summaryrefslogtreecommitdiff
path: root/boost/geometry/formulas/vincenty_inverse.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/geometry/formulas/vincenty_inverse.hpp')
-rw-r--r--boost/geometry/formulas/vincenty_inverse.hpp220
1 files changed, 220 insertions, 0 deletions
diff --git a/boost/geometry/formulas/vincenty_inverse.hpp b/boost/geometry/formulas/vincenty_inverse.hpp
new file mode 100644
index 0000000000..bbda00036b
--- /dev/null
+++ b/boost/geometry/formulas/vincenty_inverse.hpp
@@ -0,0 +1,220 @@
+// Boost.Geometry
+
+// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
+
+// This file was modified by Oracle on 2014, 2016.
+// Modifications copyright (c) 2014-2016 Oracle and/or its affiliates.
+
+// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
+
+// Use, modification and distribution is subject to the Boost Software License,
+// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_GEOMETRY_FORMULAS_VINCENTY_INVERSE_HPP
+#define BOOST_GEOMETRY_FORMULAS_VINCENTY_INVERSE_HPP
+
+
+#include <boost/math/constants/constants.hpp>
+
+#include <boost/geometry/core/radius.hpp>
+#include <boost/geometry/core/srs.hpp>
+
+#include <boost/geometry/util/condition.hpp>
+#include <boost/geometry/util/math.hpp>
+
+#include <boost/geometry/algorithms/detail/flattening.hpp>
+
+#include <boost/geometry/formulas/differential_quantities.hpp>
+#include <boost/geometry/formulas/result_inverse.hpp>
+
+
+#ifndef BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS
+#define BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS 1000
+#endif
+
+
+namespace boost { namespace geometry { namespace formula
+{
+
+/*!
+\brief The solution of the inverse problem of geodesics on latlong coordinates, after Vincenty, 1975
+\author See
+ - http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
+ - http://www.icsm.gov.au/gda/gdav2.3.pdf
+\author Adapted from various implementations to get it close to the original document
+ - http://www.movable-type.co.uk/scripts/LatLongVincenty.html
+ - http://exogen.case.edu/projects/geopy/source/geopy.distance.html
+ - http://futureboy.homeip.net/fsp/colorize.fsp?fileName=navigation.frink
+
+*/
+template <
+ typename CT,
+ bool EnableDistance,
+ bool EnableAzimuth,
+ bool EnableReverseAzimuth = false,
+ bool EnableReducedLength = false,
+ bool EnableGeodesicScale = false
+>
+struct vincenty_inverse
+{
+ static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
+ static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities;
+ static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities;
+ static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;
+
+public:
+ typedef result_inverse<CT> result_type;
+
+ template <typename T1, typename T2, typename Spheroid>
+ static inline result_type apply(T1 const& lon1,
+ T1 const& lat1,
+ T2 const& lon2,
+ T2 const& lat2,
+ Spheroid const& spheroid)
+ {
+ result_type result;
+
+ if (math::equals(lat1, lat2) && math::equals(lon1, lon2))
+ {
+ return result;
+ }
+
+ CT const c1 = 1;
+ CT const c2 = 2;
+ CT const c3 = 3;
+ CT const c4 = 4;
+ CT const c16 = 16;
+ CT const c_e_12 = CT(1e-12);
+
+ CT const pi = geometry::math::pi<CT>();
+ CT const two_pi = c2 * pi;
+
+ // lambda: difference in longitude on an auxiliary sphere
+ CT L = lon2 - lon1;
+ CT lambda = L;
+
+ if (L < -pi) L += two_pi;
+ if (L > pi) L -= two_pi;
+
+ CT const radius_a = CT(get_radius<0>(spheroid));
+ CT const radius_b = CT(get_radius<2>(spheroid));
+ CT const flattening = geometry::detail::flattening<CT>(spheroid);
+
+ // U: reduced latitude, defined by tan U = (1-f) tan phi
+ CT const one_min_f = c1 - flattening;
+ CT const tan_U1 = one_min_f * tan(lat1); // above (1)
+ CT const tan_U2 = one_min_f * tan(lat2); // above (1)
+
+ // calculate sin U and cos U using trigonometric identities
+ CT const temp_den_U1 = math::sqrt(c1 + math::sqr(tan_U1));
+ CT const temp_den_U2 = math::sqrt(c1 + math::sqr(tan_U2));
+ // cos = 1 / sqrt(1 + tan^2)
+ CT const cos_U1 = c1 / temp_den_U1;
+ CT const cos_U2 = c1 / temp_den_U2;
+ // sin = tan / sqrt(1 + tan^2)
+ CT const sin_U1 = tan_U1 / temp_den_U1;
+ CT const sin_U2 = tan_U2 / temp_den_U2;
+
+ // calculate sin U and cos U directly
+ //CT const U1 = atan(tan_U1);
+ //CT const U2 = atan(tan_U2);
+ //cos_U1 = cos(U1);
+ //cos_U2 = cos(U2);
+ //sin_U1 = tan_U1 * cos_U1; // sin(U1);
+ //sin_U2 = tan_U2 * cos_U2; // sin(U2);
+
+ CT previous_lambda;
+ CT sin_lambda;
+ CT cos_lambda;
+ CT sin_sigma;
+ CT sin_alpha;
+ CT cos2_alpha;
+ CT cos2_sigma_m;
+ CT sigma;
+
+ int counter = 0; // robustness
+
+ do
+ {
+ previous_lambda = lambda; // (13)
+ sin_lambda = sin(lambda);
+ cos_lambda = cos(lambda);
+ sin_sigma = math::sqrt(math::sqr(cos_U2 * sin_lambda) + math::sqr(cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda)); // (14)
+ CT cos_sigma = sin_U1 * sin_U2 + cos_U1 * cos_U2 * cos_lambda; // (15)
+ sin_alpha = cos_U1 * cos_U2 * sin_lambda / sin_sigma; // (17)
+ cos2_alpha = c1 - math::sqr(sin_alpha);
+ cos2_sigma_m = math::equals(cos2_alpha, 0) ? 0 : cos_sigma - c2 * sin_U1 * sin_U2 / cos2_alpha; // (18)
+
+ CT C = flattening/c16 * cos2_alpha * (c4 + flattening * (c4 - c3 * cos2_alpha)); // (10)
+ sigma = atan2(sin_sigma, cos_sigma); // (16)
+ lambda = L + (c1 - C) * flattening * sin_alpha *
+ (sigma + C * sin_sigma * ( cos2_sigma_m + C * cos_sigma * (-c1 + c2 * math::sqr(cos2_sigma_m)))); // (11)
+
+ ++counter; // robustness
+
+ } while ( geometry::math::abs(previous_lambda - lambda) > c_e_12
+ && geometry::math::abs(lambda) < pi
+ && counter < BOOST_GEOMETRY_DETAIL_VINCENTY_MAX_STEPS ); // robustness
+
+ if ( BOOST_GEOMETRY_CONDITION(EnableDistance) )
+ {
+ // Oops getting hard here
+ // (again, problem is that ttmath cannot divide by doubles, which is OK)
+ CT const c1 = 1;
+ CT const c2 = 2;
+ CT const c3 = 3;
+ CT const c4 = 4;
+ CT const c6 = 6;
+ CT const c47 = 47;
+ CT const c74 = 74;
+ CT const c128 = 128;
+ CT const c256 = 256;
+ CT const c175 = 175;
+ CT const c320 = 320;
+ CT const c768 = 768;
+ CT const c1024 = 1024;
+ CT const c4096 = 4096;
+ CT const c16384 = 16384;
+
+ //CT sqr_u = cos2_alpha * (math::sqr(radius_a) - math::sqr(radius_b)) / math::sqr(radius_b); // above (1)
+ CT sqr_u = cos2_alpha * ( math::sqr(radius_a / radius_b) - c1 ); // above (1)
+
+ CT A = c1 + sqr_u/c16384 * (c4096 + sqr_u * (-c768 + sqr_u * (c320 - c175 * sqr_u))); // (3)
+ CT B = sqr_u/c1024 * (c256 + sqr_u * ( -c128 + sqr_u * (c74 - c47 * sqr_u))); // (4)
+ CT delta_sigma = B * sin_sigma * ( cos2_sigma_m + (B/c4) * (cos(sigma)* (-c1 + c2 * cos2_sigma_m)
+ - (B/c6) * cos2_sigma_m * (-c3 + c4 * math::sqr(sin_sigma)) * (-c3 + c4 * cos2_sigma_m))); // (6)
+
+ result.distance = radius_b * A * (sigma - delta_sigma); // (19)
+ }
+
+ if ( BOOST_GEOMETRY_CONDITION(CalcAzimuths) )
+ {
+ if (BOOST_GEOMETRY_CONDITION(CalcFwdAzimuth))
+ {
+ result.azimuth = atan2(cos_U2 * sin_lambda, cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda); // (20)
+ }
+
+ if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
+ {
+ result.reverse_azimuth = atan2(cos_U1 * sin_lambda, -sin_U1 * cos_U2 + cos_U1 * sin_U2 * cos_lambda); // (21)
+ }
+ }
+
+ if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
+ {
+ typedef differential_quantities<CT, EnableReducedLength, EnableGeodesicScale, 2> quantities;
+ quantities::apply(lon1, lat1, lon2, lat2,
+ result.azimuth, result.reverse_azimuth,
+ radius_b, flattening,
+ result.reduced_length, result.geodesic_scale);
+ }
+
+ return result;
+ }
+};
+
+}}} // namespace boost::geometry::formula
+
+
+#endif // BOOST_GEOMETRY_FORMULAS_VINCENTY_INVERSE_HPP