summaryrefslogtreecommitdiff
path: root/boost/math/quadrature/tanh_sinh.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/math/quadrature/tanh_sinh.hpp')
-rw-r--r--boost/math/quadrature/tanh_sinh.hpp245
1 files changed, 245 insertions, 0 deletions
diff --git a/boost/math/quadrature/tanh_sinh.hpp b/boost/math/quadrature/tanh_sinh.hpp
new file mode 100644
index 0000000000..df550eeb67
--- /dev/null
+++ b/boost/math/quadrature/tanh_sinh.hpp
@@ -0,0 +1,245 @@
+// Copyright Nick Thompson, 2017
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+/*
+ * This class performs tanh-sinh quadrature on the real line.
+ * Tanh-sinh quadrature is exponentially convergent for integrands in Hardy spaces,
+ * (see https://en.wikipedia.org/wiki/Hardy_space for a formal definition), and is optimal for a random function from that class.
+ *
+ * The tanh-sinh quadrature is one of a class of so called "double exponential quadratures"-there is a large family of them,
+ * but this one seems to be the most commonly used.
+ *
+ * As always, there are caveats: For instance, if the function you want to integrate is not holomorphic on the unit disk,
+ * then the rapid convergence will be spoiled. In this case, a more appropriate quadrature is (say) Romberg, which does not
+ * require the function to be holomorphic, only differentiable up to some order.
+ *
+ * In addition, if you are integrating a periodic function over a period, the trapezoidal rule is better.
+ *
+ * References:
+ *
+ * 1) Mori, Masatake. "Quadrature formulas obtained by variable transformation and the DE-rule." Journal of Computational and Applied Mathematics 12 (1985): 119-130.
+ * 2) Bailey, David H., Karthik Jeyabalan, and Xiaoye S. Li. "A comparison of three high-precision quadrature schemes." Experimental Mathematics 14.3 (2005): 317-329.
+ * 3) Press, William H., et al. "Numerical recipes third edition: the art of scientific computing." Cambridge University Press 32 (2007): 10013-2473.
+ *
+ */
+
+#ifndef BOOST_MATH_QUADRATURE_TANH_SINH_HPP
+#define BOOST_MATH_QUADRATURE_TANH_SINH_HPP
+
+#include <cmath>
+#include <limits>
+#include <memory>
+#include <boost/math/quadrature/detail/tanh_sinh_detail.hpp>
+
+namespace boost{ namespace math{ namespace quadrature {
+
+template<class Real, class Policy = policies::policy<> >
+class tanh_sinh
+{
+public:
+ tanh_sinh(size_t max_refinements = 15, const Real& min_complement = tools::min_value<Real>() * 4)
+ : m_imp(std::make_shared<detail::tanh_sinh_detail<Real, Policy>>(max_refinements, min_complement)) {}
+
+ template<class F>
+ auto integrate(const F f, Real a, Real b, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(Real(std::declval<F>()(std::declval<Real>()))) const;
+ template<class F>
+ auto integrate(const F f, Real a, Real b, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(Real(std::declval<F>()(std::declval<Real>(), std::declval<Real>()))) const;
+
+ template<class F>
+ auto integrate(const F f, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(Real(std::declval<F>()(std::declval<Real>()))) const;
+ template<class F>
+ auto integrate(const F f, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(Real(std::declval<F>()(std::declval<Real>(), std::declval<Real>()))) const;
+
+private:
+ std::shared_ptr<detail::tanh_sinh_detail<Real, Policy>> m_imp;
+};
+
+template<class Real, class Policy>
+template<class F>
+auto tanh_sinh<Real, Policy>::integrate(const F f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(Real(std::declval<F>()(std::declval<Real>()))) const
+{
+ BOOST_MATH_STD_USING
+ using boost::math::constants::half;
+ using boost::math::quadrature::detail::tanh_sinh_detail;
+
+ static const char* function = "tanh_sinh<%1%>::integrate";
+
+ if (!(boost::math::isnan)(a) && !(boost::math::isnan)(b))
+ {
+
+ // Infinite limits:
+ if ((a <= -tools::max_value<Real>()) && (b >= tools::max_value<Real>()))
+ {
+ auto u = [&](const Real& t, const Real& tc)->Real
+ {
+ Real t_sq = t*t;
+ Real inv;
+ if (t > 0.5f)
+ inv = 1 / ((2 - tc) * tc);
+ else if(t < -0.5)
+ inv = 1 / ((2 + tc) * -tc);
+ else
+ inv = 1 / (1 - t_sq);
+ return f(t*inv)*(1 + t_sq)*inv*inv;
+ };
+ Real limit = sqrt(tools::min_value<Real>()) * 4;
+ return m_imp->integrate(u, error, L1, function, limit, limit, tolerance, levels);
+ }
+
+ // Right limit is infinite:
+ if ((boost::math::isfinite)(a) && (b >= tools::max_value<Real>()))
+ {
+ auto u = [&](const Real& t, const Real& tc)->Real
+ {
+ Real z, arg;
+ if (t > -0.5f)
+ z = 1 / (t + 1);
+ else
+ z = -1 / tc;
+ if (t < 0.5)
+ arg = 2 * z + a - 1;
+ else
+ arg = a + tc / (2 - tc);
+ return f(arg)*z*z;
+ };
+ Real left_limit = sqrt(tools::min_value<Real>()) * 4;
+ Real Q = 2 * m_imp->integrate(u, error, L1, function, left_limit, tools::min_value<Real>(), tolerance, levels);
+ if (L1)
+ {
+ *L1 *= 2;
+ }
+
+ return Q;
+ }
+
+ if ((boost::math::isfinite)(b) && (a <= -tools::max_value<Real>()))
+ {
+ auto v = [&](const Real& t, const Real& tc)->Real
+ {
+ Real z;
+ if (t > -0.5)
+ z = 1 / (t + 1);
+ else
+ z = -1 / tc;
+ Real arg;
+ if (t < 0.5)
+ arg = 2 * z - 1;
+ else
+ arg = tc / (2 - tc);
+ return f(b - arg) * z * z;
+ };
+
+ Real left_limit = sqrt(tools::min_value<Real>()) * 4;
+ Real Q = 2 * m_imp->integrate(v, error, L1, function, left_limit, tools::min_value<Real>(), tolerance, levels);
+ if (L1)
+ {
+ *L1 *= 2;
+ }
+ return Q;
+ }
+
+ if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b))
+ {
+ if (b <= a)
+ {
+ return policies::raise_domain_error(function, "Arguments to integrate are in wrong order; integration over [a,b] must have b > a.", a, Policy());
+ }
+ Real avg = (a + b)*half<Real>();
+ Real diff = (b - a)*half<Real>();
+ Real avg_over_diff_m1 = a / diff;
+ Real avg_over_diff_p1 = b / diff;
+ bool have_small_left = fabs(a) < 0.5f;
+ bool have_small_right = fabs(b) < 0.5f;
+ Real left_min_complement = float_next(avg_over_diff_m1) - avg_over_diff_m1;
+ if (left_min_complement < tools::min_value<Real>())
+ left_min_complement = tools::min_value<Real>();
+ Real right_min_complement = avg_over_diff_p1 - float_prior(avg_over_diff_p1);
+ if (right_min_complement < tools::min_value<Real>())
+ right_min_complement = tools::min_value<Real>();
+ auto u = [&](Real z, Real zc)->Real
+ {
+ if (have_small_left && (z < -0.5))
+ return f(diff * (avg_over_diff_m1 - zc));
+ if (have_small_right && (z > 0.5))
+ return f(diff * (avg_over_diff_p1 - zc));
+ Real position = avg + diff*z;
+ BOOST_ASSERT(position != a);
+ BOOST_ASSERT(position != b);
+ return f(position);
+ };
+ Real Q = diff*m_imp->integrate(u, error, L1, function, left_min_complement, right_min_complement, tolerance, levels);
+
+ if (L1)
+ {
+ *L1 *= diff;
+ }
+ return Q;
+ }
+ }
+ return policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds.", a, Policy());
+}
+
+template<class Real, class Policy>
+template<class F>
+auto tanh_sinh<Real, Policy>::integrate(const F f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(Real(std::declval<F>()(std::declval<Real>(), std::declval<Real>()))) const
+{
+ BOOST_MATH_STD_USING
+ using boost::math::constants::half;
+ using boost::math::quadrature::detail::tanh_sinh_detail;
+
+ static const char* function = "tanh_sinh<%1%>::integrate";
+
+ if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b))
+ {
+ if (b <= a)
+ {
+ return policies::raise_domain_error(function, "Arguments to integrate are in wrong order; integration over [a,b] must have b > a.", a, Policy());
+ }
+ auto u = [&](Real z, Real zc)->Real
+ {
+ if (z < 0)
+ return f((a - b) * zc / 2 + a, (b - a) * zc / 2);
+ else
+ return f((a - b) * zc / 2 + b, (b - a) * zc / 2);
+ };
+ Real diff = (b - a)*half<Real>();
+ Real left_min_complement = tools::min_value<Real>() * 4;
+ Real right_min_complement = tools::min_value<Real>() * 4;
+ Real Q = diff*m_imp->integrate(u, error, L1, function, left_min_complement, right_min_complement, tolerance, levels);
+
+ if (L1)
+ {
+ *L1 *= diff;
+ }
+ return Q;
+ }
+ return policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds.", a, Policy());
+}
+
+template<class Real, class Policy>
+template<class F>
+auto tanh_sinh<Real, Policy>::integrate(const F f, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(Real(std::declval<F>()(std::declval<Real>()))) const
+{
+ using boost::math::quadrature::detail::tanh_sinh_detail;
+ static const char* function = "tanh_sinh<%1%>::integrate";
+ Real min_complement = tools::epsilon<Real>();
+ return m_imp->integrate([&](const Real& arg, const Real&) { return f(arg); }, error, L1, function, min_complement, min_complement, tolerance, levels);
+}
+
+template<class Real, class Policy>
+template<class F>
+auto tanh_sinh<Real, Policy>::integrate(const F f, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(Real(std::declval<F>()(std::declval<Real>(), std::declval<Real>()))) const
+{
+ using boost::math::quadrature::detail::tanh_sinh_detail;
+ static const char* function = "tanh_sinh<%1%>::integrate";
+ Real min_complement = tools::min_value<Real>() * 4;
+ return m_imp->integrate(f, error, L1, function, min_complement, min_complement, tolerance, levels);
+}
+
+}
+}
+}
+#endif