summaryrefslogtreecommitdiff
path: root/boost/geometry/strategies/geographic/intersection.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/geometry/strategies/geographic/intersection.hpp')
-rw-r--r--boost/geometry/strategies/geographic/intersection.hpp897
1 files changed, 897 insertions, 0 deletions
diff --git a/boost/geometry/strategies/geographic/intersection.hpp b/boost/geometry/strategies/geographic/intersection.hpp
new file mode 100644
index 0000000000..1708c274c0
--- /dev/null
+++ b/boost/geometry/strategies/geographic/intersection.hpp
@@ -0,0 +1,897 @@
+// Boost.Geometry
+
+// Copyright (c) 2016-2017, Oracle and/or its affiliates.
+// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
+
+// Use, modification and distribution is subject to the Boost Software License,
+// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
+#define BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
+
+#include <algorithm>
+
+#include <boost/geometry/core/cs.hpp>
+#include <boost/geometry/core/access.hpp>
+#include <boost/geometry/core/radian_access.hpp>
+#include <boost/geometry/core/srs.hpp>
+#include <boost/geometry/core/tags.hpp>
+
+#include <boost/geometry/algorithms/detail/assign_values.hpp>
+#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
+#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
+#include <boost/geometry/algorithms/detail/recalculate.hpp>
+
+#include <boost/geometry/formulas/andoyer_inverse.hpp>
+#include <boost/geometry/formulas/sjoberg_intersection.hpp>
+#include <boost/geometry/formulas/spherical.hpp>
+
+#include <boost/geometry/geometries/concepts/point_concept.hpp>
+#include <boost/geometry/geometries/concepts/segment_concept.hpp>
+
+#include <boost/geometry/policies/robustness/segment_ratio.hpp>
+
+#include <boost/geometry/strategies/geographic/area.hpp>
+#include <boost/geometry/strategies/geographic/distance.hpp>
+#include <boost/geometry/strategies/geographic/parameters.hpp>
+#include <boost/geometry/strategies/geographic/side.hpp>
+#include <boost/geometry/strategies/intersection.hpp>
+#include <boost/geometry/strategies/intersection_result.hpp>
+#include <boost/geometry/strategies/side_info.hpp>
+
+#include <boost/geometry/util/math.hpp>
+#include <boost/geometry/util/select_calculation_type.hpp>
+
+
+namespace boost { namespace geometry
+{
+
+namespace strategy { namespace intersection
+{
+
+// CONSIDER: Improvement of the robustness/accuracy/repeatability by
+// moving all segments to 0 longitude
+// picking latitudes closer to 0
+// etc.
+
+template
+<
+ typename FormulaPolicy = strategy::andoyer,
+ unsigned int Order = strategy::default_order<FormulaPolicy>::value,
+ typename Spheroid = srs::spheroid<double>,
+ typename CalculationType = void
+>
+struct geographic_segments
+{
+ typedef side::geographic
+ <
+ FormulaPolicy, Spheroid, CalculationType
+ > side_strategy_type;
+
+ inline side_strategy_type get_side_strategy() const
+ {
+ return side_strategy_type(m_spheroid);
+ }
+
+ template <typename Geometry1, typename Geometry2>
+ struct point_in_geometry_strategy
+ {
+ typedef strategy::within::winding
+ <
+ typename point_type<Geometry1>::type,
+ typename point_type<Geometry2>::type,
+ side_strategy_type,
+ CalculationType
+ > type;
+ };
+
+ template <typename Geometry1, typename Geometry2>
+ inline typename point_in_geometry_strategy<Geometry1, Geometry2>::type
+ get_point_in_geometry_strategy() const
+ {
+ typedef typename point_in_geometry_strategy
+ <
+ Geometry1, Geometry2
+ >::type strategy_type;
+ return strategy_type(get_side_strategy());
+ }
+
+ template <typename Geometry>
+ struct area_strategy
+ {
+ typedef area::geographic
+ <
+ typename point_type<Geometry>::type,
+ FormulaPolicy,
+ Order,
+ Spheroid,
+ CalculationType
+ > type;
+ };
+
+ template <typename Geometry>
+ inline typename area_strategy<Geometry>::type get_area_strategy() const
+ {
+ typedef typename area_strategy<Geometry>::type strategy_type;
+ return strategy_type(m_spheroid);
+ }
+
+ template <typename Geometry>
+ struct distance_strategy
+ {
+ typedef distance::geographic
+ <
+ FormulaPolicy,
+ Spheroid,
+ CalculationType
+ > type;
+ };
+
+ template <typename Geometry>
+ inline typename distance_strategy<Geometry>::type get_distance_strategy() const
+ {
+ typedef typename distance_strategy<Geometry>::type strategy_type;
+ return strategy_type(m_spheroid);
+ }
+
+ enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };
+
+ template <typename CoordinateType, typename SegmentRatio>
+ struct segment_intersection_info
+ {
+ typedef typename select_most_precise
+ <
+ CoordinateType, double
+ >::type promoted_type;
+
+ promoted_type comparable_length_a() const
+ {
+ return robust_ra.denominator();
+ }
+
+ promoted_type comparable_length_b() const
+ {
+ return robust_rb.denominator();
+ }
+
+ template <typename Point, typename Segment1, typename Segment2>
+ void assign_a(Point& point, Segment1 const& a, Segment2 const& b) const
+ {
+ assign(point, a, b);
+ }
+ template <typename Point, typename Segment1, typename Segment2>
+ void assign_b(Point& point, Segment1 const& a, Segment2 const& b) const
+ {
+ assign(point, a, b);
+ }
+
+ template <typename Point, typename Segment1, typename Segment2>
+ void assign(Point& point, Segment1 const& a, Segment2 const& b) const
+ {
+ if (ip_flag == ipi_inters)
+ {
+ // TODO: assign the rest of coordinates
+ set_from_radian<0>(point, lon);
+ set_from_radian<1>(point, lat);
+ }
+ else if (ip_flag == ipi_at_a1)
+ {
+ detail::assign_point_from_index<0>(a, point);
+ }
+ else if (ip_flag == ipi_at_a2)
+ {
+ detail::assign_point_from_index<1>(a, point);
+ }
+ else if (ip_flag == ipi_at_b1)
+ {
+ detail::assign_point_from_index<0>(b, point);
+ }
+ else // ip_flag == ipi_at_b2
+ {
+ detail::assign_point_from_index<1>(b, point);
+ }
+ }
+
+ CoordinateType lon;
+ CoordinateType lat;
+ SegmentRatio robust_ra;
+ SegmentRatio robust_rb;
+ intersection_point_flag ip_flag;
+ };
+
+ explicit geographic_segments(Spheroid const& spheroid = Spheroid())
+ : m_spheroid(spheroid)
+ {}
+
+ // Relate segments a and b
+ template
+ <
+ typename Segment1,
+ typename Segment2,
+ typename Policy,
+ typename RobustPolicy
+ >
+ inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b,
+ Policy const& policy,
+ RobustPolicy const& robust_policy) const
+ {
+ typedef typename point_type<Segment1>::type point1_t;
+ typedef typename point_type<Segment2>::type point2_t;
+ point1_t a1, a2;
+ point2_t b1, b2;
+
+ detail::assign_point_from_index<0>(a, a1);
+ detail::assign_point_from_index<1>(a, a2);
+ detail::assign_point_from_index<0>(b, b1);
+ detail::assign_point_from_index<1>(b, b2);
+
+ return apply(a, b, policy, robust_policy, a1, a2, b1, b2);
+ }
+
+ // Relate segments a and b
+ template
+ <
+ typename Segment1,
+ typename Segment2,
+ typename Policy,
+ typename RobustPolicy,
+ typename Point1,
+ typename Point2
+ >
+ inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b,
+ Policy const&, RobustPolicy const&,
+ Point1 a1, Point1 a2, Point2 b1, Point2 b2) const
+ {
+ bool is_a_reversed = get<1>(a1) > get<1>(a2);
+ bool is_b_reversed = get<1>(b1) > get<1>(b2);
+
+ if (is_a_reversed)
+ {
+ std::swap(a1, a2);
+ }
+
+ if (is_b_reversed)
+ {
+ std::swap(b1, b2);
+ }
+
+ return apply<Policy>(a, b, a1, a2, b1, b2, is_a_reversed, is_b_reversed);
+ }
+
+private:
+ // Relate segments a and b
+ template
+ <
+ typename Policy,
+ typename Segment1,
+ typename Segment2,
+ typename Point1,
+ typename Point2
+ >
+ inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b,
+ Point1 const& a1, Point1 const& a2,
+ Point2 const& b1, Point2 const& b2,
+ bool is_a_reversed, bool is_b_reversed) const
+ {
+ BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment1>) );
+ BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment2>) );
+
+ typedef typename select_calculation_type
+ <Segment1, Segment2, CalculationType>::type calc_t;
+
+ // normalized spheroid
+ srs::spheroid<calc_t> spheroid = normalized_spheroid<calc_t>(m_spheroid);
+
+ // TODO: check only 2 first coordinates here?
+ using geometry::detail::equals::equals_point_point;
+ bool a_is_point = equals_point_point(a1, a2);
+ bool b_is_point = equals_point_point(b1, b2);
+
+ if(a_is_point && b_is_point)
+ {
+ return equals_point_point(a1, b2)
+ ? Policy::degenerate(a, true)
+ : Policy::disjoint()
+ ;
+ }
+
+ calc_t const a1_lon = get_as_radian<0>(a1);
+ calc_t const a1_lat = get_as_radian<1>(a1);
+ calc_t const a2_lon = get_as_radian<0>(a2);
+ calc_t const a2_lat = get_as_radian<1>(a2);
+ calc_t const b1_lon = get_as_radian<0>(b1);
+ calc_t const b1_lat = get_as_radian<1>(b1);
+ calc_t const b2_lon = get_as_radian<0>(b2);
+ calc_t const b2_lat = get_as_radian<1>(b2);
+
+ side_info sides;
+
+ // NOTE: potential optimization, don't calculate distance at this point
+ // this would require to reimplement inverse strategy to allow
+ // calculation of distance if needed, probably also storing intermediate
+ // results somehow inside an object.
+ typedef typename FormulaPolicy::template inverse<calc_t, true, true, false, false, false> inverse_dist_azi;
+ typedef typename inverse_dist_azi::result_type inverse_result;
+
+ // TODO: no need to call inverse formula if we know that the points are equal
+ // distance can be set to 0 in this case and azimuth may be not calculated
+ bool const is_equal_a1_b1 = equals_point_point(a1, b1);
+ bool const is_equal_a2_b1 = equals_point_point(a2, b1);
+
+ inverse_result res_b1_b2 = inverse_dist_azi::apply(b1_lon, b1_lat, b2_lon, b2_lat, spheroid);
+ inverse_result res_b1_a1 = inverse_dist_azi::apply(b1_lon, b1_lat, a1_lon, a1_lat, spheroid);
+ inverse_result res_b1_a2 = inverse_dist_azi::apply(b1_lon, b1_lat, a2_lon, a2_lat, spheroid);
+ sides.set<0>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_b1_a1.azimuth, res_b1_b2.azimuth),
+ is_equal_a2_b1 ? 0 : formula::azimuth_side_value(res_b1_a2.azimuth, res_b1_b2.azimuth));
+ if (sides.same<0>())
+ {
+ // Both points are at the same side of other segment, we can leave
+ return Policy::disjoint();
+ }
+
+ bool const is_equal_a1_b2 = equals_point_point(a1, b2);
+
+ inverse_result res_a1_a2 = inverse_dist_azi::apply(a1_lon, a1_lat, a2_lon, a2_lat, spheroid);
+ inverse_result res_a1_b1 = inverse_dist_azi::apply(a1_lon, a1_lat, b1_lon, b1_lat, spheroid);
+ inverse_result res_a1_b2 = inverse_dist_azi::apply(a1_lon, a1_lat, b2_lon, b2_lat, spheroid);
+ sides.set<1>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_a1_b1.azimuth, res_a1_a2.azimuth),
+ is_equal_a1_b2 ? 0 : formula::azimuth_side_value(res_a1_b2.azimuth, res_a1_a2.azimuth));
+ if (sides.same<1>())
+ {
+ // Both points are at the same side of other segment, we can leave
+ return Policy::disjoint();
+ }
+
+ // NOTE: at this point the segments may still be disjoint
+ // NOTE: at this point one of the segments may be degenerated
+
+ bool collinear = sides.collinear();
+
+ if (! collinear)
+ {
+ // WARNING: the side strategy doesn't have the info about the other
+ // segment so it may return results inconsistent with this intersection
+ // strategy, as it checks both segments for consistency
+
+ if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0)
+ {
+ collinear = true;
+ sides.set<1>(0, 0);
+ }
+ else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0)
+ {
+ collinear = true;
+ sides.set<0>(0, 0);
+ }
+ }
+
+ if (collinear)
+ {
+ if (a_is_point)
+ {
+ return collinear_one_degenerated<Policy, calc_t>(a, true, b1, b2, a1, a2, res_b1_b2, res_b1_a1, is_b_reversed);
+ }
+ else if (b_is_point)
+ {
+ return collinear_one_degenerated<Policy, calc_t>(b, false, a1, a2, b1, b2, res_a1_a2, res_a1_b1, is_a_reversed);
+ }
+ else
+ {
+ calc_t dist_a1_a2, dist_a1_b1, dist_a1_b2;
+ calc_t dist_b1_b2, dist_b1_a1, dist_b1_a2;
+ // use shorter segment
+ if (res_a1_a2.distance <= res_b1_b2.distance)
+ {
+ calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, dist_a1_a2, dist_a1_b1);
+ calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b2, dist_a1_a2, dist_a1_b2);
+ dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
+ dist_b1_a1 = -dist_a1_b1;
+ dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
+ }
+ else
+ {
+ calculate_collinear_data(b1, b2, a1, a2, res_b1_b2, res_b1_a1, dist_b1_b2, dist_b1_a1);
+ calculate_collinear_data(b1, b2, a1, a2, res_b1_b2, res_b1_a2, dist_b1_b2, dist_b1_a2);
+ dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
+ dist_a1_b1 = -dist_b1_a1;
+ dist_a1_b2 = dist_b1_b2 - dist_b1_a1;
+ }
+
+ // NOTE: this is probably not needed
+ calc_t const c0 = 0;
+ int a1_on_b = position_value(c0, dist_a1_b1, dist_a1_b2);
+ int a2_on_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
+ int b1_on_a = position_value(c0, dist_b1_a1, dist_b1_a2);
+ int b2_on_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);
+
+ if ((a1_on_b < 1 && a2_on_b < 1) || (a1_on_b > 3 && a2_on_b > 3))
+ {
+ return Policy::disjoint();
+ }
+
+ if (a1_on_b == 1)
+ {
+ dist_b1_a1 = 0;
+ dist_a1_b1 = 0;
+ }
+ else if (a1_on_b == 3)
+ {
+ dist_b1_a1 = dist_b1_b2;
+ dist_a1_b2 = 0;
+ }
+
+ if (a2_on_b == 1)
+ {
+ dist_b1_a2 = 0;
+ dist_a1_b1 = dist_a1_a2;
+ }
+ else if (a2_on_b == 3)
+ {
+ dist_b1_a2 = dist_b1_b2;
+ dist_a1_b2 = dist_a1_a2;
+ }
+
+ bool opposite = ! same_direction(res_a1_a2.azimuth, res_b1_b2.azimuth);
+
+ // NOTE: If segment was reversed opposite, positions and segment ratios has to be altered
+ if (is_a_reversed)
+ {
+ // opposite
+ opposite = ! opposite;
+ // positions
+ std::swap(a1_on_b, a2_on_b);
+ b1_on_a = 4 - b1_on_a;
+ b2_on_a = 4 - b2_on_a;
+ // distances for ratios
+ std::swap(dist_b1_a1, dist_b1_a2);
+ dist_a1_b1 = dist_a1_a2 - dist_a1_b1;
+ dist_a1_b2 = dist_a1_a2 - dist_a1_b2;
+ }
+ if (is_b_reversed)
+ {
+ // opposite
+ opposite = ! opposite;
+ // positions
+ a1_on_b = 4 - a1_on_b;
+ a2_on_b = 4 - a2_on_b;
+ std::swap(b1_on_a, b2_on_a);
+ // distances for ratios
+ dist_b1_a1 = dist_b1_b2 - dist_b1_a1;
+ dist_b1_a2 = dist_b1_b2 - dist_b1_a2;
+ std::swap(dist_a1_b1, dist_a1_b2);
+ }
+
+ segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
+ segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
+ segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
+ segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);
+
+ return Policy::segments_collinear(a, b, opposite,
+ a1_on_b, a2_on_b, b1_on_a, b2_on_a,
+ ra_from, ra_to, rb_from, rb_to);
+ }
+ }
+ else // crossing or touching
+ {
+ if (a_is_point || b_is_point)
+ {
+ return Policy::disjoint();
+ }
+
+ calc_t lon = 0, lat = 0;
+ intersection_point_flag ip_flag;
+ calc_t dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1;
+ if (calculate_ip_data(a1, a2, b1, b2,
+ a1_lon, a1_lat, a2_lon, a2_lat,
+ b1_lon, b1_lat, b2_lon, b2_lat,
+ res_a1_a2, res_a1_b1, res_a1_b2,
+ res_b1_b2, res_b1_a1, res_b1_a2,
+ sides, spheroid,
+ lon, lat,
+ dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1,
+ ip_flag))
+ {
+ // NOTE: If segment was reversed sides and segment ratios has to be altered
+ if (is_a_reversed)
+ {
+ // sides
+ sides_reverse_segment<0>(sides);
+ // distance for ratio
+ dist_a1_i1 = dist_a1_a2 - dist_a1_i1;
+ // ip flag
+ ip_flag_reverse_segment(ip_flag, ipi_at_a1, ipi_at_a2);
+ }
+ if (is_b_reversed)
+ {
+ // sides
+ sides_reverse_segment<1>(sides);
+ // distance for ratio
+ dist_b1_i1 = dist_b1_b2 - dist_b1_i1;
+ // ip flag
+ ip_flag_reverse_segment(ip_flag, ipi_at_b1, ipi_at_b2);
+ }
+
+ // intersects
+ segment_intersection_info
+ <
+ calc_t,
+ segment_ratio<calc_t>
+ > sinfo;
+
+ sinfo.lon = lon;
+ sinfo.lat = lat;
+ sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
+ sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
+ sinfo.ip_flag = ip_flag;
+
+ return Policy::segments_crosses(sides, sinfo, a, b);
+ }
+ else
+ {
+ return Policy::disjoint();
+ }
+ }
+ }
+
+ template <typename Policy, typename CalcT, typename Segment, typename Point1, typename Point2, typename ResultInverse>
+ static inline typename Policy::return_type
+ collinear_one_degenerated(Segment const& segment, bool degenerated_a,
+ Point1 const& a1, Point1 const& a2,
+ Point2 const& b1, Point2 const& b2,
+ ResultInverse const& res_a1_a2,
+ ResultInverse const& res_a1_bi,
+ bool is_other_reversed)
+ {
+ CalcT dist_1_2, dist_1_o;
+ if (! calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_bi, dist_1_2, dist_1_o))
+ {
+ return Policy::disjoint();
+ }
+
+ // NOTE: If segment was reversed segment ratio has to be altered
+ if (is_other_reversed)
+ {
+ // distance for ratio
+ dist_1_o = dist_1_2 - dist_1_o;
+ }
+
+ return Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
+ }
+
+ // TODO: instead of checks below test bi against a1 and a2 here?
+ // in order to make this independent from is_near()
+ template <typename Point1, typename Point2, typename ResultInverse, typename CalcT>
+ static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in
+ Point2 const& b1, Point2 const& b2, // in
+ ResultInverse const& res_a1_a2, // in
+ ResultInverse const& res_a1_bi, // in
+ CalcT& dist_a1_a2, CalcT& dist_a1_bi) // out
+ {
+ dist_a1_a2 = res_a1_a2.distance;
+
+ dist_a1_bi = res_a1_bi.distance;
+ if (! same_direction(res_a1_bi.azimuth, res_a1_a2.azimuth))
+ {
+ dist_a1_bi = -dist_a1_bi;
+ }
+
+ // if i1 is close to a1 and b1 or b2 is equal to a1
+ if (is_endpoint_equal(dist_a1_bi, a1, b1, b2))
+ {
+ dist_a1_bi = 0;
+ return true;
+ }
+ // or i1 is close to a2 and b1 or b2 is equal to a2
+ else if (is_endpoint_equal(dist_a1_a2 - dist_a1_bi, a2, b1, b2))
+ {
+ dist_a1_bi = dist_a1_a2;
+ return true;
+ }
+
+ // or i1 is on b
+ return segment_ratio<CalcT>(dist_a1_bi, dist_a1_a2).on_segment();
+ }
+
+ template <typename Point1, typename Point2, typename CalcT, typename ResultInverse, typename Spheroid_>
+ static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in
+ Point2 const& b1, Point2 const& b2, // in
+ CalcT const& a1_lon, CalcT const& a1_lat, // in
+ CalcT const& a2_lon, CalcT const& a2_lat, // in
+ CalcT const& b1_lon, CalcT const& b1_lat, // in
+ CalcT const& b2_lon, CalcT const& b2_lat, // in
+ ResultInverse const& res_a1_a2, // in
+ ResultInverse const& res_a1_b1, // in
+ ResultInverse const& res_a1_b2, // in
+ ResultInverse const& res_b1_b2, // in
+ ResultInverse const& res_b1_a1, // in
+ ResultInverse const& res_b1_a2, // in
+ side_info const& sides, // in
+ Spheroid_ const& spheroid, // in
+ CalcT & lon, CalcT & lat, // out
+ CalcT& dist_a1_a2, CalcT& dist_a1_ip, // out
+ CalcT& dist_b1_b2, CalcT& dist_b1_ip, // out
+ intersection_point_flag& ip_flag) // out
+ {
+ dist_a1_a2 = res_a1_a2.distance;
+ dist_b1_b2 = res_b1_b2.distance;
+
+ // assign the IP if some endpoints overlap
+ using geometry::detail::equals::equals_point_point;
+ if (equals_point_point(a1, b1))
+ {
+ lon = a1_lon;
+ lat = a1_lat;
+ dist_a1_ip = 0;
+ dist_b1_ip = 0;
+ ip_flag = ipi_at_a1;
+ return true;
+ }
+ else if (equals_point_point(a1, b2))
+ {
+ lon = a1_lon;
+ lat = a1_lat;
+ dist_a1_ip = 0;
+ dist_b1_ip = dist_b1_b2;
+ ip_flag = ipi_at_a1;
+ return true;
+ }
+ else if (equals_point_point(a2, b1))
+ {
+ lon = a2_lon;
+ lat = a2_lat;
+ dist_a1_ip = dist_a1_a2;
+ dist_b1_ip = 0;
+ ip_flag = ipi_at_a2;
+ return true;
+ }
+ else if (equals_point_point(a2, b2))
+ {
+ lon = a2_lon;
+ lat = a2_lat;
+ dist_a1_ip = dist_a1_a2;
+ dist_b1_ip = dist_b1_b2;
+ ip_flag = ipi_at_a2;
+ return true;
+ }
+
+ // at this point we know that the endpoints doesn't overlap
+ // check cases when an endpoint lies on the other geodesic
+ if (sides.template get<0, 0>() == 0) // a1 wrt b
+ {
+ if (res_b1_a1.distance <= res_b1_b2.distance
+ && same_direction(res_b1_a1.azimuth, res_b1_b2.azimuth))
+ {
+ lon = a1_lon;
+ lat = a1_lat;
+ dist_a1_ip = 0;
+ dist_b1_ip = res_b1_a1.distance;
+ ip_flag = ipi_at_a1;
+ return true;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ else if (sides.template get<0, 1>() == 0) // a2 wrt b
+ {
+ if (res_b1_a2.distance <= res_b1_b2.distance
+ && same_direction(res_b1_a2.azimuth, res_b1_b2.azimuth))
+ {
+ lon = a2_lon;
+ lat = a2_lat;
+ dist_a1_ip = res_a1_a2.distance;
+ dist_b1_ip = res_b1_a2.distance;
+ ip_flag = ipi_at_a2;
+ return true;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ else if (sides.template get<1, 0>() == 0) // b1 wrt a
+ {
+ if (res_a1_b1.distance <= res_a1_a2.distance
+ && same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth))
+ {
+ lon = b1_lon;
+ lat = b1_lat;
+ dist_a1_ip = res_a1_b1.distance;
+ dist_b1_ip = 0;
+ ip_flag = ipi_at_b1;
+ return true;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ else if (sides.template get<1, 1>() == 0) // b2 wrt a
+ {
+ if (res_a1_b2.distance <= res_a1_a2.distance
+ && same_direction(res_a1_b2.azimuth, res_a1_a2.azimuth))
+ {
+ lon = b2_lon;
+ lat = b2_lat;
+ dist_a1_ip = res_a1_b2.distance;
+ dist_b1_ip = res_b1_b2.distance;
+ ip_flag = ipi_at_b2;
+ return true;
+ }
+ else
+ {
+ return false;
+ }
+ }
+
+ // At this point neither the endpoints overlaps
+ // nor any andpoint lies on the other geodesic
+ // So the endpoints should lie on the opposite sides of both geodesics
+
+ bool const ok = formula::sjoberg_intersection<CalcT, FormulaPolicy::template inverse, Order>
+ ::apply(a1_lon, a1_lat, a2_lon, a2_lat, res_a1_a2.azimuth,
+ b1_lon, b1_lat, b2_lon, b2_lat, res_b1_b2.azimuth,
+ lon, lat, spheroid);
+
+ if (! ok)
+ {
+ return false;
+ }
+
+ typedef typename FormulaPolicy::template inverse<CalcT, true, true, false, false, false> inverse_dist_azi;
+ typedef typename inverse_dist_azi::result_type inverse_result;
+
+ inverse_result const res_a1_ip = inverse_dist_azi::apply(a1_lon, a1_lat, lon, lat, spheroid);
+ dist_a1_ip = res_a1_ip.distance;
+ if (! same_direction(res_a1_ip.azimuth, res_a1_a2.azimuth))
+ {
+ dist_a1_ip = -dist_a1_ip;
+ }
+
+ bool is_on_a = segment_ratio<CalcT>(dist_a1_ip, dist_a1_a2).on_segment();
+ // NOTE: not fully consistent with equals_point_point() since radians are always used.
+ bool is_on_a1 = math::equals(lon, a1_lon) && math::equals(lat, a1_lat);
+ bool is_on_a2 = math::equals(lon, a2_lon) && math::equals(lat, a2_lat);
+
+ if (! (is_on_a || is_on_a1 || is_on_a2))
+ {
+ return false;
+ }
+
+ inverse_result const res_b1_ip = inverse_dist_azi::apply(b1_lon, b1_lat, lon, lat, spheroid);
+ dist_b1_ip = res_b1_ip.distance;
+ if (! same_direction(res_b1_ip.azimuth, res_b1_b2.azimuth))
+ {
+ dist_b1_ip = -dist_b1_ip;
+ }
+
+ bool is_on_b = segment_ratio<CalcT>(dist_b1_ip, dist_b1_b2).on_segment();
+ // NOTE: not fully consistent with equals_point_point() since radians are always used.
+ bool is_on_b1 = math::equals(lon, b1_lon) && math::equals(lat, b1_lat);
+ bool is_on_b2 = math::equals(lon, b2_lon) && math::equals(lat, b2_lat);
+
+ if (! (is_on_b || is_on_b1 || is_on_b2))
+ {
+ return false;
+ }
+
+ ip_flag = ipi_inters;
+
+ if (is_on_b1)
+ {
+ lon = b1_lon;
+ lat = b1_lat;
+ dist_b1_ip = 0;
+ ip_flag = ipi_at_b1;
+ }
+ else if (is_on_b2)
+ {
+ lon = b2_lon;
+ lat = b2_lat;
+ dist_b1_ip = res_b1_b2.distance;
+ ip_flag = ipi_at_b2;
+ }
+
+ if (is_on_a1)
+ {
+ lon = a1_lon;
+ lat = a1_lat;
+ dist_a1_ip = 0;
+ ip_flag = ipi_at_a1;
+ }
+ else if (is_on_a2)
+ {
+ lon = a2_lon;
+ lat = a2_lat;
+ dist_a1_ip = res_a1_a2.distance;
+ ip_flag = ipi_at_a2;
+ }
+
+ return true;
+ }
+
+ template <typename CalcT, typename P1, typename P2>
+ static inline bool is_endpoint_equal(CalcT const& dist,
+ P1 const& ai, P2 const& b1, P2 const& b2)
+ {
+ using geometry::detail::equals::equals_point_point;
+ return is_near(dist) && (equals_point_point(ai, b1) || equals_point_point(ai, b2));
+ }
+
+ template <typename CalcT>
+ static inline bool is_near(CalcT const& dist)
+ {
+ // NOTE: This strongly depends on the Inverse method
+ CalcT const small_number = CalcT(boost::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
+ return math::abs(dist) <= small_number;
+ }
+
+ template <typename ProjCoord1, typename ProjCoord2>
+ static inline int position_value(ProjCoord1 const& ca1,
+ ProjCoord2 const& cb1,
+ ProjCoord2 const& cb2)
+ {
+ // S1x 0 1 2 3 4
+ // S2 |---------->
+ return math::equals(ca1, cb1) ? 1
+ : math::equals(ca1, cb2) ? 3
+ : cb1 < cb2 ?
+ ( ca1 < cb1 ? 0
+ : ca1 > cb2 ? 4
+ : 2 )
+ : ( ca1 > cb1 ? 0
+ : ca1 < cb2 ? 4
+ : 2 );
+ }
+
+ template <typename CalcT>
+ static inline bool same_direction(CalcT const& azimuth1, CalcT const& azimuth2)
+ {
+ // distance between two angles normalized to (-180, 180]
+ CalcT const angle_diff = math::longitude_distance_signed<radian>(azimuth1, azimuth2);
+ return math::abs(angle_diff) <= math::half_pi<CalcT>();
+ }
+
+ template <int Which>
+ static inline void sides_reverse_segment(side_info & sides)
+ {
+ // names assuming segment A is reversed (Which == 0)
+ int a1_wrt_b = sides.template get<Which, 0>();
+ int a2_wrt_b = sides.template get<Which, 1>();
+ std::swap(a1_wrt_b, a2_wrt_b);
+ sides.template set<Which>(a1_wrt_b, a2_wrt_b);
+ int b1_wrt_a = sides.template get<1 - Which, 0>();
+ int b2_wrt_a = sides.template get<1 - Which, 1>();
+ sides.template set<1 - Which>(-b1_wrt_a, -b2_wrt_a);
+ }
+
+ static inline void ip_flag_reverse_segment(intersection_point_flag & ip_flag,
+ intersection_point_flag const& ipi_at_p1,
+ intersection_point_flag const& ipi_at_p2)
+ {
+ ip_flag = ip_flag == ipi_at_p1 ? ipi_at_p2 :
+ ip_flag == ipi_at_p2 ? ipi_at_p1 :
+ ip_flag;
+ }
+
+ template <typename CalcT, typename SpheroidT>
+ static inline srs::spheroid<CalcT> normalized_spheroid(SpheroidT const& spheroid)
+ {
+ return srs::spheroid<CalcT>(CalcT(1),
+ CalcT(get_radius<2>(spheroid)) // b/a
+ / CalcT(get_radius<0>(spheroid)));
+ }
+
+private:
+ Spheroid m_spheroid;
+};
+
+
+}} // namespace strategy::intersection
+
+}} // namespace boost::geometry
+
+
+#endif // BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP