summaryrefslogtreecommitdiff
path: root/boost/geometry/srs/projections/proj/stere.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/geometry/srs/projections/proj/stere.hpp')
-rw-r--r--boost/geometry/srs/projections/proj/stere.hpp545
1 files changed, 545 insertions, 0 deletions
diff --git a/boost/geometry/srs/projections/proj/stere.hpp b/boost/geometry/srs/projections/proj/stere.hpp
new file mode 100644
index 0000000000..9278902e34
--- /dev/null
+++ b/boost/geometry/srs/projections/proj/stere.hpp
@@ -0,0 +1,545 @@
+#ifndef BOOST_GEOMETRY_PROJECTIONS_STERE_HPP
+#define BOOST_GEOMETRY_PROJECTIONS_STERE_HPP
+
+// Boost.Geometry - extensions-gis-projections (based on PROJ4)
+// This file is automatically generated. DO NOT EDIT.
+
+// Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
+
+// This file was modified by Oracle on 2017, 2018.
+// Modifications copyright (c) 2017-2018, Oracle and/or its affiliates.
+// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.
+
+// Use, modification and distribution is subject to the Boost Software License,
+// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+// This file is converted from PROJ4, http://trac.osgeo.org/proj
+// PROJ4 is originally written by Gerald Evenden (then of the USGS)
+// PROJ4 is maintained by Frank Warmerdam
+// PROJ4 is converted to Boost.Geometry by Barend Gehrels
+
+// Last updated version of proj: 4.9.1
+
+// Original copyright notice:
+
+// Permission is hereby granted, free of charge, to any person obtaining a
+// copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the
+// Software is furnished to do so, subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included
+// in all copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+// DEALINGS IN THE SOFTWARE.
+
+#include <boost/config.hpp>
+#include <boost/geometry/util/math.hpp>
+#include <boost/math/special_functions/hypot.hpp>
+
+#include <boost/geometry/srs/projections/impl/base_static.hpp>
+#include <boost/geometry/srs/projections/impl/base_dynamic.hpp>
+#include <boost/geometry/srs/projections/impl/projects.hpp>
+#include <boost/geometry/srs/projections/impl/factory_entry.hpp>
+#include <boost/geometry/srs/projections/impl/pj_tsfn.hpp>
+
+namespace boost { namespace geometry
+{
+
+namespace srs { namespace par4
+{
+ struct stere {};
+ struct ups {};
+
+}} //namespace srs::par4
+
+namespace projections
+{
+ #ifndef DOXYGEN_NO_DETAIL
+ namespace detail { namespace stere
+ {
+ static const double EPS10 = 1.e-10;
+ static const double TOL = 1.e-8;
+ static const int NITER = 8;
+ static const double CONV = 1.e-10;
+ static const int S_POLE = 0;
+ static const int N_POLE = 1;
+ static const int OBLIQ = 2;
+ static const int EQUIT = 3;
+
+ template <typename T>
+ struct par_stere
+ {
+ T phits;
+ T sinX1;
+ T cosX1;
+ T akm1;
+ int mode;
+ };
+
+ template <typename T>
+ inline T ssfn_(T const& phit, T sinphi, T const& eccen)
+ {
+ sinphi *= eccen;
+ return (tan (.5 * (geometry::math::half_pi<T>() + phit)) *
+ pow((1. - sinphi) / (1. + sinphi), .5 * eccen));
+ }
+
+ // template class, using CRTP to implement forward/inverse
+ template <typename CalculationType, typename Parameters>
+ struct base_stere_ellipsoid : public base_t_fi<base_stere_ellipsoid<CalculationType, Parameters>,
+ CalculationType, Parameters>
+ {
+
+ typedef CalculationType geographic_type;
+ typedef CalculationType cartesian_type;
+
+ par_stere<CalculationType> m_proj_parm;
+
+ inline base_stere_ellipsoid(const Parameters& par)
+ : base_t_fi<base_stere_ellipsoid<CalculationType, Parameters>,
+ CalculationType, Parameters>(*this, par) {}
+
+ // FORWARD(e_forward) ellipsoid
+ // Project coordinates from geographic (lon, lat) to cartesian (x, y)
+ inline void fwd(geographic_type& lp_lon, geographic_type& lp_lat, cartesian_type& xy_x, cartesian_type& xy_y) const
+ {
+ static const CalculationType HALFPI = detail::HALFPI<CalculationType>();
+
+ CalculationType coslam, sinlam, sinX=0.0, cosX=0.0, X, A, sinphi;
+
+ coslam = cos(lp_lon);
+ sinlam = sin(lp_lon);
+ sinphi = sin(lp_lat);
+ if (this->m_proj_parm.mode == OBLIQ || this->m_proj_parm.mode == EQUIT) {
+ sinX = sin(X = 2. * atan(ssfn_(lp_lat, sinphi, this->m_par.e)) - HALFPI);
+ cosX = cos(X);
+ }
+ switch (this->m_proj_parm.mode) {
+ case OBLIQ:
+ A = this->m_proj_parm.akm1 / (this->m_proj_parm.cosX1 * (1. + this->m_proj_parm.sinX1 * sinX +
+ this->m_proj_parm.cosX1 * cosX * coslam));
+ xy_y = A * (this->m_proj_parm.cosX1 * sinX - this->m_proj_parm.sinX1 * cosX * coslam);
+ goto xmul;
+ case EQUIT:
+ A = this->m_proj_parm.akm1 / (1. + cosX * coslam);
+ xy_y = A * sinX;
+ xmul:
+ xy_x = A * cosX;
+ break;
+ case S_POLE:
+ lp_lat = -lp_lat;
+ coslam = - coslam;
+ sinphi = -sinphi;
+ BOOST_FALLTHROUGH;
+ case N_POLE:
+ xy_x = this->m_proj_parm.akm1 * pj_tsfn(lp_lat, sinphi, this->m_par.e);
+ xy_y = - xy_x * coslam;
+ break;
+ }
+ xy_x = xy_x * sinlam;
+ }
+
+ // INVERSE(e_inverse) ellipsoid
+ // Project coordinates from cartesian (x, y) to geographic (lon, lat)
+ inline void inv(cartesian_type& xy_x, cartesian_type& xy_y, geographic_type& lp_lon, geographic_type& lp_lat) const
+ {
+ static const CalculationType HALFPI = detail::HALFPI<CalculationType>();
+
+ CalculationType cosphi, sinphi, tp=0.0, phi_l=0.0, rho, halfe=0.0, halfpi=0.0;
+ int i;
+
+ rho = boost::math::hypot(xy_x, xy_y);
+ switch (this->m_proj_parm.mode) {
+ case OBLIQ:
+ case EQUIT:
+ cosphi = cos( tp = 2. * atan2(rho * this->m_proj_parm.cosX1 , this->m_proj_parm.akm1) );
+ sinphi = sin(tp);
+ if( rho == 0.0 )
+ phi_l = asin(cosphi * this->m_proj_parm.sinX1);
+ else
+ phi_l = asin(cosphi * this->m_proj_parm.sinX1 + (xy_y * sinphi * this->m_proj_parm.cosX1 / rho));
+
+ tp = tan(.5 * (HALFPI + phi_l));
+ xy_x *= sinphi;
+ xy_y = rho * this->m_proj_parm.cosX1 * cosphi - xy_y * this->m_proj_parm.sinX1* sinphi;
+ halfpi = HALFPI;
+ halfe = .5 * this->m_par.e;
+ break;
+ case N_POLE:
+ xy_y = -xy_y;
+ BOOST_FALLTHROUGH;
+ case S_POLE:
+ phi_l = HALFPI - 2. * atan(tp = - rho / this->m_proj_parm.akm1);
+ halfpi = -HALFPI;
+ halfe = -.5 * this->m_par.e;
+ break;
+ }
+ for (i = NITER; i--; phi_l = lp_lat) {
+ sinphi = this->m_par.e * sin(phi_l);
+ lp_lat = 2. * atan(tp * pow((1.+sinphi)/(1.-sinphi), halfe)) - halfpi;
+ if (fabs(phi_l - lp_lat) < CONV) {
+ if (this->m_proj_parm.mode == S_POLE)
+ lp_lat = -lp_lat;
+ lp_lon = (xy_x == 0. && xy_y == 0.) ? 0. : atan2(xy_x, xy_y);
+ return;
+ }
+ }
+ BOOST_THROW_EXCEPTION( projection_exception(-20) );
+ }
+
+ static inline std::string get_name()
+ {
+ return "stere_ellipsoid";
+ }
+
+ };
+
+ // template class, using CRTP to implement forward/inverse
+ template <typename CalculationType, typename Parameters>
+ struct base_stere_spheroid : public base_t_fi<base_stere_spheroid<CalculationType, Parameters>,
+ CalculationType, Parameters>
+ {
+
+ typedef CalculationType geographic_type;
+ typedef CalculationType cartesian_type;
+
+ par_stere<CalculationType> m_proj_parm;
+
+ inline base_stere_spheroid(const Parameters& par)
+ : base_t_fi<base_stere_spheroid<CalculationType, Parameters>,
+ CalculationType, Parameters>(*this, par) {}
+
+ // FORWARD(s_forward) spheroid
+ // Project coordinates from geographic (lon, lat) to cartesian (x, y)
+ inline void fwd(geographic_type& lp_lon, geographic_type& lp_lat, cartesian_type& xy_x, cartesian_type& xy_y) const
+ {
+ static const CalculationType FORTPI = detail::FORTPI<CalculationType>();
+ static const CalculationType HALFPI = detail::HALFPI<CalculationType>();
+
+ CalculationType sinphi, cosphi, coslam, sinlam;
+
+ sinphi = sin(lp_lat);
+ cosphi = cos(lp_lat);
+ coslam = cos(lp_lon);
+ sinlam = sin(lp_lon);
+ switch (this->m_proj_parm.mode) {
+ case EQUIT:
+ xy_y = 1. + cosphi * coslam;
+ goto oblcon;
+ case OBLIQ:
+ xy_y = 1. + this->m_proj_parm.sinX1 * sinphi + this->m_proj_parm.cosX1 * cosphi * coslam;
+ oblcon:
+ if (xy_y <= EPS10)
+ BOOST_THROW_EXCEPTION( projection_exception(-20) );
+ xy_x = (xy_y = this->m_proj_parm.akm1 / xy_y) * cosphi * sinlam;
+ xy_y *= (this->m_proj_parm.mode == EQUIT) ? sinphi :
+ this->m_proj_parm.cosX1 * sinphi - this->m_proj_parm.sinX1 * cosphi * coslam;
+ break;
+ case N_POLE:
+ coslam = - coslam;
+ lp_lat = - lp_lat;
+ BOOST_FALLTHROUGH;
+ case S_POLE:
+ if (fabs(lp_lat - HALFPI) < TOL)
+ BOOST_THROW_EXCEPTION( projection_exception(-20) );
+ xy_x = sinlam * ( xy_y = this->m_proj_parm.akm1 * tan(FORTPI + .5 * lp_lat) );
+ xy_y *= coslam;
+ break;
+ }
+ }
+
+ // INVERSE(s_inverse) spheroid
+ // Project coordinates from cartesian (x, y) to geographic (lon, lat)
+ inline void inv(cartesian_type& xy_x, cartesian_type& xy_y, geographic_type& lp_lon, geographic_type& lp_lat) const
+ {
+ CalculationType c, rh, sinc, cosc;
+
+ sinc = sin(c = 2. * atan((rh = boost::math::hypot(xy_x, xy_y)) / this->m_proj_parm.akm1));
+ cosc = cos(c);
+ lp_lon = 0.;
+ switch (this->m_proj_parm.mode) {
+ case EQUIT:
+ if (fabs(rh) <= EPS10)
+ lp_lat = 0.;
+ else
+ lp_lat = asin(xy_y * sinc / rh);
+ if (cosc != 0. || xy_x != 0.)
+ lp_lon = atan2(xy_x * sinc, cosc * rh);
+ break;
+ case OBLIQ:
+ if (fabs(rh) <= EPS10)
+ lp_lat = this->m_par.phi0;
+ else
+ lp_lat = asin(cosc * this->m_proj_parm.sinX1 + xy_y * sinc * this->m_proj_parm.cosX1 / rh);
+ if ((c = cosc - this->m_proj_parm.sinX1 * sin(lp_lat)) != 0. || xy_x != 0.)
+ lp_lon = atan2(xy_x * sinc * this->m_proj_parm.cosX1, c * rh);
+ break;
+ case N_POLE:
+ xy_y = -xy_y;
+ BOOST_FALLTHROUGH;
+ case S_POLE:
+ if (fabs(rh) <= EPS10)
+ lp_lat = this->m_par.phi0;
+ else
+ lp_lat = asin(this->m_proj_parm.mode == S_POLE ? - cosc : cosc);
+ lp_lon = (xy_x == 0. && xy_y == 0.) ? 0. : atan2(xy_x, xy_y);
+ break;
+ }
+ }
+
+ static inline std::string get_name()
+ {
+ return "stere_spheroid";
+ }
+
+ };
+
+ template <typename Parameters, typename T>
+ inline void setup(Parameters& par, par_stere<T>& proj_parm) /* general initialization */
+ {
+ static const T FORTPI = detail::FORTPI<T>();
+ static const T HALFPI = detail::HALFPI<T>();
+
+ T t;
+
+ if (fabs((t = fabs(par.phi0)) - HALFPI) < EPS10)
+ proj_parm.mode = par.phi0 < 0. ? S_POLE : N_POLE;
+ else
+ proj_parm.mode = t > EPS10 ? OBLIQ : EQUIT;
+ proj_parm.phits = fabs(proj_parm.phits);
+ if (par.es != 0.0) {
+ T X;
+
+ switch (proj_parm.mode) {
+ case N_POLE:
+ case S_POLE:
+ if (fabs(proj_parm.phits - HALFPI) < EPS10)
+ proj_parm.akm1 = 2. * par.k0 /
+ sqrt(pow(1+par.e,1+par.e)*pow(1-par.e,1-par.e));
+ else {
+ proj_parm.akm1 = cos(proj_parm.phits) /
+ pj_tsfn(proj_parm.phits, t = sin(proj_parm.phits), par.e);
+ t *= par.e;
+ proj_parm.akm1 /= sqrt(1. - t * t);
+ }
+ break;
+ case EQUIT:
+ //proj_parm.akm1 = 2. * par.k0;
+ //break;
+ case OBLIQ:
+ t = sin(par.phi0);
+ X = 2. * atan(ssfn_(par.phi0, t, par.e)) - HALFPI;
+ t *= par.e;
+ proj_parm.akm1 = 2. * par.k0 * cos(par.phi0) / sqrt(1. - t * t);
+ proj_parm.sinX1 = sin(X);
+ proj_parm.cosX1 = cos(X);
+ break;
+ }
+ } else {
+ switch (proj_parm.mode) {
+ case OBLIQ:
+ proj_parm.sinX1 = sin(par.phi0);
+ proj_parm.cosX1 = cos(par.phi0);
+ BOOST_FALLTHROUGH;
+ case EQUIT:
+ proj_parm.akm1 = 2. * par.k0;
+ break;
+ case S_POLE:
+ case N_POLE:
+ proj_parm.akm1 = fabs(proj_parm.phits - HALFPI) >= EPS10 ?
+ cos(proj_parm.phits) / tan(FORTPI - .5 * proj_parm.phits) :
+ 2. * par.k0 ;
+ break;
+ }
+ }
+ }
+
+
+ // Stereographic
+ template <typename Parameters, typename T>
+ inline void setup_stere(Parameters& par, par_stere<T>& proj_parm)
+ {
+ static const T HALFPI = detail::HALFPI<T>();
+
+ proj_parm.phits = pj_param(par.params, "tlat_ts").i ?
+ pj_param(par.params, "rlat_ts").f : HALFPI;
+ setup(par, proj_parm);
+ }
+
+ // Universal Polar Stereographic
+ template <typename Parameters, typename T>
+ inline void setup_ups(Parameters& par, par_stere<T>& proj_parm)
+ {
+ static const T HALFPI = detail::HALFPI<T>();
+
+ /* International Ellipsoid */
+ par.phi0 = pj_param(par.params, "bsouth").i ? -HALFPI: HALFPI;
+ if (!par.es)
+ BOOST_THROW_EXCEPTION( projection_exception(-34) );
+ par.k0 = .994;
+ par.x0 = 2000000.;
+ par.y0 = 2000000.;
+ proj_parm.phits = HALFPI;
+ par.lam0 = 0.;
+ setup(par, proj_parm);
+ }
+
+ }} // namespace detail::stere
+ #endif // doxygen
+
+ /*!
+ \brief Stereographic projection
+ \ingroup projections
+ \tparam Geographic latlong point type
+ \tparam Cartesian xy point type
+ \tparam Parameters parameter type
+ \par Projection characteristics
+ - Azimuthal
+ - Spheroid
+ - Ellipsoid
+ \par Projection parameters
+ - lat_ts: Latitude of true scale (degrees)
+ \par Example
+ \image html ex_stere.gif
+ */
+ template <typename CalculationType, typename Parameters>
+ struct stere_ellipsoid : public detail::stere::base_stere_ellipsoid<CalculationType, Parameters>
+ {
+ inline stere_ellipsoid(const Parameters& par) : detail::stere::base_stere_ellipsoid<CalculationType, Parameters>(par)
+ {
+ detail::stere::setup_stere(this->m_par, this->m_proj_parm);
+ }
+ };
+
+ /*!
+ \brief Stereographic projection
+ \ingroup projections
+ \tparam Geographic latlong point type
+ \tparam Cartesian xy point type
+ \tparam Parameters parameter type
+ \par Projection characteristics
+ - Azimuthal
+ - Spheroid
+ - Ellipsoid
+ \par Projection parameters
+ - lat_ts: Latitude of true scale (degrees)
+ \par Example
+ \image html ex_stere.gif
+ */
+ template <typename CalculationType, typename Parameters>
+ struct stere_spheroid : public detail::stere::base_stere_spheroid<CalculationType, Parameters>
+ {
+ inline stere_spheroid(const Parameters& par) : detail::stere::base_stere_spheroid<CalculationType, Parameters>(par)
+ {
+ detail::stere::setup_stere(this->m_par, this->m_proj_parm);
+ }
+ };
+
+ /*!
+ \brief Universal Polar Stereographic projection
+ \ingroup projections
+ \tparam Geographic latlong point type
+ \tparam Cartesian xy point type
+ \tparam Parameters parameter type
+ \par Projection characteristics
+ - Azimuthal
+ - Spheroid
+ - Ellipsoid
+ \par Projection parameters
+ - south: Denotes southern hemisphere UTM zone (boolean)
+ \par Example
+ \image html ex_ups.gif
+ */
+ template <typename CalculationType, typename Parameters>
+ struct ups_ellipsoid : public detail::stere::base_stere_ellipsoid<CalculationType, Parameters>
+ {
+ inline ups_ellipsoid(const Parameters& par) : detail::stere::base_stere_ellipsoid<CalculationType, Parameters>(par)
+ {
+ detail::stere::setup_ups(this->m_par, this->m_proj_parm);
+ }
+ };
+
+ /*!
+ \brief Universal Polar Stereographic projection
+ \ingroup projections
+ \tparam Geographic latlong point type
+ \tparam Cartesian xy point type
+ \tparam Parameters parameter type
+ \par Projection characteristics
+ - Azimuthal
+ - Spheroid
+ - Ellipsoid
+ \par Projection parameters
+ - south: Denotes southern hemisphere UTM zone (boolean)
+ \par Example
+ \image html ex_ups.gif
+ */
+ template <typename CalculationType, typename Parameters>
+ struct ups_spheroid : public detail::stere::base_stere_spheroid<CalculationType, Parameters>
+ {
+ inline ups_spheroid(const Parameters& par) : detail::stere::base_stere_spheroid<CalculationType, Parameters>(par)
+ {
+ detail::stere::setup_ups(this->m_par, this->m_proj_parm);
+ }
+ };
+
+ #ifndef DOXYGEN_NO_DETAIL
+ namespace detail
+ {
+
+ // Static projection
+ BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION(srs::par4::stere, stere_spheroid, stere_ellipsoid)
+ BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION(srs::par4::ups, ups_spheroid, ups_ellipsoid)
+
+ // Factory entry(s)
+ template <typename CalculationType, typename Parameters>
+ class stere_entry : public detail::factory_entry<CalculationType, Parameters>
+ {
+ public :
+ virtual base_v<CalculationType, Parameters>* create_new(const Parameters& par) const
+ {
+ if (par.es)
+ return new base_v_fi<stere_ellipsoid<CalculationType, Parameters>, CalculationType, Parameters>(par);
+ else
+ return new base_v_fi<stere_spheroid<CalculationType, Parameters>, CalculationType, Parameters>(par);
+ }
+ };
+
+ template <typename CalculationType, typename Parameters>
+ class ups_entry : public detail::factory_entry<CalculationType, Parameters>
+ {
+ public :
+ virtual base_v<CalculationType, Parameters>* create_new(const Parameters& par) const
+ {
+ if (par.es)
+ return new base_v_fi<ups_ellipsoid<CalculationType, Parameters>, CalculationType, Parameters>(par);
+ else
+ return new base_v_fi<ups_spheroid<CalculationType, Parameters>, CalculationType, Parameters>(par);
+ }
+ };
+
+ template <typename CalculationType, typename Parameters>
+ inline void stere_init(detail::base_factory<CalculationType, Parameters>& factory)
+ {
+ factory.add_to_factory("stere", new stere_entry<CalculationType, Parameters>);
+ factory.add_to_factory("ups", new ups_entry<CalculationType, Parameters>);
+ }
+
+ } // namespace detail
+ #endif // doxygen
+
+} // namespace projections
+
+}} // namespace boost::geometry
+
+#endif // BOOST_GEOMETRY_PROJECTIONS_STERE_HPP
+