summaryrefslogtreecommitdiff
path: root/boost/math/special_functions/detail/bessel_jy_derivatives_asym.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/math/special_functions/detail/bessel_jy_derivatives_asym.hpp')
-rw-r--r--boost/math/special_functions/detail/bessel_jy_derivatives_asym.hpp141
1 files changed, 141 insertions, 0 deletions
diff --git a/boost/math/special_functions/detail/bessel_jy_derivatives_asym.hpp b/boost/math/special_functions/detail/bessel_jy_derivatives_asym.hpp
new file mode 100644
index 0000000000..bdbfb9d0c1
--- /dev/null
+++ b/boost/math/special_functions/detail/bessel_jy_derivatives_asym.hpp
@@ -0,0 +1,141 @@
+// Copyright (c) 2013 Anton Bikineev
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+//
+// This is a partial header, do not include on it's own!!!
+//
+// Contains asymptotic expansions for derivatives of Bessel J(v,x) and Y(v,x)
+// functions, as x -> INF.
+#ifndef BOOST_MATH_SF_DETAIL_BESSEL_JY_DERIVATIVES_ASYM_HPP
+#define BOOST_MATH_SF_DETAIL_BESSEL_JY_DERIVATIVES_ASYM_HPP
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+namespace boost{ namespace math{ namespace detail{
+
+template <class T>
+inline T asymptotic_bessel_derivative_amplitude(T v, T x)
+{
+ // Calculate the amplitude for J'(v,x) and I'(v,x)
+ // for large x: see A&S 9.2.30.
+ BOOST_MATH_STD_USING
+ T s = 1;
+ const T mu = 4 * v * v;
+ T txq = 2 * x;
+ txq *= txq;
+
+ s -= (mu - 3) / (2 * txq);
+ s -= ((mu - 1) * (mu - 45)) / (txq * txq * 8);
+
+ return sqrt(s * 2 / (boost::math::constants::pi<T>() * x));
+}
+
+template <class T>
+inline T asymptotic_bessel_derivative_phase_mx(T v, T x)
+{
+ // Calculate the phase of J'(v, x) and Y'(v, x) for large x.
+ // See A&S 9.2.31.
+ // Note that the result returned is the phase less (x - PI(v/2 - 1/4))
+ // which we'll factor in later when we calculate the sines/cosines of the result:
+ const T mu = 4 * v * v;
+ const T mu2 = mu * mu;
+ const T mu3 = mu2 * mu;
+ T denom = 4 * x;
+ T denom_mult = denom * denom;
+
+ T s = 0;
+ s += (mu + 3) / (2 * denom);
+ denom *= denom_mult;
+ s += (mu2 + (46 * mu) - 63) / (6 * denom);
+ denom *= denom_mult;
+ s += (mu3 + (185 * mu2) - (2053 * mu) + 1899) / (5 * denom);
+ return s;
+}
+
+template <class T>
+inline T asymptotic_bessel_y_derivative_large_x_2(T v, T x)
+{
+ // See A&S 9.2.20.
+ BOOST_MATH_STD_USING
+ // Get the phase and amplitude:
+ const T ampl = asymptotic_bessel_derivative_amplitude(v, x);
+ const T phase = asymptotic_bessel_derivative_phase_mx(v, x);
+ BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
+ BOOST_MATH_INSTRUMENT_VARIABLE(phase);
+ //
+ // Calculate the sine of the phase, using
+ // sine/cosine addition rules to factor in
+ // the x - PI(v/2 - 1/4) term not added to the
+ // phase when we calculated it.
+ //
+ const T cx = cos(x);
+ const T sx = sin(x);
+ const T vd2shifted = (v / 2) - 0.25f;
+ const T ci = cos_pi(vd2shifted);
+ const T si = sin_pi(vd2shifted);
+ const T sin_phase = sin(phase) * (cx * ci + sx * si) + cos(phase) * (sx * ci - cx * si);
+ BOOST_MATH_INSTRUMENT_CODE(sin(phase));
+ BOOST_MATH_INSTRUMENT_CODE(cos(x));
+ BOOST_MATH_INSTRUMENT_CODE(cos(phase));
+ BOOST_MATH_INSTRUMENT_CODE(sin(x));
+ return sin_phase * ampl;
+}
+
+template <class T>
+inline T asymptotic_bessel_j_derivative_large_x_2(T v, T x)
+{
+ // See A&S 9.2.20.
+ BOOST_MATH_STD_USING
+ // Get the phase and amplitude:
+ const T ampl = asymptotic_bessel_derivative_amplitude(v, x);
+ const T phase = asymptotic_bessel_derivative_phase_mx(v, x);
+ BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
+ BOOST_MATH_INSTRUMENT_VARIABLE(phase);
+ //
+ // Calculate the sine of the phase, using
+ // sine/cosine addition rules to factor in
+ // the x - PI(v/2 - 1/4) term not added to the
+ // phase when we calculated it.
+ //
+ BOOST_MATH_INSTRUMENT_CODE(cos(phase));
+ BOOST_MATH_INSTRUMENT_CODE(cos(x));
+ BOOST_MATH_INSTRUMENT_CODE(sin(phase));
+ BOOST_MATH_INSTRUMENT_CODE(sin(x));
+ const T cx = cos(x);
+ const T sx = sin(x);
+ const T vd2shifted = (v / 2) - 0.25f;
+ const T ci = cos_pi(vd2shifted);
+ const T si = sin_pi(vd2shifted);
+ const T sin_phase = cos(phase) * (cx * ci + sx * si) - sin(phase) * (sx * ci - cx * si);
+ BOOST_MATH_INSTRUMENT_VARIABLE(sin_phase);
+ return sin_phase * ampl;
+}
+
+template <class T>
+inline bool asymptotic_bessel_derivative_large_x_limit(const T& v, const T& x)
+{
+ BOOST_MATH_STD_USING
+ //
+ // This function is the copy of math::asymptotic_bessel_large_x_limit
+ // It means that we use the same rules for determining how x is large
+ // compared to v.
+ //
+ // Determines if x is large enough compared to v to take the asymptotic
+ // forms above. From A&S 9.2.28 we require:
+ // v < x * eps^1/8
+ // and from A&S 9.2.29 we require:
+ // v^12/10 < 1.5 * x * eps^1/10
+ // using the former seems to work OK in practice with broadly similar
+ // error rates either side of the divide for v < 10000.
+ // At double precision eps^1/8 ~= 0.01.
+ //
+ return (std::max)(T(fabs(v)), T(1)) < x * sqrt(boost::math::tools::forth_root_epsilon<T>());
+}
+
+}}} // namespaces
+
+#endif // BOOST_MATH_SF_DETAIL_BESSEL_JY_DERIVATIVES_ASYM_HPP