2;
+ if(guess < 1.1)
+ factor = 8;
+ }
+ }
+ else if(z > 0.5)
+ {
+ guess = z * 1.2f;
+ }
+ else
+ {
+ guess = -0.4f / log(z);
+ }
+ //
+ // Max iterations permitted:
+ //
+ boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+ //
+ // Use our generic derivative-free root finding procedure.
+ // We could use Newton steps here, taking the PDF of the
+ // Poisson distribution as our derivative, but that's
+ // even worse performance-wise than the generic method :-(
+ //
+ std::pair<T, T> r = bracket_and_solve_root(f, guess, factor, false, tol, max_iter, pol);
+ if(max_iter >= policies::get_max_root_iterations<Policy>())
+ policies::raise_evaluation_error<T>("boost::math::gamma_p_inva<%1%>(%1%, %1%)", "Unable to locate the root within a reasonable number of iterations, closest approximation so far was %1%", r.first, pol);
+ return (r.first + r.second) / 2;
+}
+
+} // namespace detail
+
+template <class T1, class T2, class Policy>
+inline typename tools::promote_args<T1, T2>::type
+ gamma_p_inva(T1 x, T2 p, const Policy& pol)
+{
+ typedef typename tools::promote_args<T1, T2>::type result_type;
+ typedef typename policies::evaluation<result_type, Policy>::type value_type;
+ typedef typename policies::normalise<
+ Policy,
+ policies::promote_float<false>,
+ policies::promote_double<false>,
+ policies::discrete_quantile<>,
+ policies::assert_undefined<> >::type forwarding_policy;
+
+ if(p == 0)
+ {
+ return tools::max_value<result_type>();
+ }
+ if(p == 1)
+ {
+ return tools::min_value<result_type>();
+ }
+
+ return policies::checked_narrowing_cast<result_type, forwarding_policy>(
+ detail::gamma_inva_imp(
+ static_cast<value_type>(x),
+ static_cast<value_type>(p),
+ static_cast<value_type>(1 - static_cast<value_type>(p)),
+ pol), "boost::math::gamma_p_inva<%1%>(%1%, %1%)");
+}
+
+template <class T1, class T2, class Policy>
+inline typename tools::promote_args<T1, T2>::type
+ gamma_q_inva(T1 x, T2 q, const Policy& pol)
+{
+ typedef typename tools::promote_args<T1, T2>::type result_type;
+ typedef typename policies::evaluation<result_type, Policy>::type value_type;
+ typedef typename policies::normalise<
+ Policy,
+ policies::promote_float<false>,
+ policies::promote_double<false>,
+ policies::discrete_quantile<>,
+ policies::assert_undefined<> >::type forwarding_policy;
+
+ if(q == 1)
+ {
+ return tools::max_value<result_type>();
+ }
+ if(q == 0)
+ {
+ return tools::min_value<result_type>();
+ }
+
+ return policies::checked_narrowing_cast<result_type, forwarding_policy>(
+ detail::gamma_inva_imp(
+ static_cast<value_type>(x),
+ static_cast<value_type>(1 - static_cast<value_type>(q)),
+ static_cast<value_type>(q),
+ pol), "boost::math::gamma_q_inva<%1%>(%1%, %1%)");
+}
+
+template <class T1, class T2>
+inline typename tools::promote_args<T1, T2>::type
+ gamma_p_inva(T1 x, T2 p)
+{
+ return boost::math::gamma_p_inva(x, p, policies::policy<>());
+}
+
+template <class T1, class T2>
+inline typename tools::promote_args<T1, T2>::type
+ gamma_q_inva(T1 x, T2 q)
+{
+ return boost::math::gamma_q_inva(x, q, policies::policy<>());
+}
+
+} // namespace math
+} // namespace boost
+
+#endif // BOOST_MATH_SP_DETAIL_GAMMA_INVA
+
+
+