summaryrefslogtreecommitdiff
path: root/boost/intrusive/bstree_algorithms.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/intrusive/bstree_algorithms.hpp')
-rw-r--r--boost/intrusive/bstree_algorithms.hpp2127
1 files changed, 2127 insertions, 0 deletions
diff --git a/boost/intrusive/bstree_algorithms.hpp b/boost/intrusive/bstree_algorithms.hpp
new file mode 100644
index 0000000000..de5445ec52
--- /dev/null
+++ b/boost/intrusive/bstree_algorithms.hpp
@@ -0,0 +1,2127 @@
+/////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2007-2014
+//
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/intrusive for documentation.
+//
+/////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP
+#define BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP
+
+#if defined(_MSC_VER)
+# pragma once
+#endif
+
+#include <cstddef>
+#include <boost/intrusive/detail/config_begin.hpp>
+#include <boost/intrusive/intrusive_fwd.hpp>
+#include <boost/intrusive/detail/assert.hpp>
+#include <boost/intrusive/detail/uncast.hpp>
+#include <boost/intrusive/detail/math.hpp>
+#include <boost/intrusive/detail/algo_type.hpp>
+#include <utility>
+
+namespace boost {
+namespace intrusive {
+
+/// @cond
+
+//! This type is the information that will be filled by insert_unique_check
+template <class NodePtr>
+struct insert_commit_data_t
+{
+ insert_commit_data_t()
+ : link_left(false)
+ , node()
+ {}
+ bool link_left;
+ NodePtr node;
+};
+
+template <class NodePtr>
+struct data_for_rebalance_t
+{
+ NodePtr x;
+ NodePtr x_parent;
+ NodePtr y;
+};
+
+namespace detail {
+
+template<class ValueTraits, class NodePtrCompare, class ExtraChecker>
+struct bstree_node_checker
+ : public ExtraChecker
+{
+ typedef ExtraChecker base_checker_t;
+ typedef ValueTraits value_traits;
+ typedef typename value_traits::node_traits node_traits;
+ typedef typename node_traits::const_node_ptr const_node_ptr;
+
+ struct return_type
+ : public base_checker_t::return_type
+ {
+ return_type() : min_key_node_ptr(const_node_ptr()), max_key_node_ptr(const_node_ptr()), node_count(0) {}
+
+ const_node_ptr min_key_node_ptr;
+ const_node_ptr max_key_node_ptr;
+ size_t node_count;
+ };
+
+ bstree_node_checker(const NodePtrCompare& comp, ExtraChecker extra_checker)
+ : base_checker_t(extra_checker), comp_(comp)
+ {}
+
+ void operator () (const const_node_ptr& p,
+ const return_type& check_return_left, const return_type& check_return_right,
+ return_type& check_return)
+ {
+ if (check_return_left.max_key_node_ptr)
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(!comp_(p, check_return_left.max_key_node_ptr));
+ if (check_return_right.min_key_node_ptr)
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(!comp_(check_return_right.min_key_node_ptr, p));
+ check_return.min_key_node_ptr = node_traits::get_left(p)? check_return_left.min_key_node_ptr : p;
+ check_return.max_key_node_ptr = node_traits::get_right(p)? check_return_right.max_key_node_ptr : p;
+ check_return.node_count = check_return_left.node_count + check_return_right.node_count + 1;
+ base_checker_t::operator()(p, check_return_left, check_return_right, check_return);
+ }
+
+ const NodePtrCompare comp_;
+};
+
+} // namespace detail
+
+/// @endcond
+
+
+
+//! This is an implementation of a binary search tree.
+//! A node in the search tree has references to its children and its parent. This
+//! is to allow traversal of the whole tree from a given node making the
+//! implementation of iterator a pointer to a node.
+//! At the top of the tree a node is used specially. This node's parent pointer
+//! is pointing to the root of the tree. Its left pointer points to the
+//! leftmost node in the tree and the right pointer to the rightmost one.
+//! This node is used to represent the end-iterator.
+//!
+//! +---------+
+//! header------------------------------>| |
+//! | |
+//! +----------(left)--------| |--------(right)---------+
+//! | +---------+ |
+//! | | |
+//! | | (parent) |
+//! | | |
+//! | | |
+//! | +---------+ |
+//! root of tree ..|......................> | | |
+//! | | D | |
+//! | | | |
+//! | +-------+---------+-------+ |
+//! | | | |
+//! | | | |
+//! | | | |
+//! | | | |
+//! | | | |
+//! | +---------+ +---------+ |
+//! | | | | | |
+//! | | B | | F | |
+//! | | | | | |
+//! | +--+---------+--+ +--+---------+--+ |
+//! | | | | | |
+//! | | | | | |
+//! | | | | | |
+//! | +---+-----+ +-----+---+ +---+-----+ +-----+---+ |
+//! +-->| | | | | | | |<--+
+//! | A | | C | | E | | G |
+//! | | | | | | | |
+//! +---------+ +---------+ +---------+ +---------+
+//!
+//! bstree_algorithms is configured with a NodeTraits class, which encapsulates the
+//! information about the node to be manipulated. NodeTraits must support the
+//! following interface:
+//!
+//! <b>Typedefs</b>:
+//!
+//! <tt>node</tt>: The type of the node that forms the binary search tree
+//!
+//! <tt>node_ptr</tt>: A pointer to a node
+//!
+//! <tt>const_node_ptr</tt>: A pointer to a const node
+//!
+//! <b>Static functions</b>:
+//!
+//! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
+//!
+//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
+//!
+//! <tt>static node_ptr get_left(const_node_ptr n);</tt>
+//!
+//! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
+//!
+//! <tt>static node_ptr get_right(const_node_ptr n);</tt>
+//!
+//! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
+template<class NodeTraits>
+class bstree_algorithms
+{
+ public:
+ typedef typename NodeTraits::node node;
+ typedef NodeTraits node_traits;
+ typedef typename NodeTraits::node_ptr node_ptr;
+ typedef typename NodeTraits::const_node_ptr const_node_ptr;
+ typedef insert_commit_data_t<node_ptr> insert_commit_data;
+ typedef data_for_rebalance_t<node_ptr> data_for_rebalance;
+
+ /// @cond
+
+ private:
+ template<class Disposer>
+ struct dispose_subtree_disposer
+ {
+ dispose_subtree_disposer(Disposer &disp, const node_ptr & subtree)
+ : disposer_(&disp), subtree_(subtree)
+ {}
+
+ void release()
+ { disposer_ = 0; }
+
+ ~dispose_subtree_disposer()
+ {
+ if(disposer_){
+ dispose_subtree(subtree_, *disposer_);
+ }
+ }
+ Disposer *disposer_;
+ const node_ptr subtree_;
+ };
+
+ /// @endcond
+
+ public:
+ //! <b>Requires</b>: 'header' is the header node of a tree.
+ //!
+ //! <b>Effects</b>: Returns the first node of the tree, the header if the tree is empty.
+ //!
+ //! <b>Complexity</b>: Constant time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static node_ptr begin_node(const const_node_ptr & header)
+ { return node_traits::get_left(header); }
+
+ //! <b>Requires</b>: 'header' is the header node of a tree.
+ //!
+ //! <b>Effects</b>: Returns the header of the tree.
+ //!
+ //! <b>Complexity</b>: Constant time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static node_ptr end_node(const const_node_ptr & header)
+ { return detail::uncast(header); }
+
+ //! <b>Requires</b>: 'header' is the header node of a tree.
+ //!
+ //! <b>Effects</b>: Returns the root of the tree if any, header otherwise
+ //!
+ //! <b>Complexity</b>: Constant time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static node_ptr root_node(const const_node_ptr & header)
+ {
+ node_ptr p = node_traits::get_parent(header);
+ return p ? p : detail::uncast(header);
+ }
+
+ //! <b>Requires</b>: 'node' is a node of the tree or a node initialized
+ //! by init(...) or init_node.
+ //!
+ //! <b>Effects</b>: Returns true if the node is initialized by init() or init_node().
+ //!
+ //! <b>Complexity</b>: Constant time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static bool unique(const const_node_ptr & node)
+ { return !NodeTraits::get_parent(node); }
+
+ //! <b>Requires</b>: 'node' is a node of the tree or a header node.
+ //!
+ //! <b>Effects</b>: Returns the header of the tree.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static node_ptr get_header(const const_node_ptr & node)
+ {
+ node_ptr n(detail::uncast(node));
+ node_ptr p(NodeTraits::get_parent(node));
+ //If p is null, then n is the header of an empty tree
+ if(p){
+ //Non-empty tree, check if n is neither root nor header
+ node_ptr pp(NodeTraits::get_parent(p));
+ //If granparent is not equal to n, then n is neither root nor header,
+ //the try the fast path
+ if(n != pp){
+ do{
+ n = p;
+ p = pp;
+ pp = NodeTraits::get_parent(pp);
+ }while(n != pp);
+ n = p;
+ }
+ //Check if n is root or header when size() > 0
+ else if(!is_header(n)){
+ n = p;
+ }
+ }
+ return n;
+ /*
+ node_ptr h = detail::uncast(node);
+ node_ptr p = NodeTraits::get_parent(node);
+ if(p){
+ while(!is_header(p))
+ p = NodeTraits::get_parent(p);
+ return p;
+ }
+ else{
+ return h;
+ }*/
+ }
+
+ //! <b>Requires</b>: node1 and node2 can't be header nodes
+ //! of two trees.
+ //!
+ //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
+ //! in the position node2 before the function. node2 will be inserted in the
+ //! position node1 had before the function.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Note</b>: This function will break container ordering invariants if
+ //! node1 and node2 are not equivalent according to the ordering rules.
+ //!
+ //!Experimental function
+ static void swap_nodes(const node_ptr & node1, const node_ptr & node2)
+ {
+ if(node1 == node2)
+ return;
+
+ node_ptr header1(get_header(node1)), header2(get_header(node2));
+ swap_nodes(node1, header1, node2, header2);
+ }
+
+ //! <b>Requires</b>: node1 and node2 can't be header nodes
+ //! of two trees with header header1 and header2.
+ //!
+ //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
+ //! in the position node2 before the function. node2 will be inserted in the
+ //! position node1 had before the function.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Note</b>: This function will break container ordering invariants if
+ //! node1 and node2 are not equivalent according to the ordering rules.
+ //!
+ //!Experimental function
+ static void swap_nodes(const node_ptr & node1, const node_ptr & header1, const node_ptr & node2, const node_ptr & header2)
+ {
+ if(node1 == node2)
+ return;
+
+ //node1 and node2 must not be header nodes
+ //BOOST_INTRUSIVE_INVARIANT_ASSERT((header1 != node1 && header2 != node2));
+ if(header1 != header2){
+ //Update header1 if necessary
+ if(node1 == NodeTraits::get_left(header1)){
+ NodeTraits::set_left(header1, node2);
+ }
+
+ if(node1 == NodeTraits::get_right(header1)){
+ NodeTraits::set_right(header1, node2);
+ }
+
+ if(node1 == NodeTraits::get_parent(header1)){
+ NodeTraits::set_parent(header1, node2);
+ }
+
+ //Update header2 if necessary
+ if(node2 == NodeTraits::get_left(header2)){
+ NodeTraits::set_left(header2, node1);
+ }
+
+ if(node2 == NodeTraits::get_right(header2)){
+ NodeTraits::set_right(header2, node1);
+ }
+
+ if(node2 == NodeTraits::get_parent(header2)){
+ NodeTraits::set_parent(header2, node1);
+ }
+ }
+ else{
+ //If both nodes are from the same tree
+ //Update header if necessary
+ if(node1 == NodeTraits::get_left(header1)){
+ NodeTraits::set_left(header1, node2);
+ }
+ else if(node2 == NodeTraits::get_left(header2)){
+ NodeTraits::set_left(header2, node1);
+ }
+
+ if(node1 == NodeTraits::get_right(header1)){
+ NodeTraits::set_right(header1, node2);
+ }
+ else if(node2 == NodeTraits::get_right(header2)){
+ NodeTraits::set_right(header2, node1);
+ }
+
+ if(node1 == NodeTraits::get_parent(header1)){
+ NodeTraits::set_parent(header1, node2);
+ }
+ else if(node2 == NodeTraits::get_parent(header2)){
+ NodeTraits::set_parent(header2, node1);
+ }
+
+ //Adjust data in nodes to be swapped
+ //so that final link swap works as expected
+ if(node1 == NodeTraits::get_parent(node2)){
+ NodeTraits::set_parent(node2, node2);
+
+ if(node2 == NodeTraits::get_right(node1)){
+ NodeTraits::set_right(node1, node1);
+ }
+ else{
+ NodeTraits::set_left(node1, node1);
+ }
+ }
+ else if(node2 == NodeTraits::get_parent(node1)){
+ NodeTraits::set_parent(node1, node1);
+
+ if(node1 == NodeTraits::get_right(node2)){
+ NodeTraits::set_right(node2, node2);
+ }
+ else{
+ NodeTraits::set_left(node2, node2);
+ }
+ }
+ }
+
+ //Now swap all the links
+ node_ptr temp;
+ //swap left link
+ temp = NodeTraits::get_left(node1);
+ NodeTraits::set_left(node1, NodeTraits::get_left(node2));
+ NodeTraits::set_left(node2, temp);
+ //swap right link
+ temp = NodeTraits::get_right(node1);
+ NodeTraits::set_right(node1, NodeTraits::get_right(node2));
+ NodeTraits::set_right(node2, temp);
+ //swap parent link
+ temp = NodeTraits::get_parent(node1);
+ NodeTraits::set_parent(node1, NodeTraits::get_parent(node2));
+ NodeTraits::set_parent(node2, temp);
+
+ //Now adjust adjacent nodes for newly inserted node 1
+ if((temp = NodeTraits::get_left(node1))){
+ NodeTraits::set_parent(temp, node1);
+ }
+ if((temp = NodeTraits::get_right(node1))){
+ NodeTraits::set_parent(temp, node1);
+ }
+ if((temp = NodeTraits::get_parent(node1)) &&
+ //The header has been already updated so avoid it
+ temp != header2){
+ if(NodeTraits::get_left(temp) == node2){
+ NodeTraits::set_left(temp, node1);
+ }
+ if(NodeTraits::get_right(temp) == node2){
+ NodeTraits::set_right(temp, node1);
+ }
+ }
+ //Now adjust adjacent nodes for newly inserted node 2
+ if((temp = NodeTraits::get_left(node2))){
+ NodeTraits::set_parent(temp, node2);
+ }
+ if((temp = NodeTraits::get_right(node2))){
+ NodeTraits::set_parent(temp, node2);
+ }
+ if((temp = NodeTraits::get_parent(node2)) &&
+ //The header has been already updated so avoid it
+ temp != header1){
+ if(NodeTraits::get_left(temp) == node1){
+ NodeTraits::set_left(temp, node2);
+ }
+ if(NodeTraits::get_right(temp) == node1){
+ NodeTraits::set_right(temp, node2);
+ }
+ }
+ }
+
+ //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
+ //! and new_node must not be inserted in a tree.
+ //!
+ //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
+ //! tree with new_node. The tree does not need to be rebalanced
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Note</b>: This function will break container ordering invariants if
+ //! new_node is not equivalent to node_to_be_replaced according to the
+ //! ordering rules. This function is faster than erasing and inserting
+ //! the node, since no rebalancing and comparison is needed. Experimental function
+ static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & new_node)
+ {
+ if(node_to_be_replaced == new_node)
+ return;
+ replace_node(node_to_be_replaced, get_header(node_to_be_replaced), new_node);
+ }
+
+ //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
+ //! with header "header" and new_node must not be inserted in a tree.
+ //!
+ //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
+ //! tree with new_node. The tree does not need to be rebalanced
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Note</b>: This function will break container ordering invariants if
+ //! new_node is not equivalent to node_to_be_replaced according to the
+ //! ordering rules. This function is faster than erasing and inserting
+ //! the node, since no rebalancing or comparison is needed. Experimental function
+ static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & header, const node_ptr & new_node)
+ {
+ if(node_to_be_replaced == new_node)
+ return;
+
+ //Update header if necessary
+ if(node_to_be_replaced == NodeTraits::get_left(header)){
+ NodeTraits::set_left(header, new_node);
+ }
+
+ if(node_to_be_replaced == NodeTraits::get_right(header)){
+ NodeTraits::set_right(header, new_node);
+ }
+
+ if(node_to_be_replaced == NodeTraits::get_parent(header)){
+ NodeTraits::set_parent(header, new_node);
+ }
+
+ //Now set data from the original node
+ node_ptr temp;
+ NodeTraits::set_left(new_node, NodeTraits::get_left(node_to_be_replaced));
+ NodeTraits::set_right(new_node, NodeTraits::get_right(node_to_be_replaced));
+ NodeTraits::set_parent(new_node, NodeTraits::get_parent(node_to_be_replaced));
+
+ //Now adjust adjacent nodes for newly inserted node
+ if((temp = NodeTraits::get_left(new_node))){
+ NodeTraits::set_parent(temp, new_node);
+ }
+ if((temp = NodeTraits::get_right(new_node))){
+ NodeTraits::set_parent(temp, new_node);
+ }
+ if((temp = NodeTraits::get_parent(new_node)) &&
+ //The header has been already updated so avoid it
+ temp != header){
+ if(NodeTraits::get_left(temp) == node_to_be_replaced){
+ NodeTraits::set_left(temp, new_node);
+ }
+ if(NodeTraits::get_right(temp) == node_to_be_replaced){
+ NodeTraits::set_right(temp, new_node);
+ }
+ }
+ }
+
+ //! <b>Requires</b>: 'node' is a node from the tree except the header.
+ //!
+ //! <b>Effects</b>: Returns the next node of the tree.
+ //!
+ //! <b>Complexity</b>: Average constant time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static node_ptr next_node(const node_ptr & node)
+ {
+ node_ptr const n_right(NodeTraits::get_right(node));
+ if(n_right){
+ return minimum(n_right);
+ }
+ else {
+ node_ptr n(node);
+ node_ptr p(NodeTraits::get_parent(n));
+ while(n == NodeTraits::get_right(p)){
+ n = p;
+ p = NodeTraits::get_parent(p);
+ }
+ return NodeTraits::get_right(n) != p ? p : n;
+ }
+ }
+
+ //! <b>Requires</b>: 'node' is a node from the tree except the leftmost node.
+ //!
+ //! <b>Effects</b>: Returns the previous node of the tree.
+ //!
+ //! <b>Complexity</b>: Average constant time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static node_ptr prev_node(const node_ptr & node)
+ {
+ if(is_header(node)){
+ return NodeTraits::get_right(node);
+ //return maximum(NodeTraits::get_parent(node));
+ }
+ else if(NodeTraits::get_left(node)){
+ return maximum(NodeTraits::get_left(node));
+ }
+ else {
+ node_ptr p(node);
+ node_ptr x = NodeTraits::get_parent(p);
+ while(p == NodeTraits::get_left(x)){
+ p = x;
+ x = NodeTraits::get_parent(x);
+ }
+ return x;
+ }
+ }
+
+ //! <b>Requires</b>: 'node' is a node of a tree but not the header.
+ //!
+ //! <b>Effects</b>: Returns the minimum node of the subtree starting at p.
+ //!
+ //! <b>Complexity</b>: Logarithmic to the size of the subtree.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static node_ptr minimum(node_ptr node)
+ {
+ for(node_ptr p_left = NodeTraits::get_left(node)
+ ;p_left
+ ;p_left = NodeTraits::get_left(node)){
+ node = p_left;
+ }
+ return node;
+ }
+
+ //! <b>Requires</b>: 'node' is a node of a tree but not the header.
+ //!
+ //! <b>Effects</b>: Returns the maximum node of the subtree starting at p.
+ //!
+ //! <b>Complexity</b>: Logarithmic to the size of the subtree.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static node_ptr maximum(node_ptr node)
+ {
+ for(node_ptr p_right = NodeTraits::get_right(node)
+ ;p_right
+ ;p_right = NodeTraits::get_right(node)){
+ node = p_right;
+ }
+ return node;
+ }
+
+ //! <b>Requires</b>: 'node' must not be part of any tree.
+ //!
+ //! <b>Effects</b>: After the function unique(node) == true.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
+ static void init(const node_ptr & node)
+ {
+ NodeTraits::set_parent(node, node_ptr());
+ NodeTraits::set_left(node, node_ptr());
+ NodeTraits::set_right(node, node_ptr());
+ };
+
+ //! <b>Effects</b>: Returns true if node is in the same state as if called init(node)
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static bool inited(const const_node_ptr & node)
+ {
+ return !NodeTraits::get_parent(node) &&
+ !NodeTraits::get_left(node) &&
+ !NodeTraits::get_right(node) ;
+ };
+
+ //! <b>Requires</b>: node must not be part of any tree.
+ //!
+ //! <b>Effects</b>: Initializes the header to represent an empty tree.
+ //! unique(header) == true.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
+ static void init_header(const node_ptr & header)
+ {
+ NodeTraits::set_parent(header, node_ptr());
+ NodeTraits::set_left(header, header);
+ NodeTraits::set_right(header, header);
+ }
+
+ //! <b>Requires</b>: "disposer" must be an object function
+ //! taking a node_ptr parameter and shouldn't throw.
+ //!
+ //! <b>Effects</b>: Empties the target tree calling
+ //! <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
+ //! except the header.
+ //!
+ //! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
+ //! number of elements of tree target tree when calling this function.
+ //!
+ //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
+ template<class Disposer>
+ static void clear_and_dispose(const node_ptr & header, Disposer disposer)
+ {
+ node_ptr source_root = NodeTraits::get_parent(header);
+ if(!source_root)
+ return;
+ dispose_subtree(source_root, disposer);
+ init_header(header);
+ }
+
+ //! <b>Requires</b>: header is the header of a tree.
+ //!
+ //! <b>Effects</b>: Unlinks the leftmost node from the tree, and
+ //! updates the header link to the new leftmost node.
+ //!
+ //! <b>Complexity</b>: Average complexity is constant time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Notes</b>: This function breaks the tree and the tree can
+ //! only be used for more unlink_leftmost_without_rebalance calls.
+ //! This function is normally used to achieve a step by step
+ //! controlled destruction of the tree.
+ static node_ptr unlink_leftmost_without_rebalance(const node_ptr & header)
+ {
+ node_ptr leftmost = NodeTraits::get_left(header);
+ if (leftmost == header)
+ return node_ptr();
+ node_ptr leftmost_parent(NodeTraits::get_parent(leftmost));
+ node_ptr leftmost_right (NodeTraits::get_right(leftmost));
+ bool is_root = leftmost_parent == header;
+
+ if (leftmost_right){
+ NodeTraits::set_parent(leftmost_right, leftmost_parent);
+ NodeTraits::set_left(header, bstree_algorithms::minimum(leftmost_right));
+
+ if (is_root)
+ NodeTraits::set_parent(header, leftmost_right);
+ else
+ NodeTraits::set_left(NodeTraits::get_parent(header), leftmost_right);
+ }
+ else if (is_root){
+ NodeTraits::set_parent(header, node_ptr());
+ NodeTraits::set_left(header, header);
+ NodeTraits::set_right(header, header);
+ }
+ else{
+ NodeTraits::set_left(leftmost_parent, node_ptr());
+ NodeTraits::set_left(header, leftmost_parent);
+ }
+ return leftmost;
+ }
+
+ //! <b>Requires</b>: node is a node of the tree but it's not the header.
+ //!
+ //! <b>Effects</b>: Returns the number of nodes of the subtree.
+ //!
+ //! <b>Complexity</b>: Linear time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static std::size_t size(const const_node_ptr & header)
+ {
+ node_ptr beg(begin_node(header));
+ node_ptr end(end_node(header));
+ std::size_t i = 0;
+ for(;beg != end; beg = next_node(beg)) ++i;
+ return i;
+ }
+
+ //! <b>Requires</b>: header1 and header2 must be the header nodes
+ //! of two trees.
+ //!
+ //! <b>Effects</b>: Swaps two trees. After the function header1 will contain
+ //! links to the second tree and header2 will have links to the first tree.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static void swap_tree(const node_ptr & header1, const node_ptr & header2)
+ {
+ if(header1 == header2)
+ return;
+
+ node_ptr tmp;
+
+ //Parent swap
+ tmp = NodeTraits::get_parent(header1);
+ NodeTraits::set_parent(header1, NodeTraits::get_parent(header2));
+ NodeTraits::set_parent(header2, tmp);
+ //Left swap
+ tmp = NodeTraits::get_left(header1);
+ NodeTraits::set_left(header1, NodeTraits::get_left(header2));
+ NodeTraits::set_left(header2, tmp);
+ //Right swap
+ tmp = NodeTraits::get_right(header1);
+ NodeTraits::set_right(header1, NodeTraits::get_right(header2));
+ NodeTraits::set_right(header2, tmp);
+
+ //Now test parent
+ node_ptr h1_parent(NodeTraits::get_parent(header1));
+ if(h1_parent){
+ NodeTraits::set_parent(h1_parent, header1);
+ }
+ else{
+ NodeTraits::set_left(header1, header1);
+ NodeTraits::set_right(header1, header1);
+ }
+
+ node_ptr h2_parent(NodeTraits::get_parent(header2));
+ if(h2_parent){
+ NodeTraits::set_parent(h2_parent, header2);
+ }
+ else{
+ NodeTraits::set_left(header2, header2);
+ NodeTraits::set_right(header2, header2);
+ }
+ }
+
+ //! <b>Requires</b>: p is a node of a tree.
+ //!
+ //! <b>Effects</b>: Returns true if p is the header of the tree.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static bool is_header(const const_node_ptr & p)
+ {
+ node_ptr p_left (NodeTraits::get_left(p));
+ node_ptr p_right(NodeTraits::get_right(p));
+ if(!NodeTraits::get_parent(p) || //Header condition when empty tree
+ (p_left && p_right && //Header always has leftmost and rightmost
+ (p_left == p_right || //Header condition when only node
+ (NodeTraits::get_parent(p_left) != p ||
+ NodeTraits::get_parent(p_right) != p ))
+ //When tree size > 1 headers can't be leftmost's
+ //and rightmost's parent
+ )){
+ return true;
+ }
+ return false;
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! KeyNodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
+ //!
+ //! <b>Effects</b>: Returns a node_ptr to the first element that is equivalent to
+ //! "key" according to "comp" or "header" if that element does not exist.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ template<class KeyType, class KeyNodePtrCompare>
+ static node_ptr find
+ (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
+ {
+ node_ptr end = detail::uncast(header);
+ node_ptr y = lower_bound(header, key, comp);
+ return (y == end || comp(key, y)) ? end : y;
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! KeyNodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
+ //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If
+ //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false.
+ //!
+ //! <b>Effects</b>: Returns an a pair with the following criteria:
+ //!
+ //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise
+ //!
+ //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ //!
+ //! <b>Note</b>: This function can be more efficient than calling upper_bound
+ //! and lower_bound for lower_key and upper_key.
+ //!
+ //! <b>Note</b>: Experimental function, the interface might change.
+ template< class KeyType, class KeyNodePtrCompare>
+ static std::pair<node_ptr, node_ptr> bounded_range
+ ( const const_node_ptr & header
+ , const KeyType &lower_key
+ , const KeyType &upper_key
+ , KeyNodePtrCompare comp
+ , bool left_closed
+ , bool right_closed)
+ {
+ node_ptr y = detail::uncast(header);
+ node_ptr x = NodeTraits::get_parent(header);
+
+ while(x){
+ //If x is less than lower_key the target
+ //range is on the right part
+ if(comp(x, lower_key)){
+ //Check for invalid input range
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(comp(x, upper_key));
+ x = NodeTraits::get_right(x);
+ }
+ //If the upper_key is less than x, the target
+ //range is on the left part
+ else if(comp(upper_key, x)){
+ y = x;
+ x = NodeTraits::get_left(x);
+ }
+ else{
+ //x is inside the bounded range( x >= lower_key && x <= upper_key),
+ //so we must split lower and upper searches
+ //
+ //Sanity check: if lower_key and upper_key are equal, then both left_closed and right_closed can't be false
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(left_closed || right_closed || comp(lower_key, x) || comp(x, upper_key));
+ return std::pair<node_ptr,node_ptr>(
+ left_closed
+ //If left_closed, then comp(x, lower_key) is already the lower_bound
+ //condition so we save one comparison and go to the next level
+ //following traditional lower_bound algo
+ ? lower_bound_loop(NodeTraits::get_left(x), x, lower_key, comp)
+ //If left-open, comp(x, lower_key) is not the upper_bound algo
+ //condition so we must recheck current 'x' node with upper_bound algo
+ : upper_bound_loop(x, y, lower_key, comp)
+ ,
+ right_closed
+ //If right_closed, then comp(upper_key, x) is already the upper_bound
+ //condition so we can save one comparison and go to the next level
+ //following lower_bound algo
+ ? upper_bound_loop(NodeTraits::get_right(x), y, upper_key, comp)
+ //If right-open, comp(upper_key, x) is not the lower_bound algo
+ //condition so we must recheck current 'x' node with lower_bound algo
+ : lower_bound_loop(x, y, upper_key, comp)
+ );
+ }
+ }
+ return std::pair<node_ptr,node_ptr> (y, y);
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! KeyNodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
+ //!
+ //! <b>Effects</b>: Returns the number of elements with a key equivalent to "key"
+ //! according to "comp".
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ template<class KeyType, class KeyNodePtrCompare>
+ static std::size_t count
+ (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
+ {
+ std::pair<node_ptr, node_ptr> ret = equal_range(header, key, comp);
+ std::size_t n = 0;
+ while(ret.first != ret.second){
+ ++n;
+ ret.first = next_node(ret.first);
+ }
+ return n;
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! KeyNodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
+ //!
+ //! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
+ //! all elements that are equivalent to "key" according to "comp" or an
+ //! empty range that indicates the position where those elements would be
+ //! if there are no equivalent elements.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ template<class KeyType, class KeyNodePtrCompare>
+ static std::pair<node_ptr, node_ptr> equal_range
+ (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
+ {
+ return bounded_range(header, key, key, comp, true, true);
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! KeyNodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
+ //!
+ //! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
+ //! the first element that is equivalent to "key" according to "comp" or an
+ //! empty range that indicates the position where that element would be
+ //! if there are no equivalent elements.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ template<class KeyType, class KeyNodePtrCompare>
+ static std::pair<node_ptr, node_ptr> lower_bound_range
+ (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
+ {
+ node_ptr const lb(lower_bound(header, key, comp));
+ std::pair<node_ptr, node_ptr> ret_ii(lb, lb);
+ if(lb != header && !comp(key, lb)){
+ ret_ii.second = next_node(ret_ii.second);
+ }
+ return ret_ii;
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! KeyNodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
+ //!
+ //! <b>Effects</b>: Returns a node_ptr to the first element that is
+ //! not less than "key" according to "comp" or "header" if that element does
+ //! not exist.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ template<class KeyType, class KeyNodePtrCompare>
+ static node_ptr lower_bound
+ (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
+ {
+ return lower_bound_loop(NodeTraits::get_parent(header), detail::uncast(header), key, comp);
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! KeyNodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
+ //!
+ //! <b>Effects</b>: Returns a node_ptr to the first element that is greater
+ //! than "key" according to "comp" or "header" if that element does not exist.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ template<class KeyType, class KeyNodePtrCompare>
+ static node_ptr upper_bound
+ (const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
+ {
+ return upper_bound_loop(NodeTraits::get_parent(header), detail::uncast(header), key, comp);
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! "commit_data" must have been obtained from a previous call to
+ //! "insert_unique_check". No objects should have been inserted or erased
+ //! from the set between the "insert_unique_check" that filled "commit_data"
+ //! and the call to "insert_commit".
+ //!
+ //!
+ //! <b>Effects</b>: Inserts new_node in the set using the information obtained
+ //! from the "commit_data" that a previous "insert_check" filled.
+ //!
+ //! <b>Complexity</b>: Constant time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
+ //! previously executed to fill "commit_data". No value should be inserted or
+ //! erased between the "insert_check" and "insert_commit" calls.
+ static void insert_unique_commit
+ (const node_ptr & header, const node_ptr & new_value, const insert_commit_data &commit_data)
+ { return insert_commit(header, new_value, commit_data); }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! KeyNodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. NodePtrCompare compares KeyType with a node_ptr.
+ //!
+ //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
+ //! tree according to "comp" and obtains the needed information to realize
+ //! a constant-time node insertion if there is no equivalent node.
+ //!
+ //! <b>Returns</b>: If there is an equivalent value
+ //! returns a pair containing a node_ptr to the already present node
+ //! and false. If there is not equivalent key can be inserted returns true
+ //! in the returned pair's boolean and fills "commit_data" that is meant to
+ //! be used with the "insert_commit" function to achieve a constant-time
+ //! insertion function.
+ //!
+ //! <b>Complexity</b>: Average complexity is at most logarithmic.
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ //!
+ //! <b>Notes</b>: This function is used to improve performance when constructing
+ //! a node is expensive and the user does not want to have two equivalent nodes
+ //! in the tree: if there is an equivalent value
+ //! the constructed object must be discarded. Many times, the part of the
+ //! node that is used to impose the order is much cheaper to construct
+ //! than the node and this function offers the possibility to use that part
+ //! to check if the insertion will be successful.
+ //!
+ //! If the check is successful, the user can construct the node and use
+ //! "insert_commit" to insert the node in constant-time. This gives a total
+ //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
+ //!
+ //! "commit_data" remains valid for a subsequent "insert_unique_commit" only
+ //! if no more objects are inserted or erased from the set.
+ template<class KeyType, class KeyNodePtrCompare>
+ static std::pair<node_ptr, bool> insert_unique_check
+ (const const_node_ptr & header, const KeyType &key
+ ,KeyNodePtrCompare comp, insert_commit_data &commit_data
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ std::size_t depth = 0;
+ node_ptr h(detail::uncast(header));
+ node_ptr y(h);
+ node_ptr x(NodeTraits::get_parent(y));
+ node_ptr prev = node_ptr();
+
+ //Find the upper bound, cache the previous value and if we should
+ //store it in the left or right node
+ bool left_child = true;
+ while(x){
+ ++depth;
+ y = x;
+ x = (left_child = comp(key, x)) ?
+ NodeTraits::get_left(x) : (prev = y, NodeTraits::get_right(x));
+ }
+
+ if(pdepth) *pdepth = depth;
+
+ //Since we've found the upper bound there is no other value with the same key if:
+ // - There is no previous node
+ // - The previous node is less than the key
+ const bool not_present = !prev || comp(prev, key);
+ if(not_present){
+ commit_data.link_left = left_child;
+ commit_data.node = y;
+ }
+ return std::pair<node_ptr, bool>(prev, not_present);
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! KeyNodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. NodePtrCompare compares KeyType with a node_ptr.
+ //! "hint" is node from the "header"'s tree.
+ //!
+ //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
+ //! tree according to "comp" using "hint" as a hint to where it should be
+ //! inserted and obtains the needed information to realize
+ //! a constant-time node insertion if there is no equivalent node.
+ //! If "hint" is the upper_bound the function has constant time
+ //! complexity (two comparisons in the worst case).
+ //!
+ //! <b>Returns</b>: If there is an equivalent value
+ //! returns a pair containing a node_ptr to the already present node
+ //! and false. If there is not equivalent key can be inserted returns true
+ //! in the returned pair's boolean and fills "commit_data" that is meant to
+ //! be used with the "insert_commit" function to achieve a constant-time
+ //! insertion function.
+ //!
+ //! <b>Complexity</b>: Average complexity is at most logarithmic, but it is
+ //! amortized constant time if new_node should be inserted immediately before "hint".
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ //!
+ //! <b>Notes</b>: This function is used to improve performance when constructing
+ //! a node is expensive and the user does not want to have two equivalent nodes
+ //! in the tree: if there is an equivalent value
+ //! the constructed object must be discarded. Many times, the part of the
+ //! node that is used to impose the order is much cheaper to construct
+ //! than the node and this function offers the possibility to use that part
+ //! to check if the insertion will be successful.
+ //!
+ //! If the check is successful, the user can construct the node and use
+ //! "insert_commit" to insert the node in constant-time. This gives a total
+ //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
+ //!
+ //! "commit_data" remains valid for a subsequent "insert_unique_commit" only
+ //! if no more objects are inserted or erased from the set.
+ template<class KeyType, class KeyNodePtrCompare>
+ static std::pair<node_ptr, bool> insert_unique_check
+ (const const_node_ptr & header, const node_ptr &hint, const KeyType &key
+ ,KeyNodePtrCompare comp, insert_commit_data &commit_data
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ //hint must be bigger than the key
+ if(hint == header || comp(key, hint)){
+ node_ptr prev(hint);
+ //Previous value should be less than the key
+ if(hint == begin_node(header) || comp((prev = prev_node(hint)), key)){
+ commit_data.link_left = unique(header) || !NodeTraits::get_left(hint);
+ commit_data.node = commit_data.link_left ? hint : prev;
+ if(pdepth){
+ *pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
+ }
+ return std::pair<node_ptr, bool>(node_ptr(), true);
+ }
+ }
+ //Hint was wrong, use hintless insertion
+ return insert_unique_check(header, key, comp, commit_data, pdepth);
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! NodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. NodePtrCompare compares two node_ptrs. "hint" is node from
+ //! the "header"'s tree.
+ //!
+ //! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to
+ //! where it will be inserted. If "hint" is the upper_bound
+ //! the insertion takes constant time (two comparisons in the worst case).
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but it is amortized
+ //! constant time if new_node is inserted immediately before "hint".
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ template<class NodePtrCompare>
+ static node_ptr insert_equal
+ (const node_ptr & h, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ insert_commit_data commit_data;
+ insert_equal_check(h, hint, new_node, comp, commit_data, pdepth);
+ insert_commit(h, new_node, commit_data);
+ return new_node;
+ }
+
+ //! <b>Requires</b>: "h" must be the header node of a tree.
+ //! NodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. NodePtrCompare compares two node_ptrs.
+ //!
+ //! <b>Effects</b>: Inserts new_node into the tree before the upper bound
+ //! according to "comp".
+ //!
+ //! <b>Complexity</b>: Average complexity for insert element is at
+ //! most logarithmic.
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ template<class NodePtrCompare>
+ static node_ptr insert_equal_upper_bound
+ (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ insert_commit_data commit_data;
+ insert_equal_upper_bound_check(h, new_node, comp, commit_data, pdepth);
+ insert_commit(h, new_node, commit_data);
+ return new_node;
+ }
+
+ //! <b>Requires</b>: "h" must be the header node of a tree.
+ //! NodePtrCompare is a function object that induces a strict weak
+ //! ordering compatible with the strict weak ordering used to create the
+ //! the tree. NodePtrCompare compares two node_ptrs.
+ //!
+ //! <b>Effects</b>: Inserts new_node into the tree before the lower bound
+ //! according to "comp".
+ //!
+ //! <b>Complexity</b>: Average complexity for insert element is at
+ //! most logarithmic.
+ //!
+ //! <b>Throws</b>: If "comp" throws.
+ template<class NodePtrCompare>
+ static node_ptr insert_equal_lower_bound
+ (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ insert_commit_data commit_data;
+ insert_equal_lower_bound_check(h, new_node, comp, commit_data, pdepth);
+ insert_commit(h, new_node, commit_data);
+ return new_node;
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! "pos" must be a valid iterator or header (end) node.
+ //! "pos" must be an iterator pointing to the successor to "new_node"
+ //! once inserted according to the order of already inserted nodes. This function does not
+ //! check "pos" and this precondition must be guaranteed by the caller.
+ //!
+ //! <b>Effects</b>: Inserts new_node into the tree before "pos".
+ //!
+ //! <b>Complexity</b>: Constant-time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Note</b>: If "pos" is not the successor of the newly inserted "new_node"
+ //! tree invariants might be broken.
+ static node_ptr insert_before
+ (const node_ptr & header, const node_ptr & pos, const node_ptr & new_node
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ insert_commit_data commit_data;
+ insert_before_check(header, pos, commit_data, pdepth);
+ insert_commit(header, new_node, commit_data);
+ return new_node;
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! "new_node" must be, according to the used ordering no less than the
+ //! greatest inserted key.
+ //!
+ //! <b>Effects</b>: Inserts new_node into the tree before "pos".
+ //!
+ //! <b>Complexity</b>: Constant-time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Note</b>: If "new_node" is less than the greatest inserted key
+ //! tree invariants are broken. This function is slightly faster than
+ //! using "insert_before".
+ static void push_back
+ (const node_ptr & header, const node_ptr & new_node
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ insert_commit_data commit_data;
+ push_back_check(header, commit_data, pdepth);
+ insert_commit(header, new_node, commit_data);
+ }
+
+ //! <b>Requires</b>: "header" must be the header node of a tree.
+ //! "new_node" must be, according to the used ordering, no greater than the
+ //! lowest inserted key.
+ //!
+ //! <b>Effects</b>: Inserts new_node into the tree before "pos".
+ //!
+ //! <b>Complexity</b>: Constant-time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Note</b>: If "new_node" is greater than the lowest inserted key
+ //! tree invariants are broken. This function is slightly faster than
+ //! using "insert_before".
+ static void push_front
+ (const node_ptr & header, const node_ptr & new_node
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ insert_commit_data commit_data;
+ push_front_check(header, commit_data, pdepth);
+ insert_commit(header, new_node, commit_data);
+ }
+
+ //! <b>Requires</b>: 'node' can't be a header node.
+ //!
+ //! <b>Effects</b>: Calculates the depth of a node: the depth of a
+ //! node is the length (number of edges) of the path from the root
+ //! to that node. (The root node is at depth 0.)
+ //!
+ //! <b>Complexity</b>: Logarithmic to the number of nodes in the tree.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static std::size_t depth(const_node_ptr node)
+ {
+ std::size_t depth = 0;
+ node_ptr p_parent;
+ while(node != NodeTraits::get_parent(p_parent = NodeTraits::get_parent(node))){
+ ++depth;
+ node = p_parent;
+ }
+ return depth;
+ }
+
+ //! <b>Requires</b>: "cloner" must be a function
+ //! object taking a node_ptr and returning a new cloned node of it. "disposer" must
+ //! take a node_ptr and shouldn't throw.
+ //!
+ //! <b>Effects</b>: First empties target tree calling
+ //! <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
+ //! except the header.
+ //!
+ //! Then, duplicates the entire tree pointed by "source_header" cloning each
+ //! source node with <tt>node_ptr Cloner::operator()(const node_ptr &)</tt> to obtain
+ //! the nodes of the target tree. If "cloner" throws, the cloned target nodes
+ //! are disposed using <tt>void disposer(const node_ptr &)</tt>.
+ //!
+ //! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
+ //! number of elements of tree target tree when calling this function.
+ //!
+ //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
+ template <class Cloner, class Disposer>
+ static void clone
+ (const const_node_ptr & source_header, const node_ptr & target_header, Cloner cloner, Disposer disposer)
+ {
+ if(!unique(target_header)){
+ clear_and_dispose(target_header, disposer);
+ }
+
+ node_ptr leftmost, rightmost;
+ node_ptr new_root = clone_subtree
+ (source_header, target_header, cloner, disposer, leftmost, rightmost);
+
+ //Now update header node
+ NodeTraits::set_parent(target_header, new_root);
+ NodeTraits::set_left (target_header, leftmost);
+ NodeTraits::set_right (target_header, rightmost);
+ }
+
+ //! <b>Requires</b>: header must be the header of a tree, z a node
+ //! of that tree and z != header.
+ //!
+ //! <b>Effects</b>: Erases node "z" from the tree with header "header".
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static void erase(const node_ptr & header, const node_ptr & z)
+ {
+ data_for_rebalance ignored;
+ erase(header, z, ignored);
+ }
+
+ //! <b>Requires</b>: node is a tree node but not the header.
+ //!
+ //! <b>Effects</b>: Unlinks the node and rebalances the tree.
+ //!
+ //! <b>Complexity</b>: Average complexity is constant time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static void unlink(const node_ptr & node)
+ {
+ node_ptr x = NodeTraits::get_parent(node);
+ if(x){
+ while(!is_header(x))
+ x = NodeTraits::get_parent(x);
+ erase(x, node);
+ }
+ }
+
+ //! <b>Requires</b>: header must be the header of a tree.
+ //!
+ //! <b>Effects</b>: Rebalances the tree.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear.
+ static void rebalance(const node_ptr & header)
+ {
+ node_ptr root = NodeTraits::get_parent(header);
+ if(root){
+ rebalance_subtree(root);
+ }
+ }
+
+ //! <b>Requires</b>: old_root is a node of a tree. It shall not be null.
+ //!
+ //! <b>Effects</b>: Rebalances the subtree rooted at old_root.
+ //!
+ //! <b>Returns</b>: The new root of the subtree.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear.
+ static node_ptr rebalance_subtree(const node_ptr & old_root)
+ {
+ //Taken from:
+ //"Tree rebalancing in optimal time and space"
+ //Quentin F. Stout and Bette L. Warren
+
+ //To avoid irregularities in the algorithm (old_root can be a
+ //left or right child or even the root of the tree) just put the
+ //root as the right child of its parent. Before doing this backup
+ //information to restore the original relationship after
+ //the algorithm is applied.
+ node_ptr super_root = NodeTraits::get_parent(old_root);
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(super_root);
+
+ //Get root info
+ node_ptr super_root_right_backup = NodeTraits::get_right(super_root);
+ bool super_root_is_header = NodeTraits::get_parent(super_root) == old_root;
+ bool old_root_is_right = is_right_child(old_root);
+ NodeTraits::set_right(super_root, old_root);
+
+ std::size_t size;
+ subtree_to_vine(super_root, size);
+ vine_to_subtree(super_root, size);
+ node_ptr new_root = NodeTraits::get_right(super_root);
+
+ //Recover root
+ if(super_root_is_header){
+ NodeTraits::set_right(super_root, super_root_right_backup);
+ NodeTraits::set_parent(super_root, new_root);
+ }
+ else if(old_root_is_right){
+ NodeTraits::set_right(super_root, new_root);
+ }
+ else{
+ NodeTraits::set_right(super_root, super_root_right_backup);
+ NodeTraits::set_left(super_root, new_root);
+ }
+ return new_root;
+ }
+
+ //! <b>Effects</b>: Asserts the integrity of the container with additional checks provided by the user.
+ //!
+ //! <b>Requires</b>: header must be the header of a tree.
+ //!
+ //! <b>Complexity</b>: Linear time.
+ //!
+ //! <b>Note</b>: The method might not have effect when asserts are turned off (e.g., with NDEBUG).
+ //! Experimental function, interface might change in future versions.
+ template<class Checker>
+ static void check(const const_node_ptr& header, Checker checker, typename Checker::return_type& checker_return)
+ {
+ const_node_ptr root_node_ptr = NodeTraits::get_parent(header);
+ if (!root_node_ptr)
+ {
+ // check left&right header pointers
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_left(header) == header);
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_right(header) == header);
+ }
+ else
+ {
+ // check parent pointer of root node
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(root_node_ptr) == header);
+ // check subtree from root
+ check_subtree(root_node_ptr, checker, checker_return);
+ // check left&right header pointers
+ const_node_ptr p = root_node_ptr;
+ while (NodeTraits::get_left(p)) { p = NodeTraits::get_left(p); }
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_left(header) == p);
+ p = root_node_ptr;
+ while (NodeTraits::get_right(p)) { p = NodeTraits::get_right(p); }
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_right(header) == p);
+ }
+ }
+
+ protected:
+ static void erase(const node_ptr & header, const node_ptr & z, data_for_rebalance &info)
+ {
+ node_ptr y(z);
+ node_ptr x;
+ const node_ptr z_left(NodeTraits::get_left(z));
+ const node_ptr z_right(NodeTraits::get_right(z));
+
+ if(!z_left){
+ x = z_right; // x might be null.
+ }
+ else if(!z_right){ // z has exactly one non-null child. y == z.
+ x = z_left; // x is not null.
+ BOOST_ASSERT(x);
+ }
+ else{ //make y != z
+ // y = find z's successor
+ y = bstree_algorithms::minimum(z_right);
+ x = NodeTraits::get_right(y); // x might be null.
+ }
+
+ node_ptr x_parent;
+ const node_ptr z_parent(NodeTraits::get_parent(z));
+ const bool z_is_leftchild(NodeTraits::get_left(z_parent) == z);
+
+ if(y != z){ //has two children and y is the minimum of z
+ //y is z's successor and it has a null left child.
+ //x is the right child of y (it can be null)
+ //Relink y in place of z and link x with y's old parent
+ NodeTraits::set_parent(z_left, y);
+ NodeTraits::set_left(y, z_left);
+ if(y != z_right){
+ //Link y with the right tree of z
+ NodeTraits::set_right(y, z_right);
+ NodeTraits::set_parent(z_right, y);
+ //Link x with y's old parent (y must be a left child)
+ x_parent = NodeTraits::get_parent(y);
+ BOOST_ASSERT(NodeTraits::get_left(x_parent) == y);
+ if(x)
+ NodeTraits::set_parent(x, x_parent);
+ //Since y was the successor and not the right child of z, it must be a left child
+ NodeTraits::set_left(x_parent, x);
+ }
+ else{ //y was the right child of y so no need to fix x's position
+ x_parent = y;
+ }
+ NodeTraits::set_parent(y, z_parent);
+ bstree_algorithms::set_child(header, y, z_parent, z_is_leftchild);
+ }
+ else { // z has zero or one child, x is one child (it can be null)
+ //Just link x to z's parent
+ x_parent = z_parent;
+ if(x)
+ NodeTraits::set_parent(x, z_parent);
+ bstree_algorithms::set_child(header, x, z_parent, z_is_leftchild);
+
+ //Now update leftmost/rightmost in case z was one of them
+ if(NodeTraits::get_left(header) == z){
+ //z_left must be null because z is the leftmost
+ BOOST_ASSERT(!z_left);
+ NodeTraits::set_left(header, !z_right ?
+ z_parent : // makes leftmost == header if z == root
+ bstree_algorithms::minimum(z_right));
+ }
+ if(NodeTraits::get_right(header) == z){
+ //z_right must be null because z is the rightmost
+ BOOST_ASSERT(!z_right);
+ NodeTraits::set_right(header, !z_left ?
+ z_parent : // makes rightmost == header if z == root
+ bstree_algorithms::maximum(z_left));
+ }
+ }
+
+ //If z had 0/1 child, y == z and one of its children (and maybe null)
+ //If z had 2 children, y is the successor of z and x is the right child of y
+ info.x = x;
+ info.y = y;
+ //If z had 0/1 child, x_parent is the new parent of the old right child of y (z's successor)
+ //If z had 2 children, x_parent is the new parent of y (z_parent)
+ BOOST_ASSERT(!x || NodeTraits::get_parent(x) == x_parent);
+ info.x_parent = x_parent;
+ }
+
+ //! <b>Requires</b>: node is a node of the tree but it's not the header.
+ //!
+ //! <b>Effects</b>: Returns the number of nodes of the subtree.
+ //!
+ //! <b>Complexity</b>: Linear time.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static std::size_t subtree_size(const const_node_ptr & subtree)
+ {
+ std::size_t count = 0;
+ if (subtree){
+ node_ptr n = detail::uncast(subtree);
+ node_ptr m = NodeTraits::get_left(n);
+ while(m){
+ n = m;
+ m = NodeTraits::get_left(n);
+ }
+
+ while(1){
+ ++count;
+ node_ptr n_right(NodeTraits::get_right(n));
+ if(n_right){
+ n = n_right;
+ m = NodeTraits::get_left(n);
+ while(m){
+ n = m;
+ m = NodeTraits::get_left(n);
+ }
+ }
+ else {
+ do{
+ if (n == subtree){
+ return count;
+ }
+ m = n;
+ n = NodeTraits::get_parent(n);
+ }while(NodeTraits::get_left(n) != m);
+ }
+ }
+ }
+ return count;
+ }
+
+ //! <b>Requires</b>: p is a node of a tree.
+ //!
+ //! <b>Effects</b>: Returns true if p is a left child.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static bool is_left_child(const node_ptr & p)
+ { return NodeTraits::get_left(NodeTraits::get_parent(p)) == p; }
+
+ //! <b>Requires</b>: p is a node of a tree.
+ //!
+ //! <b>Effects</b>: Returns true if p is a right child.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static bool is_right_child(const node_ptr & p)
+ { return NodeTraits::get_right(NodeTraits::get_parent(p)) == p; }
+
+ static void insert_before_check
+ (const node_ptr &header, const node_ptr & pos
+ , insert_commit_data &commit_data
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ node_ptr prev(pos);
+ if(pos != NodeTraits::get_left(header))
+ prev = prev_node(pos);
+ bool link_left = unique(header) || !NodeTraits::get_left(pos);
+ commit_data.link_left = link_left;
+ commit_data.node = link_left ? pos : prev;
+ if(pdepth){
+ *pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
+ }
+ }
+
+ static void push_back_check
+ (const node_ptr & header, insert_commit_data &commit_data
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ node_ptr prev(NodeTraits::get_right(header));
+ if(pdepth){
+ *pdepth = prev == header ? 0 : depth(prev) + 1;
+ }
+ commit_data.link_left = false;
+ commit_data.node = prev;
+ }
+
+ static void push_front_check
+ (const node_ptr & header, insert_commit_data &commit_data
+ #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
+ , std::size_t *pdepth = 0
+ #endif
+ )
+ {
+ node_ptr pos(NodeTraits::get_left(header));
+ if(pdepth){
+ *pdepth = pos == header ? 0 : depth(pos) + 1;
+ }
+ commit_data.link_left = true;
+ commit_data.node = pos;
+ }
+
+ template<class NodePtrCompare>
+ static void insert_equal_check
+ (const node_ptr &header, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp
+ , insert_commit_data &commit_data
+ /// @cond
+ , std::size_t *pdepth = 0
+ /// @endcond
+ )
+ {
+ if(hint == header || !comp(hint, new_node)){
+ node_ptr prev(hint);
+ if(hint == NodeTraits::get_left(header) ||
+ !comp(new_node, (prev = prev_node(hint)))){
+ bool link_left = unique(header) || !NodeTraits::get_left(hint);
+ commit_data.link_left = link_left;
+ commit_data.node = link_left ? hint : prev;
+ if(pdepth){
+ *pdepth = commit_data.node == header ? 0 : depth(commit_data.node) + 1;
+ }
+ }
+ else{
+ insert_equal_upper_bound_check(header, new_node, comp, commit_data, pdepth);
+ }
+ }
+ else{
+ insert_equal_lower_bound_check(header, new_node, comp, commit_data, pdepth);
+ }
+ }
+
+ template<class NodePtrCompare>
+ static void insert_equal_upper_bound_check
+ (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
+ {
+ std::size_t depth = 0;
+ node_ptr y(h);
+ node_ptr x(NodeTraits::get_parent(y));
+
+ while(x){
+ ++depth;
+ y = x;
+ x = comp(new_node, x) ?
+ NodeTraits::get_left(x) : NodeTraits::get_right(x);
+ }
+ if(pdepth) *pdepth = depth;
+ commit_data.link_left = (y == h) || comp(new_node, y);
+ commit_data.node = y;
+ }
+
+ template<class NodePtrCompare>
+ static void insert_equal_lower_bound_check
+ (const node_ptr & h, const node_ptr & new_node, NodePtrCompare comp, insert_commit_data & commit_data, std::size_t *pdepth = 0)
+ {
+ std::size_t depth = 0;
+ node_ptr y(h);
+ node_ptr x(NodeTraits::get_parent(y));
+
+ while(x){
+ ++depth;
+ y = x;
+ x = !comp(x, new_node) ?
+ NodeTraits::get_left(x) : NodeTraits::get_right(x);
+ }
+ if(pdepth) *pdepth = depth;
+ commit_data.link_left = (y == h) || !comp(y, new_node);
+ commit_data.node = y;
+ }
+
+ static void insert_commit
+ (const node_ptr & header, const node_ptr & new_node, const insert_commit_data &commit_data)
+ {
+ //Check if commit_data has not been initialized by a insert_unique_check call.
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(commit_data.node != node_ptr());
+ node_ptr parent_node(commit_data.node);
+ if(parent_node == header){
+ NodeTraits::set_parent(header, new_node);
+ NodeTraits::set_right(header, new_node);
+ NodeTraits::set_left(header, new_node);
+ }
+ else if(commit_data.link_left){
+ NodeTraits::set_left(parent_node, new_node);
+ if(parent_node == NodeTraits::get_left(header))
+ NodeTraits::set_left(header, new_node);
+ }
+ else{
+ NodeTraits::set_right(parent_node, new_node);
+ if(parent_node == NodeTraits::get_right(header))
+ NodeTraits::set_right(header, new_node);
+ }
+ NodeTraits::set_parent(new_node, parent_node);
+ NodeTraits::set_right(new_node, node_ptr());
+ NodeTraits::set_left(new_node, node_ptr());
+ }
+
+ //Fix header and own's parent data when replacing x with own, providing own's old data with parent
+ static void set_child(const node_ptr & header, const node_ptr & new_child, const node_ptr & new_parent, const bool link_left)
+ {
+ if(new_parent == header)
+ NodeTraits::set_parent(header, new_child);
+ else if(link_left)
+ NodeTraits::set_left(new_parent, new_child);
+ else
+ NodeTraits::set_right(new_parent, new_child);
+ }
+
+ // rotate p to left (no header and p's parent fixup)
+ static void rotate_left_no_parent_fix(const node_ptr & p, const node_ptr &p_right)
+ {
+ node_ptr p_right_left(NodeTraits::get_left(p_right));
+ NodeTraits::set_right(p, p_right_left);
+ if(p_right_left){
+ NodeTraits::set_parent(p_right_left, p);
+ }
+ NodeTraits::set_left(p_right, p);
+ NodeTraits::set_parent(p, p_right);
+ }
+
+ // rotate p to left (with header and p's parent fixup)
+ static void rotate_left(const node_ptr & p, const node_ptr & p_right, const node_ptr & p_parent, const node_ptr & header)
+ {
+ const bool p_was_left(NodeTraits::get_left(p_parent) == p);
+ rotate_left_no_parent_fix(p, p_right);
+ NodeTraits::set_parent(p_right, p_parent);
+ set_child(header, p_right, p_parent, p_was_left);
+ }
+
+ // rotate p to right (no header and p's parent fixup)
+ static void rotate_right_no_parent_fix(const node_ptr & p, const node_ptr &p_left)
+ {
+ node_ptr p_left_right(NodeTraits::get_right(p_left));
+ NodeTraits::set_left(p, p_left_right);
+ if(p_left_right){
+ NodeTraits::set_parent(p_left_right, p);
+ }
+ NodeTraits::set_right(p_left, p);
+ NodeTraits::set_parent(p, p_left);
+ }
+
+ // rotate p to right (with header and p's parent fixup)
+ static void rotate_right(const node_ptr & p, const node_ptr & p_left, const node_ptr & p_parent, const node_ptr & header)
+ {
+ const bool p_was_left(NodeTraits::get_left(p_parent) == p);
+ rotate_right_no_parent_fix(p, p_left);
+ NodeTraits::set_parent(p_left, p_parent);
+ set_child(header, p_left, p_parent, p_was_left);
+ }
+
+ private:
+
+ static void subtree_to_vine(node_ptr vine_tail, std::size_t &size)
+ {
+ //Inspired by LibAVL:
+ //It uses a clever optimization for trees with parent pointers.
+ //No parent pointer is updated when transforming a tree to a vine as
+ //most of them will be overriten during compression rotations.
+ //A final pass must be made after the rebalancing to updated those
+ //pointers not updated by tree_to_vine + compression calls
+ std::size_t len = 0;
+ node_ptr remainder = NodeTraits::get_right(vine_tail);
+ while(remainder){
+ node_ptr tempptr = NodeTraits::get_left(remainder);
+ if(!tempptr){ //move vine-tail down one
+ vine_tail = remainder;
+ remainder = NodeTraits::get_right(remainder);
+ ++len;
+ }
+ else{ //rotate
+ NodeTraits::set_left(remainder, NodeTraits::get_right(tempptr));
+ NodeTraits::set_right(tempptr, remainder);
+ remainder = tempptr;
+ NodeTraits::set_right(vine_tail, tempptr);
+ }
+ }
+ size = len;
+ }
+
+ static void compress_subtree(node_ptr scanner, std::size_t count)
+ {
+ while(count--){ //compress "count" spine nodes in the tree with pseudo-root scanner
+ node_ptr child = NodeTraits::get_right(scanner);
+ node_ptr child_right = NodeTraits::get_right(child);
+ NodeTraits::set_right(scanner, child_right);
+ //Avoid setting the parent of child_right
+ scanner = child_right;
+ node_ptr scanner_left = NodeTraits::get_left(scanner);
+ NodeTraits::set_right(child, scanner_left);
+ if(scanner_left)
+ NodeTraits::set_parent(scanner_left, child);
+ NodeTraits::set_left(scanner, child);
+ NodeTraits::set_parent(child, scanner);
+ }
+ }
+
+ static void vine_to_subtree(const node_ptr & super_root, std::size_t count)
+ {
+ const std::size_t one_szt = 1u;
+ std::size_t leaf_nodes = count + one_szt - std::size_t(one_szt << detail::floor_log2(count + one_szt));
+ compress_subtree(super_root, leaf_nodes); //create deepest leaves
+ std::size_t vine_nodes = count - leaf_nodes;
+ while(vine_nodes > 1){
+ vine_nodes /= 2;
+ compress_subtree(super_root, vine_nodes);
+ }
+
+ //Update parents of nodes still in the in the original vine line
+ //as those have not been updated by subtree_to_vine or compress_subtree
+ for ( node_ptr q = super_root, p = NodeTraits::get_right(super_root)
+ ; p
+ ; q = p, p = NodeTraits::get_right(p)){
+ NodeTraits::set_parent(p, q);
+ }
+ }
+
+ //! <b>Requires</b>: "n" must be a node inserted in a tree.
+ //!
+ //! <b>Effects</b>: Returns a pointer to the header node of the tree.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ //!
+ //! <b>Throws</b>: Nothing.
+ static node_ptr get_root(const node_ptr & node)
+ {
+ BOOST_INTRUSIVE_INVARIANT_ASSERT((!inited(node)));
+ node_ptr x = NodeTraits::get_parent(node);
+ if(x){
+ while(!is_header(x)){
+ x = NodeTraits::get_parent(x);
+ }
+ return x;
+ }
+ else{
+ return node;
+ }
+ }
+
+ template <class Cloner, class Disposer>
+ static node_ptr clone_subtree
+ (const const_node_ptr &source_parent, const node_ptr &target_parent
+ , Cloner cloner, Disposer disposer
+ , node_ptr &leftmost_out, node_ptr &rightmost_out
+ )
+ {
+ node_ptr target_sub_root = target_parent;
+ node_ptr source_root = NodeTraits::get_parent(source_parent);
+ if(!source_root){
+ leftmost_out = rightmost_out = source_root;
+ }
+ else{
+ //We'll calculate leftmost and rightmost nodes while iterating
+ node_ptr current = source_root;
+ node_ptr insertion_point = target_sub_root = cloner(current);
+
+ //We'll calculate leftmost and rightmost nodes while iterating
+ node_ptr leftmost = target_sub_root;
+ node_ptr rightmost = target_sub_root;
+
+ //First set the subroot
+ NodeTraits::set_left(target_sub_root, node_ptr());
+ NodeTraits::set_right(target_sub_root, node_ptr());
+ NodeTraits::set_parent(target_sub_root, target_parent);
+
+ dispose_subtree_disposer<Disposer> rollback(disposer, target_sub_root);
+ while(true) {
+ //First clone left nodes
+ if( NodeTraits::get_left(current) &&
+ !NodeTraits::get_left(insertion_point)) {
+ current = NodeTraits::get_left(current);
+ node_ptr temp = insertion_point;
+ //Clone and mark as leaf
+ insertion_point = cloner(current);
+ NodeTraits::set_left (insertion_point, node_ptr());
+ NodeTraits::set_right (insertion_point, node_ptr());
+ //Insert left
+ NodeTraits::set_parent(insertion_point, temp);
+ NodeTraits::set_left (temp, insertion_point);
+ //Update leftmost
+ if(rightmost == target_sub_root)
+ leftmost = insertion_point;
+ }
+ //Then clone right nodes
+ else if( NodeTraits::get_right(current) &&
+ !NodeTraits::get_right(insertion_point)){
+ current = NodeTraits::get_right(current);
+ node_ptr temp = insertion_point;
+ //Clone and mark as leaf
+ insertion_point = cloner(current);
+ NodeTraits::set_left (insertion_point, node_ptr());
+ NodeTraits::set_right (insertion_point, node_ptr());
+ //Insert right
+ NodeTraits::set_parent(insertion_point, temp);
+ NodeTraits::set_right (temp, insertion_point);
+ //Update rightmost
+ rightmost = insertion_point;
+ }
+ //If not, go up
+ else if(current == source_root){
+ break;
+ }
+ else{
+ //Branch completed, go up searching more nodes to clone
+ current = NodeTraits::get_parent(current);
+ insertion_point = NodeTraits::get_parent(insertion_point);
+ }
+ }
+ rollback.release();
+ leftmost_out = leftmost;
+ rightmost_out = rightmost;
+ }
+ return target_sub_root;
+ }
+
+ template<class Disposer>
+ static void dispose_subtree(node_ptr x, Disposer disposer)
+ {
+ while (x){
+ node_ptr save(NodeTraits::get_left(x));
+ if (save) {
+ // Right rotation
+ NodeTraits::set_left(x, NodeTraits::get_right(save));
+ NodeTraits::set_right(save, x);
+ }
+ else {
+ save = NodeTraits::get_right(x);
+ init(x);
+ disposer(x);
+ }
+ x = save;
+ }
+ }
+
+ template<class KeyType, class KeyNodePtrCompare>
+ static node_ptr lower_bound_loop
+ (node_ptr x, node_ptr y, const KeyType &key, KeyNodePtrCompare comp)
+ {
+ while(x){
+ if(comp(x, key)){
+ x = NodeTraits::get_right(x);
+ }
+ else{
+ y = x;
+ x = NodeTraits::get_left(x);
+ }
+ }
+ return y;
+ }
+
+ template<class KeyType, class KeyNodePtrCompare>
+ static node_ptr upper_bound_loop
+ (node_ptr x, node_ptr y, const KeyType &key, KeyNodePtrCompare comp)
+ {
+ while(x){
+ if(comp(key, x)){
+ y = x;
+ x = NodeTraits::get_left(x);
+ }
+ else{
+ x = NodeTraits::get_right(x);
+ }
+ }
+ return y;
+ }
+
+ template<class Checker>
+ static void check_subtree(const const_node_ptr& node, Checker checker, typename Checker::return_type& check_return)
+ {
+ const_node_ptr left = NodeTraits::get_left(node);
+ const_node_ptr right = NodeTraits::get_right(node);
+ typename Checker::return_type check_return_left;
+ typename Checker::return_type check_return_right;
+ if (left)
+ {
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(left) == node);
+ check_subtree(left, checker, check_return_left);
+ }
+ if (right)
+ {
+ BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_parent(right) == node);
+ check_subtree(right, checker, check_return_right);
+ }
+ checker(node, check_return_left, check_return_right, check_return);
+ }
+};
+
+/// @cond
+
+template<class NodeTraits>
+struct get_algo<BsTreeAlgorithms, NodeTraits>
+{
+ typedef bstree_algorithms<NodeTraits> type;
+};
+
+template <class ValueTraits, class NodePtrCompare, class ExtraChecker>
+struct get_node_checker<BsTreeAlgorithms, ValueTraits, NodePtrCompare, ExtraChecker>
+{
+ typedef detail::bstree_node_checker<ValueTraits, NodePtrCompare, ExtraChecker> type;
+};
+
+/// @endcond
+
+} //namespace intrusive
+} //namespace boost
+
+#include <boost/intrusive/detail/config_end.hpp>
+
+#endif //BOOST_INTRUSIVE_BSTREE_ALGORITHMS_HPP