summaryrefslogtreecommitdiff
path: root/boost/geometry/algorithms/detail/thomas_inverse.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'boost/geometry/algorithms/detail/thomas_inverse.hpp')
-rw-r--r--boost/geometry/algorithms/detail/thomas_inverse.hpp191
1 files changed, 191 insertions, 0 deletions
diff --git a/boost/geometry/algorithms/detail/thomas_inverse.hpp b/boost/geometry/algorithms/detail/thomas_inverse.hpp
new file mode 100644
index 0000000000..96b237e054
--- /dev/null
+++ b/boost/geometry/algorithms/detail/thomas_inverse.hpp
@@ -0,0 +1,191 @@
+// Boost.Geometry
+
+// Copyright (c) 2015 Oracle and/or its affiliates.
+
+// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
+
+// Use, modification and distribution is subject to the Boost Software License,
+// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_THOMAS_INVERSE_HPP
+#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_THOMAS_INVERSE_HPP
+
+
+#include <boost/math/constants/constants.hpp>
+
+#include <boost/geometry/core/radius.hpp>
+#include <boost/geometry/core/srs.hpp>
+
+#include <boost/geometry/util/condition.hpp>
+#include <boost/geometry/util/math.hpp>
+
+#include <boost/geometry/algorithms/detail/flattening.hpp>
+#include <boost/geometry/algorithms/detail/result_inverse.hpp>
+
+namespace boost { namespace geometry { namespace detail
+{
+
+/*!
+\brief The solution of the inverse problem of geodesics on latlong coordinates,
+ Forsyth-Andoyer-Lambert type approximation with second order terms.
+\author See
+ - Technical Report: PAUL D. THOMAS, MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, 1965
+ http://www.dtic.mil/docs/citations/AD0627893
+ - Technical Report: PAUL D. THOMAS, SPHEROIDAL GEODESICS, REFERENCE SYSTEMS, AND LOCAL GEOMETRY, 1970
+ http://www.dtic.mil/docs/citations/AD703541
+*/
+template <typename CT, bool EnableDistance, bool EnableAzimuth>
+struct thomas_inverse
+{
+ typedef result_inverse<CT> result_type;
+
+ template <typename T1, typename T2, typename Spheroid>
+ static inline result_type apply(T1 const& lon1,
+ T1 const& lat1,
+ T2 const& lon2,
+ T2 const& lat2,
+ Spheroid const& spheroid)
+ {
+ result_type result;
+
+ // coordinates in radians
+
+ if ( math::equals(lon1, lon2)
+ && math::equals(lat1, lat2) )
+ {
+ result.set(CT(0), CT(0));
+ return result;
+ }
+
+ CT const f = detail::flattening<CT>(spheroid);
+ CT const one_minus_f = CT(1) - f;
+
+// CT const tan_theta1 = one_minus_f * tan(lat1);
+// CT const tan_theta2 = one_minus_f * tan(lat2);
+// CT const theta1 = atan(tan_theta1);
+// CT const theta2 = atan(tan_theta2);
+
+ CT const pi_half = math::pi<CT>() / CT(2);
+ CT const theta1 = math::equals(lat1, pi_half) ? lat1 :
+ math::equals(lat1, -pi_half) ? lat1 :
+ atan(one_minus_f * tan(lat1));
+ CT const theta2 = math::equals(lat2, pi_half) ? lat2 :
+ math::equals(lat2, -pi_half) ? lat2 :
+ atan(one_minus_f * tan(lat2));
+
+ CT const theta_m = (theta1 + theta2) / CT(2);
+ CT const d_theta_m = (theta2 - theta1) / CT(2);
+ CT const d_lambda = lon2 - lon1;
+ CT const d_lambda_m = d_lambda / CT(2);
+
+ CT const sin_theta_m = sin(theta_m);
+ CT const cos_theta_m = cos(theta_m);
+ CT const sin_d_theta_m = sin(d_theta_m);
+ CT const cos_d_theta_m = cos(d_theta_m);
+ CT const sin2_theta_m = math::sqr(sin_theta_m);
+ CT const cos2_theta_m = math::sqr(cos_theta_m);
+ CT const sin2_d_theta_m = math::sqr(sin_d_theta_m);
+ CT const cos2_d_theta_m = math::sqr(cos_d_theta_m);
+ CT const sin_d_lambda_m = sin(d_lambda_m);
+ CT const sin2_d_lambda_m = math::sqr(sin_d_lambda_m);
+
+ CT const H = cos2_theta_m - sin2_d_theta_m;
+ CT const L = sin2_d_theta_m + H * sin2_d_lambda_m;
+ CT const cos_d = CT(1) - CT(2) * L;
+ CT const d = acos(cos_d);
+ CT const sin_d = sin(d);
+
+ CT const one_minus_L = CT(1) - L;
+
+ if ( math::equals(sin_d, CT(0))
+ || math::equals(L, CT(0))
+ || math::equals(one_minus_L, CT(0)) )
+ {
+ result.set(CT(0), CT(0));
+ return result;
+ }
+
+ CT const U = CT(2) * sin2_theta_m * cos2_d_theta_m / one_minus_L;
+ CT const V = CT(2) * sin2_d_theta_m * cos2_theta_m / L;
+ CT const X = U + V;
+ CT const Y = U - V;
+ CT const T = d / sin_d;
+ //CT const D = CT(4) * math::sqr(T);
+ //CT const E = CT(2) * cos_d;
+ //CT const A = D * E;
+ //CT const B = CT(2) * D;
+ //CT const C = T - (A - E) / CT(2);
+
+ if ( BOOST_GEOMETRY_CONDITION(EnableDistance) )
+ {
+ //CT const n1 = X * (A + C*X);
+ //CT const n2 = Y * (B + E*Y);
+ //CT const n3 = D*X*Y;
+
+ //CT const f_sqr = math::sqr(f);
+ //CT const f_sqr_per_64 = f_sqr / CT(64);
+
+ CT const delta1d = f * (T*X-Y) / CT(4);
+ //CT const delta2d = f_sqr_per_64 * (n1 - n2 + n3);
+
+ CT const a = get_radius<0>(spheroid);
+
+ result.distance = a * sin_d * (T - delta1d);
+ //double S2 = a * sin_d * (T - delta1d + delta2d);
+ }
+ else
+ {
+ result.distance = CT(0);
+ }
+
+ if ( BOOST_GEOMETRY_CONDITION(EnableAzimuth) )
+ {
+ // NOTE: if both cos_latX == 0 then below we'd have 0 * INF
+ // it's a situation when the endpoints are on the poles +-90 deg
+ // in this case the azimuth could either be 0 or +-pi
+ // but above always 0 is returned
+
+ // may also be used to calculate distance21
+ //CT const D = CT(4) * math::sqr(T);
+ CT const E = CT(2) * cos_d;
+ //CT const A = D * E;
+ //CT const B = CT(2) * D;
+ // may also be used to calculate distance21
+ CT const f_sqr = math::sqr(f);
+ CT const f_sqr_per_64 = f_sqr / CT(64);
+
+ CT const F = CT(2)*Y-E*(CT(4)-X);
+ //CT const M = CT(32)*T-(CT(20)*T-A)*X-(B+CT(4))*Y;
+ CT const G = f*T/CT(2) + f_sqr_per_64;
+ CT const tan_d_lambda = tan(d_lambda);
+ CT const Q = -(F*G*tan_d_lambda) / CT(4);
+
+ CT const d_lambda_p = (d_lambda + Q) / CT(2);
+ CT const tan_d_lambda_p = tan(d_lambda_p);
+
+ CT const v = atan2(cos_d_theta_m, sin_theta_m * tan_d_lambda_p);
+ CT const u = atan2(-sin_d_theta_m, cos_theta_m * tan_d_lambda_p);
+
+ CT const pi = math::pi<CT>();
+ CT alpha1 = v + u;
+ if ( alpha1 > pi )
+ {
+ alpha1 -= CT(2) * pi;
+ }
+
+ result.azimuth = alpha1;
+ }
+ else
+ {
+ result.azimuth = CT(0);
+ }
+
+ return result;
+ }
+};
+
+}}} // namespace boost::geometry::detail
+
+
+#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_THOMAS_INVERSE_HPP